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ABSTRACT Reverse time migration (RTM) is a prominent technique in seismic imaging. Its resulting
subsurface images are used in the industry to investigate with higher confidence the existence and the
conditions of oil and gas reservoirs. Because of its high computational cost, RTM must make use of parallel
computers. Balancing the workload distribution of an RTM is a growing challenge in distributed computing
systems. The competition for shared resources and the differently-sized tasks of the RTM are some of the
possible sources of load imbalance. Although many load balancing techniques exist, scaling up for large
problems and large systems remains a challenge because synchronization overhead also scales. This paper
proposes a cyclic token-based work-stealing (CTWS) algorithm for distributed memory systems applied to
RTM. The novel cyclic token approach reduces the number of failed steals, avoids communication overhead,
and simplifies the victim selection and the termination strategy. The proposed method is implemented as a C
library using the one-sided communication feature of the message passing interface (MPI) standard. Results
obtained by applying the proposed technique to balance the workload of a 3D RTM system present a factor
of 14.1% speedup and reductions of the load imbalance of 78.4% when compared to the conventional static
distribution.

INDEX TERMS Load balancing, reverse time migration, work-stealing, one-sided communication, dis-
tributed memory.

I. INTRODUCTION
The migration of seismic data is the process that attempts
to build an image of the Earth’s interior from recorded field
data. Migration places these data into their actual geological
position in the subsurface using numerical approximations
of either wave-theoretical or ray-theoretical approaches to
simulate the propagation of seismic waves [1].

The wave-theoretical approach to the propagation of seis-
mic waves employs the finite difference method (FDM)
[2], [3] to numerically solve the equation describing the
movement of the waves [1], [4]. This approach is preva-
lent among the geophysical community, due to its capacity
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of dealing with substantial velocity variations in complex
geology (e.g., pre-salt).

Reverse time migration (RTM) [5]–[9] implements this
approach. It is one of the most known FDM-based migration
methods. RTM is computationally intensive in terms of data
storage and handling, and its use of high-complexity algo-
rithms. Therefore, exploiting parallelism is mandatory for
RTM implementations in 3D Earth models (3D RTM) [10].

Parallel architectures can be classified as shared memory,
when there is a single memory address space available to
all processing units (e.g., nodes or cores), or distributed
memory otherwise [11]. Many scientific and industrial
computational resources are distributed memory systems
composed of multi-processor nodes with shared memory sys-
tems. A hybrid parallel application works at these two levels
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of parallelism. It can distribute the total workload among
the nodes of a distributed memory system. Each node, then,
distributes its subset of the workload among the processing
units of its shared memory system. Parallel machines can also
be described as heterogeneous when they have processing
units built from different types of hardware, or homogeneous
otherwise [12].

One of the main concerns in parallel computing is the
efficient use of the available computational resources. Some
applications such as RTM may suffer from load imbalance.
A way of dealing with this issue is to employ load balancing
techniques, which usually refer to the distribution of the
workload among the available computational resources (e.g.,
nodes, processors, cores). The objective is to minimize the
idling of the computational resources while there are still
tasks remaining to be processed.

Ensuring the load balancing for an RTM is especially
challenging in distributed memory systems. Distributing the
workload in equal amounts of tasks for each computational
node may not be optimal. Even for homogeneous computa-
tional systems with an evenly distributed workload, several
factors may be a source of load imbalance. It can be intrinsic
to the application itself or caused by program-external factors
such as runtime environment routines (e.g., system calls) and
resource availability. The competition for shared resources,
such as the parallel file system or the network, can cause
idling due to resource contention as the availability of the
resources may differ across the nodes and along time.

Work-stealing (WS) is one of the main load balancing
strategies. The fundamental idea of WS methods is that idle
processing units steal tasks from the others [13] in an attempt
to avoid the performance overhead of a centralized entity
being responsible for the task scheduling. Processes stealing
tasks are the thief processes, whereas the processes with
stolen tasks are the victim processes. Nevertheless, in the
context of distributed systems, some WS implementations
present problems with too many failed steal attempts, with
communication overhead, with the victim selection, and with
the termination strategy.

