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ABSTRACT This paper firstly compares the common virtual reality technology production methods,
determines the reasonable lower limb rehabilitation exercise modeling method, establishes a more accurate
human lower limb musculoskeletal rehabilitation posture mechanism model, analyzes the passive movement
work mode of lower limb rehabilitation exercise, and simulates the changes of human musculoskeletal
changes during passive movement of lower limb rehabilitation which exercise robots were analyzed.
Secondly, the research is on robust controller for omni-directional mobile lower limb rehabilitation based on
artificial intelligence and medical big data. The error dynamic model of omni-directional moving lower limb
rehabilitation exercise system is established, and the technical problems of standard design, dissipative and
gain are analyzed. By constructing the storage function and using the inverse push method, the nonlinear
robust controller for omnidirectional moving lower limb rehabilitation motion is designed. The stability
of this control law is proved based on Lyapunov’s theorem. Finally, an experimental study on the omni-
directional moving lower limb rehabilitation exercise system and rehabilitation evaluation system. Seven
human gait and online detection methods for rehabilitation exercise were proposed. The simulation study on
the omni-directional moving lower limb rehabilitation robot using nonlinear robust controller is carried out
to verify the effectiveness and correctness of the lower limb exercise rehabilitation method.

INDEX TERMS Artificial intelligence, medical big data, lower limb exercise rehabilitation, robust control.

