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ABSTRACT This paper discusses the finite-time and the fixed-time consensus of nonlinear stochastic
multi-agent systems (NSMSs) with randomly occurring uncertainties (ROUs) and randomly occurring
nonlinearities (RONs) in a leader-following framework. Nonlinear control and impulsive pinning control
protocols are designed to guarantee that follower agents realize consensus with the leader agent in finite
time(fixed time). Based on the finite-time and fixed-time consensus theory, stochastic analysis technique,
comparison system theory and algebra graph theory, some sufficient conditions are proposed to guarantee the
finite-time and fixed-time consensus of systems. Then, the setting times of finite-time consensus and fixed-
time consensus are estimated. Finally, two simulation examples are presented to illustrate the correctness of
our conclusions.

INDEX TERMS Finite-time consensus, fixed-time consensus, stochastic multi-agent systems, impulsive
control, ROUs, RONs.

I. INTRODUCTION
With the development of modern science and technology and
the popularization of artificial intelligence, multi-agent sys-
tem, as one kind of complex networks, has attracted consid-
erable attention among the scholars and the experts [1]–[3].
Consensus problem is a basic research issue in multi-agent
system, and it aims to design a distributed protocol to ensure
that all controlled agents tend to a same value as the time
goes by [4]–[6]. A consensus algorithm is an interaction
criteria that an agent exchanges information between all of
its neighbours in the complex system. Especially, a wonderful
topic is the leader-following consensus, in which the leader is
a solitary agent that leads other agents to reach an agreement
in the whole network. The leader-following consensus proto-
col is designed to guarantee that states of all followers tend
towards the leader as time goes on.

As is well known, classical consensus of multi-agent sys-
tems is asymptotical consensus, namely, the systems achieve
consensus in an infinite time interval [7]. Unfortunately, due
to the finiteness of the useful lifespan of equipment and the
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lifetime in humans, asymptotic consensus control is not the
best control method. Therefore, people may hope to design
a control method so that systems can reach an agreement as
fast as possible [8]. Compared with asymptotic consensus,
finite-time consensus greatly reduce the risk of theft and
develop security of information when it is applied in secret
communications. What’s more, the finite-time control mea-
sure not only have the better robustness but it also has the
property of external disturbance rejection [9]–[12]. There-
fore, finite-time consensus also attracted scholars in various
fields. In Ref. [12], Chen proposed a distributed algorithm
for the finite-time consensus problem of stochastic multi-
agent systems and at the meantime, it also optimized the
convergence rate.

In the real engineering application environment, multi-
agent systems are often affected by random disturbances.
Such random disturbances such as information-transmitted
random packet loss, random network congestion, random
noise disturbances are described in [13]–[17]. This uncer-
tainty may occur in a probabilistic way, which usually rep-
resents parameter excursions. Parameter uncertainties can
seriously deteriorate the system performance and system fail-
ure. So far a large number of research results on stochastic
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systems have been published to the world. In Ref. [15], a new
system with randomly occurring uncertainties (ROUs) and
randomly occurring nonlinearities (RONs) has been proposed
for the first time. In Ref. [18], the authors provided a leader-
following consensus protocol for a class of multi-agent sys-
tem with RONs and ROUs under the undirected and fixed
topology. Not enough attention has been paid to research
the non-linear stochastic multi-agent systems (NSMSs) with
ROUs and RONs, as far as we know. Besides, finite-time
consensus of NSMSs with ROUs and RONs obtained a few
achievement.

Up till now, tremendous amount ofmethods have been used
to solve the consensus problem of multi-agent systems, for
instance, adaptive control, robust control, feedback control
and so on [19]–[21]. Compared with these continuous-time
control methods, impulsive control techniques is a definite
advantage to control of the complex network, especially,
the systems cannot be controlled by continuous-time control
[22], [23]. In Ref. [23], the problem of finite-time stability
for impulsive systems has been studied by using the impul-
sive control theory. Besides, only at the discrete instants did
impulsive control use a fraction of control impulses, which
not only reduced the energy loss but also reduced amount of
control cost. However, it is impractical to add the control into
each agent when the scale of systems is very huge. At this
time, the pinning control technique is an effective way that
decrease the amount of controlled nodes [24], [25]. Only
on the designated nodes do we need to exert control. And
this way greatly reduces the control pressure of large-scale
systems. Particularly, the impulsive pinning control is one of
most effective control methods. It not only has the merits of
the impulsive control, but also has the advantages of pinning
control [26], [27]. In this article, we will introduce impulsive
pinning control for finite-time consensus problems of multi-
agent systems.

Although our analysis can naturally estimate the setting
time of the finite-time consensus, the setting time relies on the
initial states of the system, which should be given beforehand.
What the initial values are not known beforehand restricts the
applications in practical situation. At present, authors pro-
posed a new control method named fixed-time control which
is an advanced finite-time control [28]. Unlike the finite-
time approach, regardless of what initial value is chosen,
the setting time for complex network to achieve agreement
is invariant via fixed-time control. Since then, lots of results
about fixed-time consensus of complex systems have been
extensively published in the related journal [29]–[34]. In Ref.
[29], in order to decrease communication costs, the authors
proposed a novel protocol including quantized control and
impulsive control to achieve fixed-time consensus of multi-
agent systems. In Ref. [32], the authors designed a novel
controller which can restrain the chattering phenomenon to
guarantee that the aim systemswith desynchronizing and syn-
chronizing impulsive signal realized fixed-time synchroniza-
tion with an isolated system. These highlight the important
application of fixed-time consistency in multi-agent systems.