This paper proposes a cyclic token-based work-stealing
(CTWS) algorithm for distributedmemory systems applied to
RTM. The novel cyclic token approach reduces the number of
failed steals, avoids communication overhead, and simplifies
the victim selection and the termination process. The pro-
posed work-stealing method was implemented in C using the
message passing interface (MPI) [14] standard. The commu-
nication was implemented by remote memory access (RMA)
using MPI one-sided communication [15]. This commu-
nication model allows the thief processes to perform the
work-stealing without directly involving (or interrupting)
the victim processes, thus further reducing communication
overhead. Our 3D RTM code was implemented in C using
MPI for distributed-memory parallelism across nodes, and
OpenMP [16] for thread-level parallelism within nodes.

The contribution of this paper to the fields of distributed
load balancing and RTM are:

1) the proposition of a novel approach to implementing
load balancing with WS in distributed systems based
on a cyclic token;

2) the mitigation of important WS implementation prob-
lems in distributed systems by the proposed cyclic
token approach as it avoids failed steals and simplifies
the victim selection and the termination strategy;

3) the reduction of the communication overhead of the
WS distributed implementation by the use of MPI one-
sided communication to implement the cyclic token
approach;

4) a detailed evaluation of the conventional load balancing
technique for 3D RTM showing that load imbalance is
significant due to resource contention;

5) improvements in the execution time of 3D RTM of
about 14% and reductions of the load imbalance of
about 78%.

The rest of this paper is organized as follows. Section II
shows the basics of RTM and describes our RTM imple-
mentation. Section III introduces the work-stealing method
proposed in this work. Section IV details the application of
the proposed technique to the RTM. Section V discusses
the performance of the RTM with and without the proposed
approach. Section VI presents a literature review of related
works contrasting them with the proposed approach. Finally,
Section VII summarizes this work and proposes future
research.

II. RTM AND STATIC LOAD BALANCING
In a seismic reflection survey, an acoustic source at a given
location (a ‘‘seismic shot’’) generates a wave that propagates
into the subsurface. Each time the wave travels through an
interface between two layers with different impedance, part
of its energy is reflected and is eventually registered at a
set of receivers. This procedure is repeated for different shot
locations in order to cover the whole area of interest. The data
recorded by a single receiver for a single seismic shot is called
a seismic trace, and a set of traces is called a seismogram.
The seismograms can pass through many processing steps to
finally provide an image of the subsurface.

Migration is one of the most critical steps in processing
seismic data. It aims to position the reflection interfaces
properly in the subsurface. A migrated section is an image
representing the geological structures in the region of interest.
This section can be used for interpretation purposes, often to
locate and characterize oil and gas reservoirs.

Reverse time migration (RTM) [6], [9] is one of the most
known migration methods. The main steps of an RTM are
presented in Algorithm 1. The first step, the forward prop-
agation, simulates the incident wavefield by propagating a
source wavelet through the region of interest. The backward
propagation generates the reflected wavefield by propagating
the seismogram comprised of the seismic traces from a shot,
a common shot gather, in reverse time order.

Both forward and backward propagation can be performed
by iteratively solving, over a discrete grid, the acoustic wave
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Algorithm 1 Main Steps of a Reverse Time Migration
1: for all (shots locations) do
2: forward propagation
3: backward propagation of the common shot gather
4: image condition
5: end for

equation, described as:

∂2 u(x)

∂x21
+

∂2 u(x)

∂x22
+

∂2 u(x)

∂x23
=

1
c(x)2

∂2 u(x)
∂t2

+ s(t). (1)

In (1), x = (x1, x2, x3) are the spatial dimensions, u(x) is
the pressure wavefield, c(x) is a velocity model, t is the time
dimension and s(t) is the source, i.e., a wavelet representing
the seismic shot.

The finite difference method (FDM) is often used to
numerically solve (1) by approximating its PDEs (partial dif-
ferential equations). Approximations of higher orders provide
more accurate results, with smaller numerical errors. Spatial
and time restrictions should be observed when solving finite
differences by a numerical approach [17].

The content of the velocity model, c(x), plays an important
role from the geophysical perspective. Its complexity is the
reason why RTM is used. It also influences the computational
cost of the RTM as it determines the spatial and time resolu-
tions. In other words, the maximum and minimum values of
the velocity model, cmin and cmax, directly influence on the
total number of operations performed by an RTM. However,
for a fixed fmax, two models having the same cmin and cmax
demand the same time and spatial resolutions, and generally
incurs in the same computational cost, no matter they have
different geological structures.

