
Received August 18, 2019, accepted August 27, 2019, date of publication September 2, 2019, date of current version
September 17, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2938840

Discrete-Time ZND Models Solving ALRMPC
via Eight-Instant General and Other
Formulas of ZeaD
JIANRONG CHEN 1,2,3,4 AND YUNONG ZHANG 1,3,4, (Member, IEEE)
1School of Data and Computer Science, Sun Yat-sen University, Guangzhou 510006, China
2Information and Education Technology Center, Youjiang Medical University for Nationalities, Baise 533000, China
3Research Institute, Sun Yat-sen University, Shenzhen 518057, China
4Key Laboratory of Machine Intelligence and Advanced Computing, Ministry of Education, Sun Yat-sen University, Guangzhou 510006, China

Corresponding author: Yunong Zhang (zhynong@mail.sysu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61976230, and in part by the Shenzhen
Science and Technology Plan Project under Grant JCYJ20170818154936083.

ABSTRACT Repetitive motion planning and control (RMPC) of redundant robot manipulators is a funda-
mental and important problem widely existing in industrial manufacturing. In this paper, the acceleration-
level RMPC (ALRMPC) is studied and solved in a discrete-time manner. For solving this problem, a new
ALRMPC scheme with feedback control term is derived and presented at first. Then, by adopting Lagrange’s
undeterminedmultipliersmethod and zeroing neural dynamics (ZND), a continuous-time ZNDmodel, which
is based on the new ALRMPC scheme, is developed and proposed. Besides, an eight-instant general formula
with high precision is constructed, proposed and analyzed. By using this eight-instant general formula
and other multiple-instant Zhang et al discretization (ZeaD) formulas to discretize the continuous-time
ZND model, four discrete-time ZND (DTZND) models for solving ALRMPC are thus obtained. Finally,
theoretical analyses and computer simulation experiment results further substantiate the effectiveness and
accuracy of the proposed DTZND models.

INDEX TERMS Acceleration-level repetitive motion planning and control (ALRMPC), zeroing neural
dynamics (ZND), eight-instant general formula, redundant robotmanipulators, quadratic programming (QP).

I. INTRODUCTION
With the development of artificial intelligence and industrial
manufacturing, robotics technology has received unprece-
dented attention and extensive research [1]–[6]. As an impor-
tant sub-topic of robotics, the repetitive motion planning
and control (RMPC) of redundant robot manipulators has
been investigated by a lot of researchers and experts, and
many strategies and algorithms are proposed and applied
[7]–[14]. One of the conventional strategies is the pseudo-
inverse method [7]–[10], but it may introduce a divergence
phenomenon in the tracking process of end-effector [11],
[12]. Moreover, in the past ten years, quadratic programming
(QP)method, which is widely used in the engineering and sci-
entific fields, has been adopted by some scholars to describe
RMPC schemes and solve them further [13], [14]. Since
practical redundant robot manipulators are usually controlled
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by digital computer or system, exploiting some discrete-time
models to solve RMPC, which is formulated in QP form,
is necessary and meaningful.

For a time-varying problem like RMPC, both timeli-
ness and accuracy must be considered. As an effective
method, zeroing neural dynamics (ZND) has been applied
to solve many time-varying problems, including RMPC,
and good results have been achieved [15]–[19]. Generally,
for a continuous-time ZND model, we can use a valid
one-step-ahead discretization formula to discretize it and
obtain a corresponding discrete-time ZND (DTZND) model.
Note that the accuracy of the obtained discrete-time solv-
ing models is closely related to the used discretization
formulas. Specifically, high precision discretization formu-
las correspond to high precision discrete models, and vice
versa [20]–[24]. Therefore, in order to obtain high preci-
sion DTZND model, a general form of eight-instant Zhang
et al discretization (ZeaD) formula is derived, proposed and
investigated.
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This paper is mainly concerned with applying the ZND
method to solve acceleration-level RMPC (ALRMPC) prob-
lem in a discrete-time manner. The rest of this paper is orga-
nized into four sections. A new ALRMPC scheme and the
corresponding continuous-time ZND model are developed
in Section II. In Section III, the eight-instant general for-
mula is proposed, and four DTZND models, i.e., two-instant
DTZND (TIDTZND), four-instant DTZND (FIDTZND),
six-instant DTZND (SIDTZND), and eight-instant DTZND
(EIDTZND) models, are further derived and investigated.
Section IV shows the numerical experiments and verifica-
tions, and Section V concludes this paper with final remarks.
Before ending this section, the main contributions of this
work are listed as below.