However, it is worth noting that the study about finite-time
and fixed-time consensus of NSMSs with RONs and ROUs
is less covered.

Motivated by the above-mentioned considerations, this
paper investigates the finite-time and fixed-time consensus of
NSMSs with ROUs and RONs via impulsive control. In the
following, the main theoretical contributions of this article
can be summarized.
• Compared with previous work, two effective control
protocols are both presented so that we can resolve
the problem of finite-time and fixed-time consensus of
NSMSs with RONs and ROUs.

• The high control cost of the target systems is reduced by
using a pinning control strategy, which it only needs to
control a small fraction of agents.

• With the help of the comparison system theory and
average impulsive interval, the finite/fixed (depen-
dent/independent on the initial states) settling time can
be estimated, respectively.

The rest of this paper is organized as follows. Section II
presents problem formulation and some preliminaries. Ana-
lytical arguments for the finite-time consensus are inves-
tigated in Section III.In Section IV, we propose novel
control protocol for the fixed-time consensus of NSMSs.
In Section V, two numerical simulation examples are pro-
vided to validate our results. At last, the conclusion is given
in Section VI.
Notations: In this paper, unless otherwise specified, N+

denotes the positive integers, R represents the real numbers
andRn is the set of n-dimensional Euclidean space. In denotes
the identity matrix with compatible dimensions. ⊗ repre-
sents the Kronecker product. λmin (A) and λmax (A) mean the
smallest and the largest eigenvalue of matrix A, respectively.
diag {· · · } stands for a diagonal matrix and trace [A] stands
for the trace of matrix A.

(
Ω,F , {Ft }t≥0 ,P

)
be a complete

probability space with a filtration {Ft }t≥0 which satisfy the
usual conditions: the filtration contains all P-null sets and
is right continuous. E (·) stands for the exception operator
with respect to some probability measure P. ‖·‖ stands for
the Euclidean norm of a matrix. |·| denotes the absolute
value of a number. C1,2 denotes the family of all nonnega-
tive function V (t, x) that are continuously once differential
in t and twice in x. Pr {α} and Pr {β} mean the occur-
rence probability of event α, β. For a continuous function
ϑ : R → R, denote ϑ

(
t−
)
| = lim

s→0−
ϑ (t + s), and the

upper Dini derivative of ϑ (t) is represented by D+ϑ (t) =
lim
s→0+

sup (ϑ (t + s)− ϑ (t)) /s.

II. PRELIMINARIES
A. GRAPH THEORY
Graph theory, as a practical tool, is a great option to express
the join conditions among agents. In this subsection,for some
basic notations of algebraic graph theory, we give a brief
introduction. A multi-agent system can be represented by an
undirected graph G = (V,E,A). Without multiple edges
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and self-loops, the N agents is consisted of a set of nodes
V = {v1, v2, · · · , vN } and the edge set E ⊆ V×V stands for
the communication transmission among nodes. The weighted
adjacency matrix is denoted by A =

(
aij
)
∈ RN×N . An edge

of undirected graph G is denoted by (i, j), representing there
is bidirectional information flow between agent i and agentj.
The elements of A are denoted as follows: if the edge (i, j) ∈
E, then aij = aji > 0, otherwise aij = 0, and the diagonal
elements of A are zeros, that is aii = 0. L =

[
lij
]
∈ RN×N

is stood for the Laplacian matrix, which lij = −aij when

i 6= j and lii =
N∑
j∈Ni

aij. In the graph, the leader is represented

by s0 which could send the information to the following
agents. An undirected graph Ḡ stands for the leader-following
communication topology. We use a matrix H = L + C to
describe the structure of Ḡ, where C = diag {c1, c2, · · · , cN }
with ci = 1 if (s0, i) is an edge of Ḡ andwith ci = 0 otherwise.
H = (hij)N×N can be written as

hij =

{
lii + ci, i = j,
lij, i 6= j.

B. PROBLEM STATEMENT
In this paper, a class of NSMSs with ROUs and RONs is con-
sidered. The dynamics of follower agents can be described as
follows:

dsi (t) = [A (t) si (t)+ β (t) f (t, si (t))+ ui (t)] dt

+ σ (t, si (t)) dw (t) ,

si (t) = φi (t) , t ≤ 0,

(1)

where si ∈ Rn and ui ∈ Rm are the state vector and the control
protocol of the ith agent to be designed later, respectively,
i = 1, 2, · · · ,N . f (·) : R×Rn

→ Rn stands for a continuous
nonlinear function of agent i. σ : R× Rn

→ Rn is the noisy
intensity function. w(t) is a scalar Brownian motion defined
on
(
Ω,F , {Ft }t≥0 ,P

)
, which satisfies E {dw (t)} = 0 and

E
{
[dw (t)]2

}
= dt; φi (t) is the continuous initial condition

of ith agent. A(t) is a weight matrix and can be further
described as A (t) = A + α (t)∆A (t) ,∆A (t) = MF (t)Q.
A,M andQ are approximatively dimensional known constant
matrices andF(t) stands for the non-linear time-varying func-
tion satisfied that

F (t)T F (t) ≤ I . (2)

The terms α (t)∆A (t) represents the phenomena of ROUs,
and β (t) f (·, ·) stands for the phenomena of RONs. Random
variables α (t) , β (t) are both Bernoulli distributing white
sequences which the values are either one or zero. Naturally,
they are assumed as follows:{