The wave propagation via FDM is performed over a
limited grid representing the region of interest. Neverthe-
less, the region where the seismic survey takes place is not
restricted to that region of interest. For this reason, it is
common practice to add extra points to the limits of the grid,
in order to absorb the energy reaching the borders of the
model [18].

RTM relies on the principle that the incident and the
reflected wavefields, ui(x, t) and ur(x, t), correlate at the
reflection interfaces. An image condition with the following
mathematical description performs this correlation.

I (x) =

T∫
t=0

ui(x, t) · ur(x, t)dt , (2)

where T is the total time of the the simulation.
The three RTM steps (as Algorithm 1 shows) are repeated

for each shot location generating one migrated section per
shot. The final migrated section is achieved by summing up
all shot migrations.

The RTMmethod used in the experiments described in this
paper is an extension of the RTM introduced by Nunes-do-
Rosario et al. [19]. It is implemented in C with a hybrid

parallel approach. MPI is used to distribute the workload of
different shots among computational nodes of a distributed
system, andOpenMP is employed to parallelize internal loops
of each shot processing. The implemented parallel RTM code
is described in Algorithm 2.

Algorithm 2 Reverse Time Migration With Work-Stealing
Load Balancing. ns Is the Number of Time Steps. ishot Is the
Number of the Shot Being Processed
1: statically distribute shots among nodes using MPI
2: read RTM parameters
3: compute absorbing boundaries coefficients
4: #OpenMP parallel section begin
5: for all (shots locations of the process) do
6: read shot seismogram
7: for (ti = 0 to ns) do
8: #OpenMP for
9: for (all grid points) do
10: compute the wavefield
11: end for
12: add the source wavelet
13: write wavefield to disk
14: end for
15: for (ti = ns− 1 to 0) do
16: #OpenMP for
17: for all (grid points) do
18: compute the wavefield
19: end for
20: #OpenMP for
21: for all (receivers location) do
22: inject observed data samples at time ti
23: end for
24: read forward wavefield at ti from disk
25: #OpenMP for
26: for all (main grid points) do
27: perform image condition
28: end for
29: end for
30: end for
31: #OpenMP parallel section end
32: reduce all nodes migrated sections

Absorbing boundaries are implemented in our RTM code
as reduction coefficients (Line 3 of Algorithm 2) that taper
the wavefield amplitudes in a layer of grid points surrounding
the mesh as proposed in [18]. The acoustic wave equation (1)
is solved for each propagation by the FDM with a second
order approximation in time and eighth order approximation
for each spatial dimension (Lines 10 and 18 of Algorithm 2).

The incident wavefield is stored on disk (Line 13 of Algo-
rithm 2) at each forward wave propagation time step. At each
backward wave propagation time step, the incident wavefield
is read from disk (Line 24 of Algorithm 2) in order to perform
the image condition (Line 27 of Algorithm 2).
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The load balancing of the RTMdescribed byAlgorithm 2 is
static. An equal amount of shots, or nearly equal, is allocated
to each node at the beginning of the algorithm (Line 1).
From this point on, no more load balancing decisions are
taken. If a process finishes processing all its shots, i.e., leaves
the shots loop (Lines from 5 to 30), it has to wait for the
slowest process in order to collectively summing up all shot
migrations, i.e., performing the reduction operation, through
the command MPI_Reduce, in Line 32. Since MPI does not
provide task schedulers, the static schedule is often used
because of its ease of implementation.

III. CYCLIC TOKEN-BASED WORK-STEALING
Cyclic token-based work-stealing (CTWS) is the load balanc-
ing method for distributed memory systems introduced in this
paper. It is a library implemented in C using MPI. In order
to reduce communication overhead, CTWS is implemented
using MPI one-sided communication.

Since MPI-2 [15], MPI specification includes the concept
of one-sided communication. This MPI feature implements
RMA, which allows processes to make a portion of their
local memory available for access by other processes. In one-
sided communications, the process that accesses the memory
is called the origin process while the process whose memory
is accessed is called the target process [20]. All processes
involved in one-sided communication must collectively cre-
ate windows. A window is a structure with information on
the memory regions which the processes make available for
RMA.

Many operations are available on MPI one-sided commu-
nication. Our work mainly uses the operations MPI_Put and
MPI_Get, which are used to write to and read from remote
memory, respectively. These operations are passive, i.e., the
target process is not involved in the operation. Therefore,
the target process keeps computing its tasks while the RMA
operation is performed.