1) A new ALRMPC scheme is derived, presented and
investigated in this paper. Besides, by employing ZND,
a continuous-time ZNDmodel for solving ALRMPC is
further developed and proposed.

2) A novel high precision eight-instant general formula is
constructed and proposed with corresponding theoreti-
cal analyses.

3) For digital hardware realization, by exploiting the
eight-instant general formula and othermultiple-instant
ZeaD formulas, four DTZND models, with O(τ 2),
O(τ 3), O(τ 4), and O(τ 5) precision respectively, are
proposed and discussed.

4) Theoretical analyses and numerical experiment results
indicate that the proposed DTZNDmodels are effective
and feasible for solving ALRMPC.

II. ACCELERATION-LEVEL RMPC SCHEME
As a basis for further discussion, the new ALRMPC scheme
and the corresponding continuous-time ZND model are pre-
sented and investigated in this section.

A. NEW ALRMPC SCHEME DESIGN
In the previous work [25], [26], the redundancy resolution
problem of redundant robot manipulators at the acceleration
level can be formulated as follows:

min.
1
2
(θ̈ (t)+ c(t))T(θ̈(t)+ c(t)),

s. t. J (θ (t))θ̈(t) = r̈a(t),

where c(t) = (u1 + u2)θ̇ (t) + u1u2(θ (t) − θ(0)), r̈a(t) =
r̈d(t)−J̇ (θ (t))θ̇ (t); θ (t) ∈ Rn, θ̇ (t) ∈ Rn and θ̈ (t) ∈ Rn denote
joint-angle vector, joint-velocity vector and joint-acceleration
vector, respectively; θ (0) denotes the initial value of joint-
angle vector θ (t); u1, u2 ∈ R+ are design parameters; rd(t) ∈
Rm is a given desired end-effector path and r̈d(t) is the second
order time derivative of rd(t); J (θ (t)) = ∂f (θ (t))/∂θ(t) ∈
Rm×n is the Jacobian matrix, and f (θ (t)) ∈ Rm denotes
a differentiable nonlinear function with the structure and
parameters known for a given redundant robot manipulator;
J̇ (θ (t)) denotes the time derivative of Jacobian matrix J (θ (t)).
Note that the obtained joint-angle vector θ (t) can not

strictly make rd(t) − f (θ (t)) = 0, because the disturbance

and computational round-off errors always exist in practical
application. Therefore, a feedback control term is derived
and presented here to handle this situation, which is different
from the one introduced in [25]. To obtain the feedback
control term, we define two vector-valued error functions
consecutively and use ZND linear design formula [i.e., ė(t) =
−µe(t)] twice, with the detailed design process as follows.

We define the first vector-valued error function as

e1(t) = rd(t)− f (θ (t)).

Then, by making use of the ZND linear design formula,
we have

ṙd(t)− J (θ (t))θ̇ (t) = −µ1(rd(t)− f (θ (t))),

that is,

ṙd(t)− J (θ (t))θ̇ (t)+ µ1(rd(t)− f (θ (t))) = 0.

The second vector-valued error function is defined as

e2(t) = ṙd(t)− J (θ (t))θ̇ (t)+ µ1(rd(t)− f (θ (t))).