I. INTRODUCTION

The combination of emerging artificial intelligence and med-
ical big data technology and traditional medical and health
fields will bring new opportunities to traditional medical
models, help patients to develop medical solutions and med-
ical institutions to integrate medical resources in the process
of medical treatment. This limits the improvement in medical
outcomes and does not make full use of medical resources.
And there is great potential for development in improving the
quality of treatment in hospitals, reducing the risk of patient
deterioration and saving medical costs. The artificial intelli-
gence and medical health big data industry has now become
an important industry in many countries and has formulated
relevant policies, even rising to a national-level approach.
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Due to the freedom of lower extremity joints, the balance and
coordination mechanism of human walking is still unclear.
Lower limb exercise rehabilitation training is more difficult
than upper limb rehabilitation in terms of mechanism, exer-
cise planning and control strategy, and research progress has
been slow. At present, the research on lower limb running
rehabilitation training is still in its infancy. Disadvantages
include: fewer types of training actions, the scope of motion
is mainly limited to training the front of the body; the range of
motion is small, generally limited to plane motion; the control
strategy is single, mainly based on the speed or position servo
control mode to provide passive training for patients, patients
could not exercise independently; Rehabilitation evaluation
indicators still use traditional clinical evaluation methods, so
the relationship between the data extracted during the training
process and the training effect is still unclear.
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One of the most important applications of artificial intel-
ligence and medical health big data is the prevention and
control of diseases, which has attracted the attention of many
countries, research institutions and major Internet compa-
nies around the world. Through the mining and analysis of
historical data, they establish mathematical models to iden-
tify the pathogenic factors, predict the development trend of
the disease, assess the risk level of the disease, and finally
develop corresponding treatment plans for the patients. At
present, medical big data analysis technology has made great
breakthroughs both in theory and in practical applications.
One of the most successful cases in the field of medical
health is the special study on heart disease research [1]-[3].
Project researchers have long tracked the heart data of a fixed
group and then analyzed the data using big data technology.
The way to dig out the cause of heart disease, and finally
develop relevant countermeasures based on specific reasons.
Using big data technology modeling analysis [4]-[6], it is to
explore the key risk characteristics of the disease, including
body index and personal habits: blood lipids, blood pressure,
diabetes, weight, smoking, eating habits and exercise. The
Heart Research Program helps the public understand clearly
the pathogenesis of heart disease and provides scientific
and personalized guidelines for preventing heart disease. In
the big data technology based on artificial intelligence and
machine learning, massive data sources are necessary to uti-
lize big data analysis [7]-[10]. Only with sufficient data to
support the data analysis method can we provide users with
a very good personalized solution. Whether the lower limb
rehabilitation training can achieve the purpose of treatment
and rehabilitation depends on whether the completion of
exercise rehabilitation training, in a sense to replace or assist
the therapist, can be achieved through effective robot control
strategies, including training mode control, Remote control,
virtual reality, biofeedback, security policy and many other
aspects [11]-[14]. The ideal functional recovery depends
on proper rehabilitation, and the correct rehabilitation must
rely on the correct rehabilitation assessment. The function
of the lower limbs is mainly walking, and the rehabilita-
tion evaluation of the lower limbs mainly focuses on the
evaluation of walking ability. Hoffer walking ability grading
is a kind of macro-level grading. It is a kind of grading
method for patients who can’t walk, and can walk at home
or in the community [15]-[18]. Holden’s functional walking
classification (Functional ambulation clarification (FAC) is a
relatively detailed qualitative assessment method [19]-[22].
Functional ambulation profile (FAP) assessment is suitable
for patients with moderate to moderate walking dysfunction,
belonging to a semi-quantitative nature [23]-[25]. However,
so far, although medical institutions and research institutes
have accumulated a large amount of clinical data, before
artificial intelligence developed to a certain stage, we did not
have enough software technology to deal with such massive
data to explore the laws behind big data. The diagnosis pro-
cess of disease and exercise rehabilitation is a comprehensive
judgment that needs to consider a lot of complicated factors.
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Therefore, based on artificial intelligence and medical
big data, the study of lower limb exercise rehabilitation
and rehabilitation evaluation methods is proposed, which
lays a theoretical and technical foundation for the appli-
cation of lower limb exercise rehabilitation training. This
paper firstly compares the common virtual reality technology
production methods, determines the reasonable lower limb
rehabilitation exercise modeling method, establishes a more
accuratei human lower limb musculoskeletal rehabilitation
posture mechanism model, analyzes the passive movement
work mode of lower limb rehabilitation exercise, and sim-
ulates The changes of human musculoskeletal changes dur-
ing passive movement of lower limb rehabilitation exercise
robots were analyzed. Secondly, the research is on robust con-
troller for omni-directional mobile lower limb rehabilitation
which based on artificial intelligence and medical big data.
The error dynamic model of omni-directional moving lower
limb rehabilitation exercise system is established, and the
technical problems of standard design, dissipative and gain
are analyzed. By constructing the storage function and using
the inverse push method, the nonlinear robust controller for
omnidirectional moving lower limb rehabilitation motion is
designed. The stability of this control law is proved based on
Lyapunov’s theorem. Finally, an experimental study on the
omni-directional moving lower limb rehabilitation exercise
system and rehabilitation evaluation system. Seven human
gait and online detection methods for rehabilitation exercise
were proposed. The simulation study on the omni-directional
moving lower limb rehabilitation robot using nonlinear robust
controller is carried out to verify the effectiveness and correct-
ness of the lower limb exercise rehabilitation method.

Il. ANALYSIS OF LOWER LIMB EXERCISE
REHABILITATION BASED ON MEDICAL BIG DATA
A. LOWER EXTREMITY MOTION ANALYSIS
The main function of the lower limbs is to support weight and
movement and to maintain the body’s upright posture. When
the human body is upright, the center of gravity is generally
located behind the pith joint, slightly above the frontal axis of
the ankle joint. Its left and right position is slightly to the right
near the median plane of the human bodys; its anteroposterior
position is between the bone and the pubis [26]-[28]. The
lower limb bone consists of the medullary bone and the free
lower extremity bone. Free lower extremity bones include
the femur, tibia, tibia and foot bones, of which the foot
bones include 26 bones. The hip joint consists of the hip and
femoral heads and has considerable stability to accommodate
weight and walking functions for triaxial movement. The
knee joint consists of the femoral end, the lower end of the
hip bone. It is the largest and most complex joint in the human
body and has many ligaments to increase the stability of the
joint [29]-[31].

The complex shape of the joint, the number and position
of the axis of motion determine the form of motion of the
joint. The form of movement of the joint is essentially a
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TABLE 1. Range of hip joint angles of young men.