A token and a list of remaining tasks per process are the
two main elements of the proposed work-stealing technique.
Both are implemented asMPI one-sided communication win-
dows. The token was implemented as an integer number.
It is initialized as 0, meaning that, according to the list of
remaining tasks, there are tasks to be stolen. The first process
to figure out that no more tasks can be stolen sets the token
to 1, i.e., sets the token to finish.

The token gets passed around through an MPI_Put oper-
ation in a round-robin fashion. Only the process owning the
token can update the list of tasks per process and steal tasks.
This strategy avoids deadlocks that would be caused by two
processes trying to steal from each other at the same time.
In such a case, both of them would have to grant access to
both of their lists of remaining tasks. If both of them granted
access to one of these lists, a deadlock would occur.

In the initialization (Line 1 of Algorithm 3), the token must
be allocated to a single process. The shots to be processed are
equally distributed among the processes. Each process has its
copy of this list of tasks per process. This list is implemented

as an array of integers where the i-th element is the number of
remaining tasks of the i-th process. The functions getTask()
and updateList() are responsible for managing the token and
the list of tasks.

Algorithm 3 Cyclic Token-Based Work-Stealing. tid Is the
Task Identification Number
1: Initialize CTWS variables
2: tid = getTask()
3: while (tid 6= −1) do
4: for all (iterations of task tid) do
5: updateList()
6: Compute an iteration of tid
7: end for
8: tid = getTask()
9: end while

The proposed strategy is designed for applications
with iterative tasks. At each task iteration, the function
updateList() is called by each process. It first verify whether
it possesses the token (Line 5 of Algorithm 3). Should it
have the token and it is not set to finish, the process updates
its number of remaining tasks in its list and copies its list
to the next process through an MPI_Put operation in a ring
fashion. When the process does not have the token, it simply
continues working on its tasks. By doing so, any process has
a close approximation of the current amount of remaining
tasks of each process. This information is then used to lead
the stealing stage.

The core of the proposed work-stealing strategy is the
function getTask() (Lines 2 and 8 of Algorithm 3), which
is detailed by the flow chart of Fig. 1. When a process has
shots to be processed, getTask() returns the first of them.
Otherwise, the process attempts to steal tasks from other
processes.

Only the process possessing the token can try to steal
tasks. For this reason, the first step of the proposed strategy
is to ensure that the process has the token. If it does not,
it will perform a busy-wait by repeatedly verifying whether
it posses the token. Once the token arrives, the thief process
checks whether the token is set to finish. If so, no work-
stealing is needed, and the process continues to the reduction
operation.

However, when the token is not set to finish, the thief
process tries to steal from the process with more remaining
tasks, according to the thief’s list of tasks. Since the list of
remaining tasks per process is an approximation, the real
number of remaining tasks may have changed by the stealing
time. For this reason, the thief process verifies the actual
number of remaining tasks of the victim process through an
MPI_Get operation. If the victim process does not have tasks
to be stolen, the thief process updates its list of tasks and
restarts the procedure by finding a new victim process in
its updated list of tasks. Should there be no more tasks left
to be stolen, then the thief process sets the token to finish,
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FIGURE 1. Detailed flow chart of the function getTask() that is responsible for determining which is the
next task to be processed by each process. In this work, the task unit to be processed is the RTM of each
shot gather.

forwards it to the next process and continues to the reduction
operation.

When the thief process finds a victim process with tasks to
be stolen, it uses MPI one-sided communication (MPI_Put
and MPI_Get) to steal a subset of the remaining tasks of
the victim process. For the tests in this work, half of the
remaining tasks are stolen. As discussed by Dinan et al. [21],
stealing half of the tasks of the victim increases the number
of possible victims for the next steals. This strategy aims to
improve scalability by reducing the time to locate and steal
tasks. Finding an optimal number of tasks to be stolen is not
of the scope of this paper.

This stealing procedure is seamless to the victim process,
i.e., the victim process will not stop processing its current task
to communicate with the thief process. At this point, the thief
process starts to work on the first of its stolen tasks. Should
the victim process have a single remaining task, then the thief
process will try to steal it. In case the victim process also tries
to start processing its only left task at the same time, the race
condition is avoided by the one-sided communication oper-
ators MPI_Win_lock and MPI_Win_unlock set to the type
MPI_LOCK_EXCLUSIVE . These commands ensure mutual
exclusion allowing a single process to access the window at a
time.