By adopting the linear design formula again, we have

r̈d(t)− J̇ (θ (t))θ̇ (t)− J (θ (t))θ̈ (t)+ µ1(ṙd(t)− J (θ (t))θ̇ (t))

= −µ2(ṙd(t)− J (θ (t))θ̇ (t)+ µ1(rd(t)− f (θ (t)))),

and further have

J (θ (t))θ̈ (t)

= r̈d(t)− J̇ (θ (t))θ̇(t)+ µ1(ṙd(t)− J (θ (t))θ̇ (t))

+µ2(ṙd(t)− J (θ (t))θ̇ (t)+ µ1(rd(t)− f (θ (t)))).

After arranging, the feedback control term is thus formulated
as below:

rfb(t) = (µ1 + µ2)(ṙd(t)− J (θ (t))θ̇ (t))

+µ1µ2(rd(t)− f (θ (t))).

Note that the design parameters µ1 and µ2 are positive real
numbers.

As a result, the new ALRMPC scheme is given by the
following theorem.
Theorem 1: With rfb(t) denoting the feedback control

term, and the other symbols are defined as before, the new
ALRMPC scheme of redundant robot manipulators can be
described as below:

min.
1
2
(θ̈ (t)+ c(t))T(θ̈ (t)+ c(t)), (1)

s. t. J (θ (t))θ̈ (t) = r̈a(t)+ rfb(t). (2)

Proof: The detailed proof process of (1) can be general-
ized from [25]. In addition, from the previous derivation we
get (2). The proof is thus completed. �
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B. CONTINUOUS-TIME ZND MODEL
To solve (1)-(2), we first transform it into an equivalent
standard QP problem as below:

min.
1
2
xT(t)A(t)x(t)+ cT(t)x(t),

s. t. B(t)x(t) = d(t),

where x(t) = θ̈ (t), A(t) = I , B(t) = J (θ (t)), d(t) =
r̈a(t) + rfb(t), and c(t) is defined as before. Evidently, it can
be simplified and reformulated immediately as

min.
1
2
xT(t)x(t)+ cT(t)x(t), (3)

s. t. B(t)x(t) = d(t). (4)

Besides, according to the method of Lagrange’s undeter-
mined multipliers [27], [28], we define a Lagrange function

L(x(t), λ(t)) =
1
2
xT(t)x(t)+ cT(t)x(t)

+ λT(t)(B(t)x(t)− d(t)),

where λ(t) ∈ Rm denotes the Lagrange-multiplier vector.
Then, we have the following equations:

∂L(x(t), λ(t))
∂x(t)

= x(t)+ c(t)+ BT(t)λ(t) = 0,

∂L(x(t), λ(t))
∂λ(t)

= B(t)x(t)− d(t) = 0,

which can be rewritten in a compact form as

F(t)z(t)+ w(t) = 0, (5)

where F(t) = [I ,BT(t);B(t), 0] ∈ R(n+m)×(n+m), z(t) =
[x(t); λ(t)] ∈ Rn+m and w(t) = [c(t);−d(t)] ∈ Rn+m. Since
the identity matrix I is positive definite and B(t) is of full row
rank, F(t) is nonsingular at any time instant t ∈ [t0, tf) ⊆
[0,+∞), which guarantees the solution uniqueness of (5).

Furthermore, by applying the ZND method, a vector-
valued error function is defined as e = F(t)z(t) + w(t),
and then the linear design formula [i.e., ė(t) = −ve(t)]
is employed to force this error function to converge to
zero. Finally, the continuous-time ZND model for solving
ALRMPC is obtained as follows:

ż(t) = −F−1(t)((Ḟ(t)+ vF(t))z(t)+ ẇ(t)+ vw(t)), (6)

where v ∈ R+ is the design parameter and F−1(t) is the
inverse of F(t); ż(t) and Ḟ(t) denote the time derivative of
z(t) and F(t), respectively.

III. DISCRETE-TIME ZND MODELS FOR ALRMPC SOLVING
In this section, four discrete-time ZND models with different
precision are proposed, developed and investigated. Besides,
the corresponding theoretical analyses are also provided.