Casual exercise Forced movement
Stretch Maximum | Minimum | Average | Standard | Maximum | Minimum | Average | Standard
forward value value deviation value value deviation
Stretch 63 119 98 17.0 99 124 112 9.2
backwards
Lateral 26 70 48 12.9 41 75 56 10.4
stretching
Inward twist | 39 o8 70 17.0 65 101 79 10.4
Twist 39 80 61 15.2 45 90 73 16.6
outward
Stretch 24 48 37 6.6 39 60 46 6.7
forward
TABLE 2. The angle of the knees of young men’s calves during exercise.
Casual exercise Forced movement
Maximum | Minimum | Average Standard Maximum Minimum | Average Standard
value value deviation value value deviation
118 136 127 6.7 128 150 140 6.8
TABLE 3. Range of angles of ankle joint activity of young men (right half).
Casual exercise Forced movement
Maximum | Minimum | Average Standard | Maximum Minimum | Average | Standard
value value deviation value value deviation
Bend down | 18 43 28 7.6 22 55 36 9.9
Upward 25 46 37 6.6 35 52 44 4.7
bending

movement along three mutually perpendicular axes, includ-
ing flexion, extension, extension, rotation and rotation. The
range of motion angles of the joints of young men’s lower
extremities is shown in Table 1-3.

B. PASSIVE MOTION ANALYSIS OF LOWER LIMB EXERCISE
REHABILITATION BASED ON MEDICAL BIG DATA

Lower limb exercise rehabilitation In passive exercise, the
simulated joint movement of the foot during the flexion and
extension of the leg, the hip joint and the knee joint can
also be exercised during the flexion and extension of the
large and small legs. The human lower limb is a complex
body composed of many bones and muscles. The theoretical
modeling of the lower limbs is the focus and difficulty of
research. At present, there is still no successful mechanical
model applied to common motion and dynamics analysis.
Taking into account the complexity of the later calculations
and the focus of the research, the characteristics of the lower
limbs, the following human lower limb model assumes that
the role of the lower limb muscle system is not considered; the
role of articular cartilage and ligaments is not considered; ithe
basic measurement parameter modeling function is not spe-
cific human body influence.
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One of the most important steps in the analysis of
processed data using medical big data algorithms is data
preprocessing. In practical applications, when the medical
big idata algorithm is used to learn the data features, the
feature data can be improved by pre-processing the original
feature data to improve the learned feature quality. The object
of machine learning analysis and processing is to collect all
kinds of data from the real world, and due to the uncer-
tainty, diversity, complexity and other reasons of the real
world [32], the raw data collected is not regular, and the
performance is more scattered. These data generally do not
meet the specifications and standards required by the Medical
Big Data for the Institute of Feature Learning. The data
preprocessing structure based on medical big data as shown
in Fig. 1:

The first step in data preprocessing is to normalize the
feature data. There are many ways to normalize data, and
the specific normalization method usually chooses different
normalization methods according to the specific application
background of the data. In general, the usual methods
for normalizing feature data are: minimum-maximum nor-
malization: if min and max represent the minimum and
maximum values of the dataset features, respectively,
the minimum-maximum normalization is a simple linear

126789



IEEE Access

W. Ling et al.: Lower Limb Exercise Rehabilitation Assessment Based on Artificial Intelligence and Medical Big Data

Fully connected

BRI

Medical Under Downsampllng

big data collection
FIGURE 1. Data preprocessing structure based on medical big data.

scaling. The minimum-maximum normalization is calculated
by [33]-[35]:
/ v — min

vV=—— ey

max — min

where max is the maximum value of the original set data, and
min is the minimum value of the original set data. However,
this standardized algorithm also has some disadvantages.
When there is new data, it is possible that the changes of the
maximum value max and the minimum value min need to be
re-discovered the maximum and minimum values and then
recalculated. The essence of minimum-maximum normaliza-
tion is a simple linear transformation of the feature set, thus
maintaining the correlation between the transformed data and
the original data.