IV. CTWS APPLIED TO RTM
In this work, the task unit to be processed is the RTM of
each shot gather. In other words, the iterations of the shots
loop (Lines from 5 to 30 of Algorithm 2) are distributed

to the nodes of a distributed system using CTWS. For this
reason, the commands controlling the shots loop of the RTM
must be replaced by the commands controlling the tasks loop
of CTWS. Line 5 of Algorithm 2 is replaced by Lines 2
and 3 of Algorithm 3, and Line 30 of Algorithm 2 is replaced
by Lines 8 and 9 of Algorithm 3. In this context, the task
identification number, tid, represents the number of the shot
gather. The function updateList() is called inside of both the
forward propagation loop (Lines from 7 to 14 of Algorithm 2)
and the backward propagation loop (Lines from 15 to 29 of
Algorithm 2).

The larger the number of processes, the shorter the time
that each process will have the token. Because of that,
the overhead caused by updateList() in the RTM is propor-
tionally smaller for larger numbers of processes and larger
input sizes. On the other hand, by running updateList() and
having the token in each process fewer times, the list of
remaining tasks per process is more prone to be out of date.
This way the number of unsuccessful steals attempts per-
formed by getTask() may increase and so its overhead.

V. RESULTS AND DISCUSSION
The experiments were performed on Yemoja, an 856 node
supercomputer. Each computational node hosts two proces-
sors 10-core Intel Xeon E5-2690 Ivy Bridge v2 at 3.00 GHz.
200 nodes are equipped with 256 GB RAM and 656 nodes
with 128 GB RAM. This supercomputer employs an 850 TB
Lustre parallel distributed file system. Yemoja is located at
the Manufacturing and Technology Integrated Campus of the

VOLUME 7, 2019 128423



Í. A. S. Assis et al.: Distributed-Memory Load Balancing With CTWS Applied to RTM

National Service of Industrial Training (SENAI-CIMATEC).
Both the 128 GB RAM and the 256 GB RAM were used in
the following experiments. Since the total amount of RAM
required by our RTM implementation is significantly infe-
rior to 128 GB, this fact does not influence the algorithm
performance.

In order to validate the 3D wave propagator, which
underlies the 3D RTM algorithm used in the experiments,
we compared a seismic trace generated by our propagator
with the analytical solution, computed according to [22],
in a homogeneous velocity model. The source was a Ricker
wavelet with a peak frequency of 20 Hz. The distance
between source and receiver is 200 m. The medium has a
constant velocity of 2000 m/s. In this experiment, our wave
propagator provided a very accurate approximation to the 3D
waveform analytical solution with a mean squared error of
6× 10−14.
For the following experiments, the size of the input grid is

401 × 401 × 401, the peak frequency of the source wavelet
is 20 Hz, the time sampling is 1 ms, the spatial sampling is
10m, and the number of time steps is 3501. c(x) is a two layers
model with a horizontal interface positioned at the center of
the vertical dimension. The velocity is 1400 m/s for the top
layer and 2000 m/s for the bottom layer.

The programs were compiled with the gcc compiler using
the optimization flag -O3 and OpenMPI 3.1.2 for all exper-
iments. A single MPI process was created at each computa-
tional node. We used HPCToolkit performance tools [23] to
measure the execution times and the overhead of our strategy.
For all the following experiments using CTWS, the load
balancing overheadwas inferior to 0.4%.A single experiment
was performed at a time in order to avoid multiple tests
competing for the shared resources of the cluster.

Firstly, we measured the load imbalance of the 3D RTM
without applying a dynamic load balancing technique. For
that we ran the RTM of 40, 80, 160, 320 and 640 shots with
4, 8, 16, 32 and 64 nodes, respectively. As shown in Fig. 2
and 3, for the experiment with 4 nodes, the average idle time
per node is 2.7% of the total time of 18.4 h. As the number
of nodes increases up to 64, the average idle time per node
increases to 23.4% of the total time of 39.2 h. Although the
number of shots per node is the same for each experiment,
the competition for shared resources of the cluster (e.g.,
network and parallel file system) increases the runtime as the
number of nodes increase.