A. EIGHT-INSTANT GENERAL FORMULA
The eight-instant general formula is proposed by the follow-
ing theorem.
Theorem 2:With τ ∈ (0, 1) denoting the sampling gap, and

η1, η2, and η3 are real numbers which satisfy

2η1 − 24η2 − 25η3 > 7,
10η1 + 8η2 + 13η3 > −15,
10η1 + 8η2 + 3η3 < 35,
530η1 + 712η2 + 387η3 < −245,
29900η21 + 98720η1η2 + 61720η1η3
+99200η1 + 73664η22 + 86528η2η3
+102880η2 + 24489η23 + 36130η3 < −21525,
47800η31 − 134160η21η2 − 191060η21η3 − 49900η21
−784512η1η22 − 1347344η1η2η3 − 1148080η1η2
−546582η1η23 − 1165780η1η3 − 387350η1
−649984η32 − 1441856η22η3 − 1148608η22
−1020660η2η23 − 1597496η2η3 − 578260η2
−228663η33 − 410763η23 − 329285η3 < 82425,

(7)

the general form of eight-instant ZeaD formula is formulated
as below:

ḟk = b0(fk+1 + b1fk + η1fk−1 + η2fk−2 + η3fk−3
+ η4fk−4 + η5fk−5 + η6fk−6)/τ + O(τ 4), (8)

where b0 = 20/(35 − 10η1 − 8η2 − 3η3), b1 = −(805 +
970η1+ 536η2+ 171η3)/1200, η4 = −(21+ 10η1+ 24η2+
27η3)/16, η5 = (35 + 15η1 + 32η2 + 27η3)/25, and η6 =
−(5+ 2η1 + 4η2 + 3η3)/12.
Proof: The proof process is given in Appendix B. �
For the convenience of readers and researchers, the effec-

tive range of parameters η1, η2, and η3 is shown in Fig. 1
intuitively. In addition, the collection of eight-instant ZeaD
formulas with different parameter values is shown in Table 1.

FIGURE 1. Effective range composed of parameters η1, η2, and η3 in
eight-instant general ZeaD formula.
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TABLE 1. Collection of eight-instant ZeaD formulas with different values of η1, η2, and η3.

B. FOUR DTZND MODELS FOR ALRMPC
For the purpose of digital hardware realization, four DTZND
models for solving ALRMPC (6) are proposed, discussed and
studied.

By using (8) to discretize (6), the general EIDTZNDmodel
is obtained as follows:

zk+1 = z̃k/b0 − b1zk − η1zk−1 − η2zk−2 − η3zk−3
− η4zk−4 − η5zk−5 − η6zk−6 +O(τ 5), (9)

with

z̃k = −F−1k ((τ Ḟk + hFk )zk + τ ẇk + hwk ),

in which h = τv; Fk , zk and wk denote F(tk ), z(tk ) and w(tk ),
respectively.
Theorem 3: With τ ∈ (0, 1) denoting the sampling gap,

symbol || · ||2 denoting the Euclidean-norm of a vector
and O(τ 5) denoting a vector with every entry being O(τ 5),
the general EIDTZND model (9) is 0-stable, consistent and
convergent, which converges with the order of its truncation
error beingO(τ 5). Moreover, the maximal steady-state resid-
ual error lim supk→+∞ ||Fk+1zk+1+wk+1||2 of (9) is O(τ 5).
Proof: According to Result 1 in Appendix A and the proof

process of Theorem 2 in Appendix B, the general EIDTZND
model (9) discretized by eight-instant general ZeaD formula
(8) in the effective range is 0-stable. Evidently, according
to Result 2 in Appendix A, the general EIDTZND model
(9) is consistent. Besides, according to Results 3 and 4 in
Appendix A, (9) is convergent and it converges with the order
of its truncation error O(τ 5).
Assume z∗k+1 is the theoretical solution of Fk+1zk+1 +

wk+1 = 0. In addition, we have zk+1 = z∗k+1+O(τ 5) with k
being large enough.

lim sup
k→+∞

||Fk+1zk+1 + wk+1||2

= lim sup
k→+∞

||Fk+1(z∗k+1 +O(τ 5))+ wk+1||2

= lim sup
k→+∞

||Fk+1z∗k+1 + wk+1 + Fk+1O(τ 5)||2

= lim sup
k→+∞

||Fk+1O(τ 5)||2 = O(τ 5).