Feature normalization: Feature normalization is designed
to have features with zero mean and unit variance in each
dimension. This normalization method is widely used in data
and preprocessing. In the actual standardized calculation, the
specific process of feature standardization is: first, calculate
the mean of the data set in each dimension, and subtract the
average from the data of each dimension; then, divide by the
standard of the size difference data. The specific calculation

method is:
y=L"H# )
OA

where w, o4 is the mean and standard deviation of the
attribute respectively, and the z-score normalization algo-
rithm is applicable to the case where the maximum and
minimum values of the attribute A in the data set cannot be
accurately obtained, or the data noise is too large, exceeding
the normal value.

After doing a simple normalization, in order to make the
algorithm work better, and then perform motion passive anal-
ysis on the normalized data, in fact, many deep learning
algorithms rely on whitening to make the algorithm make its
network parameters. Achieve optimal conditions and improve
the accuracy and timeliness of the algorithm. Before the final
data is written to the frame buffer, the geometry data and the
data are rasterized and the primitive operations are performed.
All data is stored in the display list or processed directly.

As shown in Fig. 2, each skeletal muscle is divided into
two parts: the muscle abdomen and the tendon. The muscle
abdomen is composed of muscle fibers, which are cord-
like or membranous dense connective tissues at the ends of
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FIGURE 2. Passive analysis of lower extremity motion based on medical
big data.

the muscles, promoting muscle adhesion and fixation. The
muscle bond of a muscle is attached to two or more different
bones, and the muscle leg pulls the muscle contraction to
drive the movement of different bones.

Let the two ends of the muscle be A, B, the length is 1, the
vector is r, r2, and the muscle forces acting on the two bones
are F1, F. During the contraction of muscles, the work done
by muscle strength is:

W =Fidy +Fd, =F1 xd(ri —rn)=F xd (3)

In the process of isotonic contraction, the work done by
muscle strength is:

W= / —Fy x dl = Fa(Lo— L) )
Lo

Let Ly — L = d be the length of muscle contraction, then
W = Fg x d, that is, during isotonic contraction, the work
of muscle strength is equal to the product of muscle strength
and muscle contraction length [36]-[38].

C. PASSIVE MOTION ANALYSIS

In the feature extraction phase, this paper applies a feature of
learning original signals composed of artificial intelligence
and medical big data and two layers of down sampling lay-
ers. When training the parameters of the network, through
continuous iteration and experimentation, the optimal param-
eter combination of the network is obtained; in the health
state evaluation stage, the learned features are applied to the
multivariate Gaussian distribution. Firstly, the multivariate
Gaussian model is used to obtain the probability distribu-
tion of features. Then, it is divided into different probabil-
ity intervals. Some feature points of the small probability
interval are considered to be characteristic representations
of the rehabilitation state of the lower extremity medical
big data. The feature points of the probability interval are
classified according to the size of the interval feature point
probability mean to rank the medical big data lower limb
exercise rehabilitation state.

As shown in Figure 3, with the increase of the number of
iterations, the medical big data lower limb exercise rehabil-
itation state tends to be stable after zero, the reconstructed
signal is almost identical to the original signal, when the
medical big data lower limb exercise rehabilitation state is
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FIGURE 3. Curve relationship between iteration number and medical big
data rehabilitation state of lower extremity exercise.

small to a certain trend Nearly and with a decimal, the
learned feature is another effective expression of the original
signal.

When learning the characteristics from the original sig-
nal, and providing it to the multivariate Gaussian model
for the medical big data evaluation of the lower limb
motion rehabilitation state, it is also necessary to con-
sider whether the learned features conform to the Gaussian
distribution.

T T T

—¥— Body temperature |

—%— Horizontal electromyography
Vertical myoelectric

—%— Trapezius

0.8
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0.4

0.2

Probability
(=]
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-1 s
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FIGURE 4. Gaussian distribution of features.