Fig. 4 details the execution of the 3D RTM ran over
64 nodes without applying a dynamic load balancing tech-
nique. Although the workload is distributed evenly among
the homogeneous nodes, the runtime of a single shot RTM
ranges from 1.5 to 9.3 h. The fastest node stays idle for 17.6 h
while the other nodes finish their tasks, i.e., 45% of the total
runtime. Factors as a race condition for the network and the
parallel storage system can cause such load imbalance.

Fig. 3 also shows results generated by the proposed work-
stealing technique employed in the same set of experiments.
The proposed technique presented a maximum average idle

FIGURE 2. 3D RTM maximum process idle time and average process idle
time with 4, 8, 16, 32 and 64 nodes. Both RTM implementations with and
without the proposed work-stealing method (CTWS) process 10 shots per
node.

FIGURE 3. 3D RTM total runtime with 4, 8, 16, 32 and 64 nodes. Both
RTM implementations with and without the proposed work-stealing
method (CTWS) process 10 shots per node.

FIGURE 4. Example of 3D RTM runtime per process and shot ran over 64
nodes. The shots are numbered in the order they are processed in the
node they were assigned to. The processes are sorted by their idle time.

time of 9.9%, showing its effectiveness in balancing the load.
For the experiment with 4 nodes, the average idle time per
node is 2.3% of the total time of 18.2 h. As the number
of nodes increases up to 64, the average idle time per node
slightly increases to 9.9% of the total time of 34.9 h.
The total execution times displayed in Fig. 3 show that

the proposed technique outperforms the 3D RTM with the
conventional static load balancing when using a more sub-
stantial number of nodes. The total runtime was reduced
by 13.4%, 14.1% and 10.8% when ran over 16, 32 and
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FIGURE 5. Example of 3D RTM runtime per process and shot ran over 64
nodes using the proposed work-stealing. The shots numbers refer to the
order they were processed within its node. The processes are sorted by
their idle time.

64 nodes, respectively. For the fewest number of nodes,
however, the proposed technique performance was similar
to the static load balancing. The total runtime increased by
3.2% when ran over 8 nodes and decreased by 0.9% when
ran over 4 nodes. Industry-scale RTM, however, is usually
performed over a large number of computational nodes.
Regarding the load imbalance, as shown in Fig. 2, the pro-
posed method was able to reduce the average idle time for
all the performed tests. In the best scenario, when ran over
16 nodes, the idle time was reduced from 21.5% to 4.5%,
representing a 78.4% improvement in the effective use of the
resources.

Fig. 5 details the 3D RTM execution over 64 nodes, using
the proposed work-stealing technique. Although there are
differences between the processing times of a single shot,
nodes with better resource availability steal shots from others
that are slower, thus improving load balancing. The least busy
node processed only 6 shots while the busiest node processed
14 shots.

Table 1 presents all steal attempts of the example of Fig. 5.
It shows that 37 out of 38 steal attempts were successful.
In five cases, 13.2 % of the steals, a task was stolen for
the second time:
1) in steal 18, process 20 stole the task 387 from process

21. Before that, in stealing 5, process 21 stole the same
task from process 38;

2) in steal 23, process 28 stole the task 178 from process
29. Before that, in stealing 8, process 29 stole the same
task from process 17;

3) in steal 24, process 34 stole the task 478 from process
9. Before that, in stealing 10, process 9 stole the same
task from process 47;

4) in steal 28, process 21 stole the task 307 from process
16. Before that, in stealing 3, process 16 stole the same
task from process 30;

5) in steal 29, process 41 stole the task 318 from process
18. Before that, in stealing 9, process 18 stole the same
task from process 31;

In our test case, stealing the same task multiple times
does not represent an additional overhead since there is no

TABLE 1. Steal attempts of the example of fig. 5.

TABLE 2. Steal attempts varying the number of processes.

significant extra cost to move a task between processes. This
fact occurs because all the data is available to all processes
through the Yemoja’s parallel file system. A method that
considers the cost of moving tasks is left to future work.

Table 2 shows the total number of steal attempts and failed
steals varying the number of processes. In this test set, 1 out
of 55 steal attempts was unsuccessful, i.e., 98.2% of the steal
attempts were successful.