This completes the proof. �

Furthermore, in order to obtain other DTZND models,
three ZeaD formulas with different precision are adopted. The
first one is Euler forward formula [29], which can be seen as
the first and also the simplest one of ZeaD formulas:

ḟk =
fk+1 − fk

τ
+ O(τ ).

The second one is the four-instant ZeaD (specifically, Taylor-
type) formula [23]:

ḟk =
2fk+1 − 3fk + 2fk−1 − fk−2

2τ
+ O(τ 2).

The third one is the six-instant ZeaD formula [24]:

ḟk=
24fk+1−5fk−12fk−1 − 6fk−2−4fk−3+3fk−4

48τ
+O(τ 3).

Similarly, by using them to discretize (6) respectively, the cor-
responding DTZND models are obtained as

zk+1 = z̃k + zk +O(τ 2), (10)

zk+1 = z̃k +
3
2
zk − zk−1 +

1
2
zk−2 +O(τ 3), (11)

and

zk+1 = 2̃zk +
5
24

zk +
1
2
zk−1 +

1
4
zk−2

+
1
6
zk−3 −

1
8
zk−4 +O(τ 4), (12)

which are termed two-instant DTZND (TIDTZND) model,
four-instant DTZND (FIDTZND) model, and six-instant
DTZND (SIDTZND) model, respectively. Note that the def-
inition of z̃k is consistent with that of EIDTZND model (9).
Theorem 4: With τ ∈ (0, 1) denoting the sampling gap,

the TIDTZND (10), FIDTZND (11) and SIDTZND (12) mod-
els are 0-stable, consistent and convergent, which converge
with the order of the truncation error being O(τ 2), O(τ 3),
and O(τ 4), respectively. Moreover, the maximal steady-state
residual errors lim supk→+∞ ||Fk+1zk+1 + wk+1||2 of (10),
(11) and (12) are O(τ 2), O(τ 3), and O(τ 4), respectively.
Proof: It is omitted because of its similarity to that of

Theorem 3. �
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FIGURE 2. Simulation motion and trajectory synthesized by EIDTZND (9) for the 5-link planar manipulator tracking the astroid
path.

FIGURE 3. Residual and tracking errors synthesized by different DTZND models for the 5-link planar manipulator tracking the astroid path
(Unit: m).

FIGURE 4. Simulation motion and trajectory synthesized by EIDTZND (9) for the 5-link planar manipulator tracking the tricuspid
path.

IV. NUMERICAL EXPERIMENTS AND VERIFICATIONS
Based on the previous analyses, to substantiate the effec-
tiveness of DTZND models, i.e., TIDTZND (10), FIDTZND
(11), SIDTZND (12), and EIDTZND (9) models, for solving
ALRMPC, computer simulation experiments are conducted
in this section. Specifically, the real-time motion control of a
5-link planar redundant robot manipulator and a 3-dimension
redundant robot manipulator (e.g., the PUMA560 robot
manipulator [30]) is simulated, performed and investigated.

For the purposes of simplification, the parameters are
uniformly set as u1 = u2 = µ1 = µ2 = 10,

τ = 0.002 s and h = 0.02. In addition, the parameters η1,
η2, and η3 of EIDTZND (9) are set as −0.8, −0.7, and 0.1,
respectively.
Note that, in all simulation experiments, we investigate the

residual error ||Fk+1zk+1+wk+1||2 and tracking error to scale
the computational accuracy of different models, respectively.

A. 5-LINK PLANAR REDUNDANT ROBOT MANIPULATOR
In this subsection, the proposed four DTZND models
are simulated on the 5-link planar manipulator with its
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FIGURE 5. Residual and tracking errors synthesized by different DTZND models for the 5-link planar manipulator tracking the tricuspid
path (Unit: m).