Pr {α (t) = 1} = α, Pr {α (t) = 0} = 1− α,
Pr {β (t) = 1} = β, Pr {β (t) = 0} = 1− β,

(3)

where α, β ∈ [0, 1] are known constants. Further, it is
assumed that the stochastic variables α(t), β(t) and w(t)

are reciprocally independent. From (3), we can get that
E {α (t)− α} = 0,E {β (t)− β} = 0.
Let s0 ∈ Rn be the state of the leader agent. The dynamic

of s0 is described as follows:
ds0 (t) = [A (t) s0 (t)+ β (t) f (t, s0 (t))]

+ σ (t, s0 (t)) dw (t) ,

s0 (t) = ψ (t) , t ≤ 0,

(4)

where ψ (t) is the continuous initial state of leader s0.
Before staring themain results, some assumptions, lemmas

and definitions are introduced in the following.
Definition 1 [35]: Suppose that there exists a positive

constant Ta and a positive integer N0 such that

t̃ − t
Ta
− N0 ≤ Nς (t, t̃) ≤ N0 +

t̃ − t
Ta

(5)

for any t̃ > t ≥ 0, where Nς (t, t̃) stands for the number of
impulsive times of the impulsive sequence ς = {t1, t2, · · · }
on the interval (t, t̃). Then, it is said that the impulsive
sequence ς = {t1, t2, · · · } have an average impulsive interval
Ta.
Definition 2: System (1) is said to achieve finite-time

leader-following consensus in probability, if there exists a
constant T > 0 which depends on the initial condition vector
value s(0) such that

P
{

lim
t→Ts(0)

si (t)− s0 (t) = 0
}
= 1, ∀i ∈ N .

Definition 3: The multi-agent (1) is said to achieve fixed-
time leader-following consensus in probability, if the finite-
time leader-following consensus is solved and an estimated
settling-time Ts(0) is further uniformly bounded by a fixed
positive constant.
Assumption 1: The non-linear function f (·), σ (·) are Lips-

chitz continuous, there exist known constant matrices J and
Σ such that

‖f (t, x1)− f (t, x2)‖ ≤ ‖J (x1 − x2)‖,

‖σ (t, x1)− f (t, x2)‖ ≤ ‖Σ (x1 − x2)‖,

for all x1, x2 ∈ Rn.
Lemma 1 [36]: For any x, y ∈ Rn and ε > 0, then we

obtain that

xT y+ yT x ≤ εxT x + ε−1yT y.

Lemma 2 [29]: Let s1, s2, · · · , sN ≥ 0, 0 < p < 1, q > 1,
the following two inequalities hold

N∑
i=1

spi ≥

(
N∑
i=1

si

)p
,

N∑
i=1

sqi ≥ N
1−q

(
N∑
i=1

si

)q
.

Lemma 3 [22]: A continuous Lipschitz function V (t) is
assumed that satisfies

V̇ (t) ≤ −aV b (t) , ∀t ≥ t0, V (t0) ≥ 0,

where a > 0, 0 < b < 1 are constants, then V (t) satisfies

V 1−b (t) ≤ V 1−b (t0)− a (1− b) (t − t0) , t0 ≤ t ≤ T ,
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and V (t) ≡ 0,∀t ≥ T , with the settling time T given by

T = t0 +
V 1−b (t0)
a (1− b)

.

Lemma 4 [22]: Suppose that the continuous and non-
negative function V (t) satisfies conditions as follows:{

V̇ (t) ≤ −aV b (t) , t 6= tk ,
V
(
t+k
)
≤ ξkV

(
t−k
)
, t = tk ,

where a > 0, 0 < b < 1, 0 < ξk < 1, k = 1, 2, · · · , n, then
following inequality holds:

V 1−b (t) ≤ V 1−b (t0)− a (1− b) (t − t0) , t0 ≤ t ≤ T ,

where T is a constant which stands for the settling time.

III. FINITE-TIME LEADER-FOLLOWING CONSENSUS
In this section, the finite-time leader-following consensus cri-
teria for NSMSs with ROUs and RONs will be investigated.
Let ei (t) = si (t) − s0 (t). To achieve the followers to track
synchronization for the leader within finite time, a control
algorithm of ith agent is designed as follows:

ui (t)=−ρei (t)− ηsign (ei (t)) |ei (t)|γ

+ bk [
∑
j∈Ni

aij
(
ei (t)−ej (t)

)
+ciei (t)]

∞∑
k=1

δ (t − tk),

k ∈ N+, i = 1, 2, · · · ,N , (6)

where ρ, η > 0 are control parameters, γ is a variable con-
stant satisfying 0 < γ < 1, γ ∈ R, bk represents the control
gains, δ (t) is the Dirac delta function satisfying δ (t) = 0 for
t 6= 0. Z = {tk} is a strict increased sequence which satisfies
tk−1 < tk and limtk → +∞ as k → +∞, sign (ei (t))
denotes the signum function satisfying sign (ei (t)) =
diag (sign (ei1 (t)) , sign (ei2 (t)) , · · · , sign (ein (t))), which
is defined as follows:

sign (x) =


−1, if x < 0,
0, if x = 0,
1, if x > 0.