As shown in Figure. 4, Figure. 5, as the probability value
changes continuously, its health state also changes to vary-
ing degrees. Although the Gaussian distribution has many
features in advance, its health status is also the best. As
the threshold changes continuously, the interval probability
feature distribution map is obtained respectively. Tests on the
dataset show that the proposed method can extract key fea-
ture representations of multidimensional physiological data.
Then, the feature points of the same probability interval are
calculated, and the health state level of the user is obtained
according to the probability of these feature points. In this

VOLUME 7, 2019

RN

Eigenvalues

FIGURE 5. Feature points with different thresholds.

way, big data-based analysis can help users understand their
health status. If analyzed by a doctor or a professional, such
data information can be helpful for doctors to diagnose early
signs of some diseases. Therefore, the model is also a useful
tool to help professionals diagnose potential diseases.

1. COMPREHENSIVE LOWER LIMB Motion
REHABILITATION ANALYSIS AND ROBUST

DESIGN BASED ON ARTIFICIAL Intelligence

AND MEDICAL BIG DATA

A. NON-HOLONOMIC CONSTRAINED KINEMATICS
MODEL FOR OMINI-DIRECTIONAL MOVEMENT OF

LOWER EXTREMITY SPORTS REHABILITATION

The lower limb motion rehabilitation is divided into 4 omnidi-
rectional wheels and 1 platform with a total of 5 rigid bodies,
numbered 1 to 5, and the platform number is 5:

diw +f1Té = —aél
drw +f2T2 = —ab,
dzw +f3Té = —aé3
dyw +fle = —aby 5)

Superimposed:

4 4 4
dei+eTZf,-=—aZéi (6)
i—1 i—1 i—1

The multivariate normal distribution is also called the mul-
tivariate Gaussian distribution, and the multivariate Gaussian
model is an extension of the Gaussian probability density
function of medical big data. In the multivariate Gaussian
distribution model, in order to obtain the p(x) of the fea-
ture, it is necessary to construct the covariance matrix E of
the feature. The specific calculation method is as follows.
Before this, the average value w of all features is calculated
first, and then the feature association is calculated. Variance
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matrix E:
_lfzi
a mn i=1 '
1 - T 1 T
Yo=Y i—wei—w ==X - WX -w" (7
m i— m

Finally, the probability value P(x) of the multivariate Gaus-
sian distribution is calculated:
PO) = ————ep—s =) =) )

emiiy; 2

In this paper, the Gaussian distribution theory is used to cal-
culate the probability distribution of medical big data features
based on the multivariate Gaussian distribution model. Then,
according to the size of the feature point probability, the non-
holonomic constrained kinematics evaluation model of sports
rehabilitation training is constructed by dividing the feature
probability interval. The following is a description of the spe-
cific theory and how to design a non-holonomic constrained
kinematics assessment model for exercise rehabilitation.

The algorithm flow can be generally divided into the fol-
lowing three steps:

(1)Model is established, according to the actual applica-
tion, select the appropriate Gaussian model, and then estab-
lish a Gaussian probability distribution function.

(2) Model training, input the characteristic data learned by
the network into the network, calculate the parameters related
to the Gaussian probability distribution function, obtain the
probability model, and establish the lower limb exercise reha-
bilitation training according to the probability distribution of
the original input data. Formal constraint kinematics assess-
ment model for partitioning intervals;

(3) Model prediction, giving prediction results. For the new
data, the probability distribution is calculated according to
the trained network model. Then, by dividing the probability
interval, the state level of the non-holonomic constraint kine-
matics assessment of the lower limb exercise rehabilitation
training belongs to the feature point.

As shown in Figure 6, since most people have physiologi-
cal parameters in general, the physiological data will become
abnormal in only a few cases. Based on this idea, the number
of features is the total number of features, the smaller the
probability of features, the higher the degree of health hazard
to which feature points belong, and the more incompletely
constrained evaluation states. Differences in lower limb exer-
cise rehabilitation.

B. ROBUST DESIGN OF OMNI-DIRECTIONAL MOBILE
LOWER LIMB EXERCISE REHABILITATION TRAINING
According to the structural characteristics of omni-
directional moving lower limb running rehabilitation training,
a mathematical model of the system was established through
kinematics analysis. For the multi-input and multi-output of
omni-directional mobile lower limb rehabilitation training,
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there are uncertain interferences and their own characteris-
tics. A nonlinear trajectory tracking robust controller design
method is proposed.