In terms of weak scalability, both the RTM with and with-
out CTWS are not scalable as the total runtime increases
when the number of shots and nodes are doubled. This means
that RTM with CTWS may also be affected by the concur-
rency for shared resources of the distributed system as the
number of nodes increases. However, by moving tasks to
nodes with better resource availability, RTMwith CTWSwas
able to deliver up to 14.1% speedup when compared to using
a static load distribution.
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VI. RELATED WORKS
Several authors have proposed strategies to address the load
imbalance for shared memory systems. Barros et al. [24]
introduced a runtime method based on coupled simulated
annealing (CSA) [25] to auto-tune the workload distribu-
tion of 3D acoustic wave propagation implemented with
the FDM method. Andreolli et al. [26], [27] proposed a
compilation-time auto-tuning based on genetic algorithms to
find the best set of parameters (e.g., workload distribution,
compilation flags) for seismic applications. Sena et al. [28]
used cache blocking for the 3D RTM and proposed a pro-
cedure called Min-Worst-Min Block (MWMB) to find an
efficient block size. Hofmeyr et al. [29] introduced a dynamic
load balancing for multicore systems using runtime tools.
Tchiboukdjian et al. [30] proposed a method that ensures all
the data in the cache memory is used before being replaced.
This method was designed for applications with linear access
to memory. Imam and Sarkar [31] presented a work-stealing
scheduler based on task priority queues. Balancing the com-
putational load at the shared memory level can lead to a
significant reduction in the execution time. Our work aims
to achieve further improvement by balancing the workload at
the distributed memory level.

Other authors provide methods to deal with the load imbal-
ance of distributed memory systems. Khaitan et al. [32]
proposed a master-slave based load balancing approach.
Tesser et al. [33]–[35] proposed a simulation-based strat-
egy to evaluate the performance and tune the dynamic load
balancing of iterative MPI applications and applied it to
a 3D wave propagation. Padoin et al. [36], [37] proposed
combining a load balancing with techniques of processor fre-
quency control in order to reduce energy consumption along
with execution time. These approaches differ from this work
for being centralized, i.e., a single or a few computational
processes take the load balancing decisions. This behavior
may lead to overload at the central element and significantly
degrade performance [32].

To avoid losses of performance caused by a centralized
load balancing element, some authors proposed decentral-
ized load balancing strategies. Sharma and Kanungo [38]
presented a technique to balance the computational load
in heterogeneous multicore clusters, where no prior
knowledge about the computational resources is required.
Zheng et al. [39] introduced a periodic load balancing strat-
egy, where the balancing decisions are taken hierarchically
in a tree fashion. Different from this work, in these methods,
the processes involved in the load balancing decisions have
to synchronize to exchange information. This communication
synchronization overhead may reduce parallel performance.

Work-stealing algorithms [13] have been used to provide
decentralized load balancingmethods for distributed systems.
Martinez et al. [40] used StarPU, a task-based runtime sys-
tem, to distribute the load balance of the 3D isotropic elastic
wave propagation among processors and graphics process-
ing units (GPUs) simultaneously. They compared centralized
load-balancing and decentralized work-stealing algorithms

from StarPU. Khaitan and Mccalley [41] applied dynamic
load balancing with work-stealing to a contingency analy-
sis application while Mor and Maillard [42] proposed an
MPI library for load balancing branch and bound applica-
tions. These approaches use asynchronous communication to
reduce the communication overhead as the processes which
originate the communication may keep working while wait-
ing for replies from their messages. Different from our work,
these papers employ two-sided communication, i.e., both
the origin and the destination processes are involved in the
communication. This way, the destination processes have to
interrupt their computation eventually to reply to the mes-
sages they have received. Also, this kind of non-blocking
communication may imply in the origin process having to
wait for its reply even when overlapping communication with
computation.

One-sided communication is an alternative to reduce com-
munication overhead. This model of communication allows a
process to read and write data from a remote memory region
without the target process being involved. Some authors have
used it in the recent literature. Li et al. [43] used profiling
information to estimate the task grain size and guide the
asynchronous work-stealing. Kumar et al. [44] introduced a
load-awarework-stealing based on a policy to choose a victim
that completely avoids the failed steals. Dinan et al. [21] dis-
cussed the design and scalability aspects of work-stealing for
distributed memory systems. They also proposed a runtime
system for supporting work-stealing, which implements sev-
eral techniques to achieve scalability in distributed memory
systems. These methods employ one-sided communication
through partitioned global address space (PGAS), a program-
ming model that provides a globally shared address space
for distributed memory. On the contrary, our work employs
relies on MPI one-sided communication, which has no global
address space. According to Fu et al. [45], employing PGAS
often demands an important development effort to exploit
these programming models thoroughly. Moreover, a vast
majority of scientific codes use MPI either directly or via
third-party software.