FIGURE 6. Simulation motion and trajectory synthesized by EIDTZND (9) for the 5-link planar manipulator tracking the inner
five rings path.

FIGURE 7. Residual and tracking errors synthesized by different DTZND models for the 5-link planar manipulator tracking the inner five
rings path (Unit: m).

end-effector tracking an astroid path, a tricuspid path and
an inner five rings path, respectively. Besides, the ini-
tial joint state of the robot manipulator is set as θ (0) =
[π/6;π/3;π/2;−π/3;π/3] rad and the duration of the
path tracking task is set as tf = 12 s in each experiment
uniformly.

The motion trajectories of robot manipulator and the end-
effector trajectories synthesized by EIDTZND (9) in track-
ing the astroid path, the tricuspid path and the inner five
rings path are shown in Figs. 2, 4, and 6, respectively, and
those synthesized by TIDTZND (10), FIDTZND (11) and
SIDTZND (12) are omitted because of similarity and space
limitation. As shown in these figures, each actual tracking
path coincides with the corresponding desired path, which

substantiates the proposed DTZNDmodels for ALRMPC are
correct and feasible. In addition, from Figs. 3(a), 5(a), and
7(a), we can see that the residual errors synthesized bymodels
(10), (11), (12), and (9) change regularly, which are in accor-
dance with Theorems 3 and 4. Furthermore, in Figs. 3(b),
3(c), 5(b), 5(c), 7(b), and 7(c), the tracking errors of X-axis
and Y-axis for (10), (11), (12), and (9) also change regularly.
Thus, the efficacy of DTZND models is substantiated.

B. 3-DIMENSION REDUNDANT ROBOT MANIPULATOR
For further substantiating the effectiveness of the proposed
four DTZND models for ALRMPC, we conduct the com-
puter simulation experiments on the 3-dimensionmanipulator
with its end-effector tracking a ring-like conic path and a

125914 VOLUME 7, 2019
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FIGURE 8. Simulation motion and trajectory synthesized by EIDTZND (9) for the 3-dimension manipulator tracking the ring-like
conic path.

FIGURE 9. Residual and tracking errors synthesized by different DTZND models for the 3-dimension manipulator tracking the
ring-like conic path (Unit: m).

ring spiral path. Moreover, in the simulation experiments,
the initial joint state of the robot manipulator is consistently
set as θ (0) = [0;−π/4; 0;π/2; 0;−π/4] rad, and the dura-
tions of the path tracking task are respectively set as 16 s
and 14 s.

Because of similarity and space limitation, only the motion
and the end-effector trajectories of robot manipulator syn-
thesized by EIDTZND (9) in tracking the ring-like conic
path and the ring spiral path are given in Figs. 8 and 10.
As seen in these two figures, the actual tracking paths

and the desired paths are overlapped, which substanti-
ates the correctness of the proposed DTZND models for
ALRMPC. Besides, as shown in Figs. 9(a) and 11(a), it is
evident that the residual errors of (10), (11), (12), and
(9) are increased successively, which coincide with The-
orems 3 and 4. From Figs. 9(b) through 9(d) and 11(b)
through 11(d), we know that the tracking errors of different
DTZNDmodels are also increased successively. These results
show that the proposed DTZND models are effective and
feasible.
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FIGURE 10. Simulation motion and trajectory synthesized by EIDTZND (9) for the 3-dimension manipulator tracking the ring spiral
path.

FIGURE 11. Residual and tracking errors synthesized by different DTZND models for the 3-dimension manipulator tracking the ring
spiral path (Unit: m).