Remark 1: Compared with system (1) in [17], we add A(t)
in system (1). At the same time, the RONs is considered in
it. Also, different from the continuous-time control method
in [17], both nonlinear controller and impulsive controller
are used for finite-time leader-following consensus of (1)
in this paper. Besides, compared with the continuous-time
control, the impulsive control accelerates the convergence of
the multi-agent systems.
Remark 2: Different from the control protocol (4) in [7],

we propose the control method to realize leader-following
consensus in finite time in this paper. Although the energy
cost of the finite-time control method may be much more
expensive than traditional technique, the pinning control tech-
nique is proposed to reduce the cost as far as possible.

Thus, our control objective is to use control strategy (6)
to make the trajectory of system (1) consistent with that of

system (4). And the tracking error dynamics systems can be
described by

dei (t) = [A (t) ei (t)+ β (t)F (t, ei (t))

− ρei (t)− ηsign (ei (t)) |ei (t)|γ ]dt

+ σ̃ (t, ei (t)) dw (t) , t 6= tk ,

∆ei (tk) = bk [
∑
j∈Ni

aij
(
ei
(
t−k
)
− ej

(
t−k
))

+ ciei
(
t−k
)
], t = tk ,

ei (t) = φi (t)− ψ (t) ,

(7)

where i = 1, 2, · · · ,N , F (t, ei (t)) = f (t, si (t)) −
f (t, s0 (t)) and σ̃ (t, ei (t)) = σ (t, si (t)) − σ (t, s0 (t)). Yet
the general, si (t) , s0 (t) , ei (t) are assumed to be right-hand
continuous at t = tk , for instance, si (tk) = si

(
t+k
)
, s0 (tk) =

s0
(
t+k
)
and ei (tk) = ei

(
t+k
)
. ∆ei (tk) = ei

(
t+k
)
− ei

(
t−k
)
.

Let e (t) =
[
eT1 (t) , e

T
2 (t) , · · · , e

T
N

]T , F̄ (t, e (t)) =[
FT (t, e1 (t)) ,FT (t, e2 (t)) , · · · ,FT (t, eN (t))

]T ,
σ̄ (t, e (t)) =

[
σ̃ T (t, e1 (t)) , σ̃ T (t, e2 (t)) , · · · , σ̃ T

(t, eN (t))]T , Φ (t) =
(
φT1 (t) , · · · , φ

T
N (t)

)T
, Ψ (t) =(

ψT (t) , · · · , ψT (t)
)T , ϕ (t) = Φ (t)− Ψ (t).

On the basis of the Kronecker product technology, system
(7) can be rewritten in a compact form as follows:

de (t) = [(IN ⊗ A (t)) e (t)+ β (t) F̄ (t, e (t))

− ρe (t)− ηsign (e (t)) |e (t)|γ ]dt

+ σ̄ (t, e (t)) dw (t) , t 6= tk ,

∆e (tk) = bk
(
(H ⊗ IN ) e

(
t−k
))
, t = tk ,

e (t) = ϕ (t) ,

(8)

In the following, we present a theoretical result to guaran-
tee that the follower system (1) and the leader system (4) with
ROUs, RONs and stochastic disturbances can reach finite-
time consensus via the control protocol (6). And then, we give
a following result.
Theorem 1: Suppose that Assumption 1 hold. Suppose that

positive constants ε1, ρ, η, and 0 < γ < 1 satisfying

λmax (Π1)+ λmax (Π2)+ 2β‖J‖ − 2ρ < 0, (9)

θ < 1, (10)

where Π1 = IN ⊗
(
AT + A+ ε1α2MMT

+ ε−11 QTQ
)
,

Π2 = IN ⊗
(
ΣTΣ

)
, θ = supk∈N+λmax (Θk) ,Θk =

(bk (H ⊗ In)+ INn)T (bk (H ⊗ In)+ INn).
then the NSMSs (1) and (4) with the controller (6) can realize
the finite-time consensus in a finite time T

T ≤
V (0)1−

1+γ
2

2η
(
1− 1+γ

2

) . (11)

Proof: Define the following Lyapunov function candi-
date

V (t, e (t)) = eT (t) e (t). (12)

Similar as previous papers, let the notation L stand for the
Kolmogorov operator of Itô stochastic system. Let function

VOLUME 7, 2019 136633



T. Chen et al.: Finite-Time and Fixed-Time Consensus of NSMSs With ROUs and RONs via Impulsive Control

V (t, s) ∈ C1,2, on the basis of Itô rule, the equation is
obtained along with the evolution of random system ds (t) =
f (t, s (t)) dt + g (t, s (t)) dw (t) as follows:

dV (t, s (t))=LV (t, s (t)) dt+Vs (t, s (t)) g (t, s (t)) dw (t),

where LV (t, s) = Vt (t, s)+ Vs (t, s) f (t, s)
+

1
2Tr

[
gT (t, s)Vss (t, s) g (t, s)

]
.