Omni-directional mobile lower limb rehabilitation training
achieves trajectory tracking by controlling four wheel speeds.
To create a robust controller design, the simplified model is
shown in Figure 7. Select the global coordinate system (X, y)
and the local coordinate system (x;, y;) to describe the robot’s
working state space. The robot coordinate position on the
2D work plane can be expressed as ¢ = [x, y]”. When the
robot moves, the angle between the two axes of the global
coordinate system and the velocity vector is ¢

Considering the uncertainty of the system, its mathematical
model can be described by:

X = g1 + gr(x)u + f(x) &)

g1(x) is a matrix function of w, w is undetectable interfer-
ence, f(x) is a nonlinear vector function, g>(x) is a matrix
function of u, and u is a control input. When designing the
controller u(x) = k(x), we must consider not only the asymp-
totic stability of the closed-loop system when @ =0, but also
the state of the closed-loop control system can still approach
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zero when the interference is not zero, or the deviation from
the equilibrium point is as small as possible. To this end, this
paper improves the system’s suppression of interference by
reducing the L; gain of the closed-loop system. For the signal
w (t), its Ly norm is defined as:

o)z = { / o (No(t)ds) (10)
0

If the signal w (t) is considered to be a scalar, the above
definition becomes:

o]l = { / w2 (1)d,} 2 (11)
0

In fact, in many cases the two norm of w (t) defined by the
above equation can be interpreted as the energy possessed by
the signal. If the state feedback controller 4 = k(x) is used,
the closed loop system can be expressed as:

=g+ f(x) 12)

Let the initial state of the system be x(0) = 0. For a given
interference signal w (t), the dynamic response of the system
is obtained by solving the upper differential equation. In
order to describe the system’s ability to suppress interference,
define the evaluation signal:

7= h(x)+ da(x)u (13)

where h is the function vector after weighting and da(x) is
the function matrix of u. The smaller the L, norm for a
given interfering signal, the smaller the system’s influence
on the interfering signal, the system has a stronger ability to
suppress external interference signals. This indicates that the
system’s ability to suppress interference can be described by
the ratio of the norm of the evaluation signal to the norm of
the interfering signal.

C. ROBUST SIMULATION STUDY

The omni-directional mobile lower limb rehabilitation train-
ing robust control tool software is MATLAB, and the math-
ematical model module and controller module are written in
M language. The trajectory is simulated and analyzed within
60s. When there is disturbance, the motor rotation speed
changes rapidly to balance the disturbance. Under L, robust
control, the system converges to 0 in about 20s, the system
is globally asymptotically stable, and the speed is 0.5m/s to
meet the rehabilitation training requirements.

As shown in Figure 8, Figure 9 and Table 4, in order to ver-
ify that this can be tracked to any curve and its tracking perfor-
mance under interference, four different curves for circle, sine
curve, Lissajous and sine are respectively Tracking simula-
tion under interference. The above curve tracking simulation
results show that the omnidirectional mobile controller with
L, algorithm has good trajectory tracking performance. This
nonlinear model can suppress the interference while tracking
the arbitrary curve.
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TABLE 4. Step frequency test.

Normal Landing on | Landing on | Inside and heel
gait the inside of | the outside | of the sole
the foot of the foot
0.75 1.35 null 1.0
0.8 null 1.42 null
0.8 null null 1.0

IV. EXPERIMENT AND ANALYSIS

Three aspects of experimental research on rehabilitation eval-
uation and rehabilitation training were carried out: (1) In
order to verify the effectiveness of the rehabilitation eval-
uation method established in this paper, an experimental
study on gait and dynamic balance rehabilitation evalua-
tion methods was carried out. Seven gait pattern detection
algorithms are proposed, and the established online gait
detection device is used to detect and judge the unsynchro-
nized state of the human body during rehabilitation train-
ing. (2)The dynamic balance ability of normal people and
patients was compared and analyzed by using the dynamic
balance detection device and the human body dynamic bal-
ance parameter analysis algorithm built on the arm sup-
port platform. (3)In order to verify the effectiveness of the
designed L, robust control strategy, an experimental platform
based on machine vision was established to perform trajec-
tory tracking experiments on circular trajectories and linear
trajectories.
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TABLE 5. Gait state definition.