Other authors have recently used MPI implementations
of one-sided communication in areas such as large-scale
multimedia content analysis [46], graph processing [45]
and matrix operations [47], [48]. According to
Diaz et al. [11], MPI has been the de facto standard in
HPC for the last decades. In the context of load balancing,
Vishnu and Agarwal [49] introduced a work-stealing method
using MPI one-sided communication for machine learning
and data mining algorithms. Different from our proposal,
their approach for victim selection is either random, which
may increase the number of network requests, or prone to
network contention because of having multiple thief pro-
cesses trying to steal the same victim. Moreover, Vishnu and
Agarwal employ a termination strategy that does not look at
the entire victim set, potentially causing some processes to
finish while there are remaining tasks to perform. Differently,
we employ a termination strategy in which the processes
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TABLE 3. Literature review on load balancing methods. The proposed work-stealing method benefits from MPI one-sided communication to further
reduce communication overhead and is applied to RTM in distributed memory systems.

only finish when there are no more victims to be stolen,
and the token is set to finish. This is only achieved because,
in our proposedwork-stealing algorithm, we share and update
global load informationwithout the need for synchronization.
Sharing and updating the global load information has the
main advantages of helping the thief processes to make better
decisions and preventing failed stealing attempts.

Regarding load balancing strategies to RTM, little effort
has been employed to schedule RTM tasks among nodes
of distributed systems. Several authors implement paral-
lel RTM for distributed systems using static scheduling
[50]–[57]. As shown in Section V, the use of static distribu-
tion may lead to inefficient use of the distributed computa-
tional resources as faster nodes may wait idly for the slower
ones to finish their tasks. On the other hand, our work-stealing
strategy allowsmoving tasks among nodes in order to keep all
resources busy as much as possible. In this work, we compare
our proposed load balancing approach to static scheduling
as it is arguably the conventional strategy to distribute RTM
shots among the computing nodes in distributed systems.

In summary, this work distinguishes itself from the others
as it proposes a decentralized work-stealing method to bal-
ance the load of the RTM in distributed systems. It employs
MPI one-sided communication to reduce its overhead by
communicating asynchronously and without the victim’s
involvement. By keeping global load information, ourmethod
lowers the cost of victim selection and process termina-
tion. Consequently, it reduces the number of failed stealing
attempts.

Table 3 presents a summary of the works related to load
balancing mentioned above, highlighting their main charac-
teristics in comparison to the method proposed in this work.

VII. CONCLUSION
We have presented a decentralized work-stealing strategy
with asynchronous communication to balance the load of a
3D reverse time migration for distributed computing systems.
Each process communicates in a round-robin fashion tomain-
tain a close approximation of the remaining tasks list. This
list is used to lead the stealing when processes are idle. This
strategy decentralizes the dynamic load balancing and avoids
the overhead of centralized decisions. A token avoids dead-
locks by ensuring that two processes cannot steal each other at
the same time. The MPI one-sided communication prevents
race conditions by serializing access to a memory space by
multiple processes. By using MPI one-sided communication,
the stealing is seamless to the victim processes since they do
not stop processing their tasks during the stealing, avoiding
unnecessary communication.

In the presented experiments, the 3D RTM had up to
23.4% of average idle time when ran over 64 nodes. This
imbalance might be significantly reduced should the pro-
posed work-stealing be applied. For the set of experiments
performed in this paper, the proposed method has reduced the
total execution time of the 3D RTM in up to 14.1% and its
load imbalance in the order of 78.4% when compared to the
conventional static distribution.

Further investigation is necessary to assess whether addi-
tional improvement can be achieved by adjusting the fre-
quency of checking the token, the number of shots to be
stolen, the method used to update the list of remaining tasks
and the technique to avoid deadlocks. Also, future work
should focus on different aspects of a distributed system
that may influence the load imbalance such as the use of
fault tolerance protocols (e.g., [58], [59]) and heterogeneous
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computational systems. A comparison of our method against
other load balancing methods is left to future work.
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