According to Itô differential formula, the derivative of (12)
with respect to (8) can be given as follows:

dV (t, e (t)) = LV (t, e (t)) dt + 2eT (t) σ̄ (t, e (t)) dw (t),

(13)

LV (t, e (t)) = 2eT (t) [(IN ⊗ A (t)) e (t)

+β (t) F̄ (t, e (t))− ρe (t)

− ηsign (e (t)) |e (t)|γ ]

+ trace[σ̄ T (t, e (t)) σ̄ (t, e (t))]. (14)

On the basis of Lemma 1, it can be obtained that

2eTi (t) (A (t)) ei (t)

= 2eTi (t) (A+ α (t)MF (t)Q) ei (t)

= eTi (t)
(
AT + A

)
ei (t)+ 2αeTi (t)MF (t)

×Qei (t)+ 2 (α (t)− α) eTi (t)MF (t)Qei (t)

≤ eTi (t)
[
AT + A+ ε1α2MMT

+ ε−11 QTQ
]

× ei (t)+ 2 (α (t)− α) eTi (t)MF (t)Qei (t). (15)

Based on the Kronecker product, we can rewrite (13) as
follows:

2eT (t) (IN ⊗ A (t)) e (t) ≤ eT (t) (IN ⊗ (AT + A

+ ε1α
2MMT

+ ε−11 QTQ))

× e (t)+ 2 (α (t)− α) eT (t)

×MF (t)Qe (t), (16)

and on the basis of Assumption 1, one can obtain

2eT (t) β (t) F̄ (t, e (t)) = 2eT (t) βF̄ (t, e (t))+ 2(β (t)

−β)eT (t) F̄ (t, e (t))

≤ 2β‖J‖eT (t) e (t)+ 2(β (t)

−β)eT (t) F̄ (t, e (t)). (17)

Next, based on Assumption 1, we have

trace
[
σ̄ T (t, e (t)) σ̄ (t, e (t))

]
≤ eT (t)

(
IN ⊗

(
ΣTΣ

))
e (t), (18)

combining (16)-(18) and condition (9) , we can further get

LV (t) ≤ 2 (α (t)− α) eT (t) (IN ⊗ (MF (t)Q)) e (t)

− 2 (β (t)− β) eT (t) F̄ (t, e (t))

− 2η
(
eT (t) e (t)

) 1+γ
2
. (19)

Since ELV (t, e (t)) is continuous in t ∈ (tk−1, tk ], it can
be obtained as follows

D+EV (t, e (t))=ELV (t, e (t)) , t ∈ (tk−1, tk ] , k ∈N+.
(20)

Then, (19) can be yielded by using themathematical expec-
tation as follows:

ELV (t, e (t)) ≤ −2η (E [V (t, e (t))])
1+γ
2 . (21)

Obviously, according to Lemma 3, we can get that

V 1− 1+γ
2 (t) ≤ V 1− 1+γ

2 (t0)− 2η
(
1−

1+ γ
2

)
× (t − t0) , t ∈ (tk−1, tk ] , k ∈ N+. (22)

In addition, when t = tk , on can obtain

V
(
t+k , e

(
t+k
))
= eT

(
t+k
)
e
(
t+k
)

=
(
(bk (H ⊗ In)+ INn) e

(
t−k
))T

×
(
(bk (H ⊗ In)+ INn) e

(
t−k
))

≤ θV
(
t−k , e

(
t−k
))
, (23)

where θ < 1. Use the mathematical expectation, on has that

E
{
V
(
t+k
)}
≤ θEV

(
t−k
)
. (24)

Based on Lemma 4, we can obtain that

V 1− 1+γ
2 (t) ≤ V 1− 1+γ

2 (t0)− 2η
(
1−

1+ γ
2

)
× (t − t0) , t0 ≤ t ≤ T . (25)

Easily, we can find that V (t) will be reach in the finite time,
which indicates that error system will be zero. And we can
estimate the finite time as follows:

T ≤
V (0)1−

1+γ
2

2η
(
1− 1+γ

2

) . (26)

Therefore, by the above analysis, based on Lemma 3 and
Lemma 4, the NSMSs (1) can achieve consensus with system
(4) in the finite time T by using the proposed control protocol.
The proof is completed.
Remark 3: It is noted that the setting time in (26) relies on

the initial values. However, we may not give the estimation
of the setting time while the initial values are hard to get.
Moreover, if the initial state enlarges, the setting time may
also become too big. Thus, we propose a new class of control
protocol in next section which the estimated setting time is
independent of the initial state.

IV. FIXED-TIME LEADER-FOLLOWING CONSENSUS
In this part, the fixed-time leader-following consensus criteria
for NSMSs with ROUs and RONs will be investigated. Let
ei (t) = si (t)− s0 (t) stand for the consistency error between
the follower si and the leader s0. To achieve the followers

136634 VOLUME 7, 2019



T. Chen et al.: Finite-Time and Fixed-Time Consensus of NSMSs With ROUs and RONs via Impulsive Control

to track synchronization for the leader within fixed time,
we design a control algorithm of ith agent as follows:

ui (t) = −κ1ei (t)− κ2sign (ei (t)) |ei (t)|ι

− κ3sign (ei (t)) |ei (t)|d + bk [
∑
j∈Ni

aij(ei (t)

− ej (t))+ ciei (t)]
∞∑
k=1

δ (t − tk),

k ∈ N+, i = 1, 2, · · · ,N . (27)

where κ1, κ2, κ3 > 0 are control parameters, ι, d are variable
constants satisfying 0 < ι < 1, d > 1, ι, d ∈ R
Remark 4: Compared with the control protocol (6) in

Theorem 1, the control protocol (27) adds an extra
term −κ3sign (ei (t)) |ei (t)|d , κ3 > 0, d > 1,
which can realize fixed-time consensus. Without the term
−κ3sign (ei (t)) |ei (t)|d , the control protocol (27) returns
to the control protocol which can only realize finite-time
consensus.
Remark 5: Although the problem for the fixed-time con-

sensus of multi-agent systems have been studied in [33], [34],
the fixed-time consensus of NSMSs via impulsive control
protocol is not considered. In this article, we have proposed a
theory of the fixed-time consensus of NSMSs by using impul-
sive control, which is of great significant from a theoretical
and practical viewpoint.