Serial Foot touch part Grounding Gait

number sensor

1 heel A.B 3

2 Inside and outside A.B.C 2.5
of the sole

3 All of the feet A, C 5

4 Inside of the sole B.C 1

5 Outside of the sole | C 2

6 Inside and heel of B 4
the sole

7 Outer heel and heel | A 4.5

Sensor

Gait

FIGURE 10. Sensor signal and gait state waveform for normal walking.

A. GAIT ANALYSIS EXPERIMENT

To achieve gait detection, the asynchronous state is first
defined, as shown in Table 5. The sensors are placed in three
different positions on the inside of the sole of the foot, on the
outside of the sole of the foot, and on the heel. The sensor that
defines the inside of the foot is A, the sensor outside the foot is
B, and the heel sensor is C. During a single walking cycle, the
left lower limb and the right lower limb experience a standing
phase that is in contact with the ground and carries weight.
The normal gait consists of the heel strikes the ground, the
feet flat, the heel off the ground, and the swing. Due to
organic lesions, the patient may have a center of gravity
movement, pelvic movement, and inconsistent movements
of the lower extremity joints and muscles during walking,
resulting in an inward (outer) swing, tilting, and touching
abnormalities inside and outside the heel. The gait defined
in Table 4 contains the normal and abnormal gaits described
above, allowing for a better analysis of the gait.

Complete the automatic judgment of the gait state. After
the system collects three sensor input values, it compares with
the previously set thresholds to determine whether the human
body generates pressure on the sensor, thereby distinguishing
the state of the three force sensors from grounding, and
obtaining the final human gait by numerical calculation in the
Fig.10 to Fig.12. The following are the original waveforms of
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sole and the heel.

the normal and abnormal gait sensors collected. The threshold
of this experiment is 50mV.

(1) Normal gait transition: swing - heel ground - standing
- heel off the ground - swing.

(2) The inside of the sole of the foot is on the ground.

(3) The inside of the sole and the heel strike: the order of
the sensor landing is A, C-NULL.

B. DYNAMIC EQUILIBRIUM ANALYSIS

Figure 13 is the waveform of the arm pressure when a normal
person walks forward during rehabilitation training, where C,
D, and E are the values of the three pressure sensors M1, M2,
and M3, respectively.

When the human body walks, the center of gravity moves
up and down twice in a walking cycle, and its amplitude is
4.5cm; the lateral movement occurs once every right and left
in a walking cycle, and its amplitude is 3 cm.

Figure 13, Figure 14 and Table 6 show the lateral move-
ment distance of the patient during training, which is the
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TABLE 6. Range of human lower limb joint motion (degrees).

Flexion | Stretch | Adduction | Outreach | Pronation | External | Overstretch | Back Tuo Qu | Side
rotation curve
Hip 130-145 | 10-15 20-35 30-45 40-50 30-40
knee 120-155 10 20 0-10
ankle 30 30-55 20-35 40-55
Lumbar | 85 30 30 30 40
spine

Arm pressure
.

Arm pressure
.

0.4 0.45 0.5 0.55 0.6
Time

FIGURE 13. Pressure curve of the forward walking arm of patients with
leg sprains.
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FIGURE 14. Distribution of the center of gravity of the patient’s forward
walking arm.

patient’s arm pressure curve and center distribution map. It
can be seen that the walking information of normal people
and patients is different. The average force of the normal
person’s arm pressure is in the first quadrant, and the average
force of the patient’s arm pressure is in the third quadrant.
It shows that the patient is mainly assisted by the strength
of the rehabilitation robot and is in a towed state, while the
normal person mainly walks on his own ability. The patient’s

VOLUME 7, 2019

single arm relies on the strength of the rehabilitation robot to
account for 19% of its weight, compared to 11% for normal
people. Two important factors in human walking are the
mastery of leg strength and balance, which can indirectly
reflect the supporting force of the human leg. In the process of
using the rehabilitation robot, the support of the human body
is mainly supported by the support force and the leg strength
provided by the support surface, and indirectly reflects the
lack of strength of the human leg. Normal people’s arm
activity center of gravity radius is larger than the patient’s
range, and the dispersion is higher.