Therefore, our control objective is to use control strategy
(27) to make the trajectory of system (4) to be tracked by
the system (1). And the error dynamics can be expressed as
follows:

dei (t) = [A (t) ei (t)+ β (t)F (t, ei (t))

− κ1 ei (t)− κ2 sign (ei (t)) |ei (t)|ι

− κ3sign (ei (t)) |ei (t)|d ]dt

+ σ̃ (t, ei (t)) dw (t) , t 6= tk ,

∆ei (tk) = bk [
∑
j∈Ni

aij
(
ei
(
t−k
)
− ej

(
t−k
))

+ ciei
(
t−k
)
], t = tk ,

ei (t) = φi (t)− ψ (t) .

(28)

Similarly, on the basis of Kronecker product, we can
rewrite Eq.(28) in the following:

de (t) = [(IN ⊗ A (t)) e (t)+ β (t) F̄ (t, e (t))

− κ1 e (t)− κ2 sign (e (t)) |e (t)|ι

− κ3sign (e (t)) |e (t)|d ]dt

+ σ̄ (t, e (t)) dw (t) , t 6= tk ,

∆e (tk) = bk
(
(H ⊗ IN ) e

(
t−k
))
, t = tk ,

e (t) = ϕ (t) .

(29)

Next, we present a theoretical result to guarantee that the
follower system (1) and the leader system (4) with ROUs,
RONs and stochastic disturbances can reach finite-time con-
sensus via control protocol (27). And then, we give a follow-
ing result.

Theorem 2: Suppose that Assumption 1 hold. Suppose that
positive constants ε2, κ1, κ2, κ3, and 0 < ι < 1, d > 1
satisfying

λmax (Π1)+ λmax (Π2)+ 2β‖J‖ − 2κ1 < 0, (30)

where Π1 = IN ⊗
(
AT + A+ ε2α2MMT

+ ε−12 QTQ
)
,

Π2 = IN ⊗
(
ΣTΣ

)
, θ = supk∈N+λmax (Θk) ,Θk =

(bk (H ⊗ In)+ INn)T (bk (H ⊗ In)+ INn),
then NSMSs (1) and (4) with the controller (27) can reach
consensus in the fixed time. Moreover, the setting time can
be estimated at T.

T = T1 + T2 =
Ta

(1− m) ln θ
ln
(
1−

θN0(1−m) ln θ
2Taκ̄3

)
+

Ta
(1− ω) ln θ

ln
[

2Taκ2
2Taκ2θ2N0(1−ω) − ln θ

]
+ 2TaN0

when 0 < θ < 1 and

T = T1 + T2 =
1

2κ̄3 (m− 1)
+

1
2κ2 (1− ω)

when θ = 1, where m = 1+d
2 > 1 and 0 < ω = 1+ι

2 < 1,

κ̄3 = κ3 (Nn)
1−d
2 .

Proof: Similar to the proof of Theorem 1, the same
Lyapunov candidate is considered as follows:

V (t, e (t)) = eT (t) e (t). (31)

Based on the Itô differential formula and using Lemma 2,
we can obtain the derivative of (31) with respect to (29) in the
following:

LV (t, e (t))≤ 2 (α (t)− α) eT (t) (IN ⊗ (MF (t)Q)) e (t)

− 2 (β (t)− β) eT (t) F̄ (t, e (t))

− 2κ2 (V (t, e (t)))
1+ι
2 −2κ̄3 (V (t, e (t)))

1+d
2 ,

(32)

where κ̄3 = κ3 (Nn)
1−d
2 .

Then, by taking themathematical expectation on both sides
of (13) with (32), one has

ELV (t, e (t)) ≤ −2κ2 (E [V (t, e (t))])
1+ι
2

− 2κ̄3 (E [V (t, e (t))])
1+d
2 (33)

On the other hand, when t = tk , one can obtain

V
(
t+k , e

(
t+k
))
= eT

(
t+k
)
e
(
t+k
)

=
(
(bk (H ⊗ In)+ INn) e

(
t−k
))T

×
(
(bk (H ⊗ In)+ INn) e

(
t−k
))

≤ θV
(
t−k , e

(
t−k
))
, (34)

Take the mathematical expectation, then we can obtain

E
{
V
(
t+k
)}
≤ θEV

(
t−k
)
. (35)
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On the basis of the above analysis, we can consider the
system for comparison purpose as follows:

v̇ (t) =


−2κ2v

1+ι
2 (t) , 0 < v (t) < 1, t 6= tk

−2κ̄3v
1+d
2 (t) , v (t) ≥ 1, t 6= tk

0, v (t) = 0, t 6= tk
v (tk) = θv

(
t−k
)
,

v (0) = v0.

(36)

Comparing (33) and (35) with (36), we can find that 0 ≤
V (t) ≤ v (t). As a result, if there exists T > 0 such as v (t) ≡
0 for t > T , then V (t) ≡ 0 for t > T . Therefore, in order
to demonstrate the fixed-time consensus of the error system
(29), it is only necessary to demonstrate the corresponding
problem of the zero solution of system (36).

Next, the system (36) will be considered in two cases such
that 0 < θ < 1 and θ = 1.
Case 1: 0 < θ < 1
Suppose w (t) = v1−m (t) when v (t) ≥ 1. It can be seen

from Eq. (36) that w (t)→ 1 when v (t)→ 1 and w (t)→ 0
when v (t)→+∞, then it is obtained that

ẇ (t) = 2κ̄3 (m− 1) , 0 ≤ w (t) ≤ 1, t 6= tk
w (tk) = θ̄w

(
t−k
)
, t = tk

w (0) = w0 = v1−m0 ,

(37)

where θ̄ = θ1−m implies θ̄ ∈ [1,+∞). It can be deduced
from Eq. (37) that

w (t) = θ̄Nς (0,t)w (0)+ 2κ̄3 (m− 1)
∫ t

0
θ̄Nς (s,t)ds (38)

Since w (0) = θ̄Nς (0,0)w (0) = w0 < 1, limt→+∞ w (t) =
∞ and w(t) is monotonously increasing on [0,+∞), there
exists a positive number T1 such that limt→T1 w (t) = 1 and
0 < w(t) < 1 for 0 < t < T1.
Therefore, based on Eq. (38), one obtain that

θ̄Nς (0,t)w (0)+ 2κ̄3 (m− 1)
∫ t

0
θ̄Nς (s,t)ds = 1, (39)

which implies

2κ̄3 (m− 1)
∫ t

0
θ̄Nς (s,t)ds ≤ 1. (40)

By simple computation from (5) and (40), we can get

t ≤
Ta

(1− m) ln θ
ln
(
1−

θN0(1−m) ln θ
2Taκ̄3

)
. (41)

Let

T1 =
Ta

(1− m) ln θ
ln
(
1−

θN0(1−m) ln θ
2Taκ̄3

)
.

In other word, one can obtain w (t)→ 1 when t → T1.
Suppose w (t) = v1−ω (t), when 0 < v(t) ≤ 1,. It can

be seen from Eq. (36) that w (t) → 1 when v (t) → 1 and
w (t)→ 0 when v (t)→ 0,

then one obtains
ẇ (t) = −2κ2 (1− ω) , 0 < w (t) ≤ 1, t 6= tk , t ≥ T1
w (tk) = θ̃w

(
t−k
)
, t = tk , t ≥ T1

w (T1) = v (T1) = 1.
(42)

where θ̃ = θ1−ω implies θ̃ ∈ (0, 1). According to Eq. (42),
we can deduce that

w (t) = θ̃Nς (T1,t)w (T1)− 2κ2 (1− ω)
∫ t

T1
θ̃Nς (s,t)ds. (43)

On the basis of Definition 1, it can be obtained that

w (t) ≤ θ̃
t−T1
Ta
−N0 − 2κ2 (1− ω)

∫ t

T1
θ̃
t−s
Ta
+N0ds. (44)

Further, let the right-hand side of (44) becomes zero and
we can get

t−T1=
Ta

(1− ω) ln θ
ln
[

2Taκ2
2Taκ2θ2N0(1−ω) − ln θ

]
+2TaN0.

(45)

Let

T2 =
Ta

(1− ω) ln θ
ln
[

2Taκ2
2Taκ2θ2N0(1−ω) − ln θ

]
+ 2TaN0.

In other word, we need time T2 for the sake of w (t) → 0
after w (t)→ 1 at time T1.

On the basis of the previous discussions, when 0 < θ < 1,
one can see that the setting time is

T = T1 + T2 =
Ta

(1− m) ln θ
ln
(
1−

θN0(1−m) ln θ
2Taκ̄3

)
+

Ta
(1− ω) ln θ

ln
[

2Taκ2
2Taκ2θ2N0(1−ω) − ln θ

]
+ 2TaN0. (46)

That being said, v (t) ≡ 0 when t ≥ T .
Case 2: θ = 1
We use a similar analytic method used Eq. (39) and

Eq.(43). The results are obtained as follows:

T1 =
1

2κ̄3 (m− 1)
, T2 =

1
2κ2 (1− ω)

.

Therefore, when θ = 1, we can estimate the setting time
as follows:

T = T1 + T2 =
1

2κ̄3 (m− 1)
+

1
2κ2 (1− ω)

.

The proof is thus completed.
Remark 6: When θ > 1, it follows that θ̃ = θ1−ω >

1 and the fixed-time consensus of NSMSs (1) can not be
guaranteed.When θ̃ > 1, the setting time T2 whichmakew(t)
of system (42) tend to zero can not be due to be estimated.
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V. NUMERICAL EXAMPLES
In this section, we provide two simulation examples to illus-
trate the feasibility and effectiveness of the proposed control
method. The consensus of multi-agent Chua’s circuit systems
is considered. Using the similar example as that given in [7],
the Chua’s oscillator is expressed in the following:

ṡi1 (t) = −p1si1 (t)+ p1si2 (t)− p1g (si1 (t)) ,
ṡi2 (t) = si1 (t)− si2 (t)+ si3 (t) ,
ṡi3 (t) = −p2si2 (t) ,

(47)

where si (t) denotes the state of ith agent, g (si1 (t)) =
ε2si1 (t) + 0.5 (ε1 − ε2) (|si1 (t)+ 1| − |si1 (t)− 1|) ,ε1 <

ε2 < 0 are known constants. Let p1 = 8.92, p2 =
16.223, ε1 = −2.16 and ε2 = −0.885. The chaotic
behaviour is shown by (47). According to (1) and (47),
we obtain that

A =

−p1 (1+ ε2) p1 0
1 −1 1
0 −p2 0

,
f (t, si(t))

=

−0.5p1 (ε1 − ε2) (|si1 (t)+ 1| − |si1 (t)− 1|)
0
0

.
Let F (t) = diag {− sin (t) , cons (t) , sin (t)}, M =

diag {0.3,−0.5, 0.4}, Q = diag {0.2, 0.3,−0.5},
σ (t, si (t)) = [

√
0.2 sin (t) si1 (t) ,

√
0.4 sin (t) si2 (t) ,√

0.6 sin (t) si3(t)]T , i = 1, 2, 3, 4. Easily, we can see that
J = |ε1p1| In,Σ = diag {0.4, 0.6, 0.8}.