C. TRAJECTORY TRACKING AND ROBUSTNESS
VERIFICATION OF MOBILE LOWER LIMB

EXERCISE REHABILITATION TRAINING

In order to verify the running trajectory of the robot under
the L, robust controller, the experimental platform was devel-
oped to record the running trajectory data through the camera
placed on the indoor roof. After the computer processing, the
coordinate posture of the robot was obtained and imported
into the upper computer.

x10*

Error

2 2
Lower limb exercise rehabilitation
Circular trajectory tracking

FIGURE 15. Circular trajectory tracking error.

As shown in Figure 15, Figure 16 and Figure 17, in the
circular trajectory tracking test, the curves of the horizontal
and vertical coordinates with time are disturbed by the patient
during operation, and there is a tendency to deviate from the
original trajectory. The L2 robust controller can be quickly
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FIGURE 16. Trajectory tracking experiment results.
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FIGURE 17. Straight line tracking error.

adjusted. This gesture enables operation on a predetermined
trajectory. In the trajectory tracking test, the horizontal and
vertical coordinates versus time curve can track a predeter-
mined trajectory of about 20 s to meet the patient’s reflection
speed.

V. CONCLUSION

Based on the analysis of medical health big data, this paper
focuses on applying artificial intelligence and medical big
data methods is to the evaluation of lower limb exercise
rehabilitation, combining traditional medical and emerging
big data technologies to construct a physiological big data.
We identified a reasonable modeling approach that included
most of the lower extremity bones and the dynamic muscles
that pull the lower jaw, knees and joints. By analyzing the
main and passive movement modes of lower limb rehabili-
tation training, the movement pattern of the musculoskeletal
model apex of the lower limbs is calculated when the lower
limb pedal drives the ankle joint to reciprocate and when
the patient exercises autonomously, thereby simulating the
lower limb rehabilitation training during passive movement.
The angle at which the joint turns is less than 30. The effect
is good, greater than 30. When the muscles are severely
deformed, there is an overlap between the bones, and the
effect is deteriorated.
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In view of the fact that the current rehabilitation eval-
uation equipment could not measure the dynamic balance
parameters, the measurement method of human dynamic
balance parameters based on omni-directional mobile lower
limb exercise rehabilitation training was proposed for the
first time. By developing a dynamic balancing force plat-
form based on artificial intelligence and medical big data
arm support structures, the human body dynamic balance
data was successfully detected, which filled the blank of the
human rehabilitation parameter measurement method. For
the nonlinear and uncertain rehabilitation training system, a
L2 robust controller design method is proposed for the first
time. The omnidirectional moving lower limb rehabilitation
trajectory tracking and system uncertain disturbance problem
of multi-input and multi-output nonlinearity are summarized
as L2 robust controller design problems. The kinematics
and dynamic error models are established, the storage func-
tion is constructed and the control rate is designed by the
inverse push method. The robust control theory is applied to
prove that the L2 control algorithm satisfies the conditions
of dissipative inequality and system asymptotic stability. The
tracking trajectory is round, sinusoidal, Lissajous curve and
star curve analysis under the set disturbance. The tracking and
anti-interference performance of the omni-directional mov-
ing lower limb exercise rehabilitation training using nonlinear
L2 robust controller are verified. Experimental study on the
evaluation system of omni-directional moving lower extrem-
ity exercise rehabilitation. In order to evaluate the functional
parameters of lower limbs during rehabilitation training,
seven gait mode detection methods were proposed. Through
the developed gait detection program, the gait pattern and
the step frequency parameter online detection and record-
ing during human rehabilitation training can be realized.
The experimental results prove that the proposed method is
feasible.
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