FIGURE 1. The communication topology Ḡ of a multi-agent system.

We consider a team of 5 agents which the interaction
topology Ḡ is indicated by undirected graph presented in
FIGURE1. Obviously, the leader is expressed as 0th agent
and the rest of agents denote the followers.

From Ḡ, the Laplacian matrix L and pinning gain matrix C
are obtained as follows:

L =


2 −1 0 −1
−1 1 0 0
0 0 0 0
−1 0 0 1

, C =


1

0
1

0

,

FIGURE 2. Finite-time consensus of NSMSs via protocol (6) with initial
states s1 = [2.1 0 − 1.82]T , s2 = [−1.6 3.8 2]T , s3 = [2.12 2 1]T , s4 =
[−0.15 1 0]T , s0 = [−1 2 3]T .

thus

H = L + C =


3 −1 0 −1
−1 1 0 0
0 0 1 0
−1 0 0 1

.
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FIGURE 3. Fixed-time consensus of NSMSs via protocol (27) with initial
states s1 = [2.1 0 − 1.82]T , s2 = [−1.6 3.8 2]T , s3 = [2.12 2 1]T , s4 =
[−0.15 1 0]T , s0 = [−1 2 3]T .

Example 1 (Finite-Time Leader-Following Consensus of
NSMSs With ROUs and RONs): Let bk = −0.6, step-
length is 0.0001. By simple calculation, it can be obtained
that θ = 0.9032. This value satisfies the condition (10)

FIGURE 4. Fixed-time consensus of NSMSs via protocol (27) with initial
states s1 = [21 0 18.2]T , s2 = [−16 13.8 20]T , s3 = [15 20 10]T , s4 =
[−15 10 11]T , s0 = [−11 20 25]T .

of Theorem 1. The Bernoulli-distributed stochastic variable
α (t) , β (t) are assumed to satisfy (3) with α = 0.5, β = 0.5.
The initial states are taken as s1 = [2.1 0 − 1.82]T , s2 =
[−1.6 3.8 2]T , s3 = [2.12 2 1]T , s4 = [−0.15 1 0]T , and

136638 VOLUME 7, 2019



T. Chen et al.: Finite-Time and Fixed-Time Consensus of NSMSs With ROUs and RONs via Impulsive Control

the leader evolves from s0 = [−1 2 3]T . Besides, the con-
dition (9) in Theorem 1 implies that ρ > 4.9 should be
satisfied. Take ρ = 5, η = 40, γ = 0.5, ε1 = 1. The
numerical results for the proposed controller (6) is presented
in FIGURE2. According to (11), the multi-agent system
can achieve consensus within the settling time T = 0.141.
In FIGURE2, under protocol (6), the setting time is approx-
imate t = 0.05. This result proves the effectiveness and
feasibility of Theorem 1.
Example 2 (Fixed-Time Leader-Following Consensus of

NSMSs With ROUs and RONs): Set κ1 = 5, κ2 = 40, ι =
0.5, κ3 = 10, d = 2 in (27). Meantime Ta = 0.028 and N0 =

1 characterize the impulsive time sequence. Other parameters
are the same as Example 1. And the initial values are the
same as those in Example 1. In FIGURE3, the settling time is
about t = 0.045 under protocol (27). Then, change the initial
states to s1 = [21 0 18.2]T , s2 = [−16 13.8 20]T , s3 =
[15 20 10]T , s4 = [−15 10 11]T , and the leader evolves
from s0 = [−11 20 25]T . In FIGURE4, under protocol (27)
the setting time is approximate t = 0.038 . According to
Theorem 2, the multi-agent system can achieve consensus in
settling time T = 0.101. The settling time for both cases is
smaller than T and thereby demonstrating the effectiveness
of Theorem 2.
Remark 7: According to the numerical simulations, obvi-

ously, the convergence rate under our control protocol is
much faster than the results in [7]. Furthermore, numerical
simulations demonstrate that the estimated setting time of
fixed-time consensus is independent on the initial states.

VI. CONCLUSION
The finite-time and fixed-time consensus problems of
NSMSs with RONs and ROUs are investigated in this paper.
A new class of protocols proposed integrates nonlinear con-
trol and impulsive control. By using finite-time consensus
method, the follower agents can achieve consensus with the
leader in finite time. Furthermore, the control protocol has
been improved and a fixed-time protocol has been proposed.
This protocol allows followers to reach the agreement with
the leader in finite time under arbitrary initial states. Com-
pared with the finite-time consensus, the estimated setting
time of the fixed-time consensus is shorter. Two simulation
results have been presented to show the effectiveness of the
new designed protocols. In the future, wewill further research
finite-time consensus of discrete dynamic systems with com-
munication delays and Markovian jumping topology.
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