V. CONCLUSION
In this work, the ALRMPC problem has been investi-
gated, and then solved by the proposed DTZND models
successfully. Specifically, the new ALRMPC scheme has
been presented and investigated. Then, the corresponding
continuous-time ZND model has been developed and pro-
posed by applying the ZND method. Furthermore, the eight-
instant general formula has been proposed and studied. Based
on the eight-instant general formula and other ZeaD formulas,

four DTZND models with different precision have been fur-
ther derived and proposed. Finally, theoretical analyses and
numerical experiment results have indicated the good effec-
tiveness and superiority of the proposed DTZND models.
As an extension of this work, one of the future research
topics is to study and analyze the effective step-size interval
of different DTZND models. Besides, constructing and find-
ing new multiple-instant general ZeaD formulas with higher
precision can also be an interesting research direction.
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APPENDIX A
In Appendix A, the following four results [29], [31] for a
linear N -step method are provided.
Result 1: A linear N -step method

∑N
i=0 αixk+i =

τ
∑N

i=0 κiψk+i can be checked for 0-stability by determining
the roots of its characteristic polynomialPN (ς ) =

∑N
i=0 αiς

i.
If all roots denoted by ς of the polynomial PN (ς ) satisfy
|ς | ≤ 1 with |ς | = 1 being simple, then the linear N -step
method is 0-stable (i.e., has 0-stability).
Result 2: A linear N -step method is said to be consistent

(i.e., have consistency) of order p if the truncation error for
the exact solution is of order O(τ p+1) where p > 0.
Result 3: A linear N -step method is convergent,

i.e., x[t/τ ] → x∗(t), for all t ∈ [0, tf], as τ → 0, if and only
if the method is 0-stable and consistent. That is, 0-stability
plus consistency means convergence, which is also known as
Dahlquist equivalence theorem.
Result 4: A linear 0-stable consistent method converges

with the order of its truncation error.

APPENDIX B
The proof of Theorem 2 is given as follows.
Proof: Based on Taylor expansion [32] with fk+i = f ((k +

i)τ ), the following equations are derived:

fk+1 = f (kτ )+ ḟ (kτ )τ +
f̈ (kτ )τ 2

2!
+

...
f (kτ )τ 3

3!

+
f (4)(kτ )τ 4

4!
+
f (5)(ξ1)τ 5

5!
, (13)

fk−1 = f (kτ )− ḟ (kτ )τ +
f̈ (kτ )τ 2

2!
−

...
f (kτ )τ 3

3!

+
f (4)(kτ )τ 4

4!
−
f (5)(ξ2)τ 5

5!
, (14)

fk−2 = f (kτ )− 2ḟ (kτ )τ +
f̈ (kτ )(2τ )2

2!
−

...
f (kτ )(2τ )3

3!

+
f (4)(kτ )(2τ )4

4!
−
f (5)(ξ3)(2τ )5

5!
, (15)

fk−3 = f (kτ )− 3ḟ (kτ )τ +
f̈ (kτ )(3τ )2

2!
−

...
f (kτ )(3τ )3

3!

+
f (4)(kτ )(3τ )4

4!
−
f (5)(ξ4)(3τ )5

5!
, (16)

fk−4 = f (kτ )− 4ḟ (kτ )τ +
f̈ (kτ )(4τ )2

2!
−

...
f (kτ )(4τ )3

3!

+
f (4)(kτ )(4τ )4

4!
−
f (5)(ξ5)(4τ )5

5!
, (17)

fk−5 = f (kτ )− 5ḟ (kτ )τ +
f̈ (kτ )(5τ )2

2!
−

...
f (kτ )(5τ )3

3!

+
f (4)(kτ )(5τ )4

4!
−
f (5)(ξ6)(5τ )5

5!
, (18)

and

fk−6 = f (kτ )− 6ḟ (kτ )τ +
f̈ (kτ )(6τ )2

2!
−

...
f (kτ )(6τ )3

3!

+
f (4)(kτ )(6τ )4

4!
−
f (5)(ξ7)(6τ )5

5!
, (19)

where ḟ , f̈ ,
...
f , f (4) and f (5) denote the first-order, second-

order, third-order, fourth-order and fifth-order derivatives,
respectively; ξ1, ξ2, ξ3, ξ4, ξ5, ξ6 and ξ7 lie in the interval
(kτ, (k + 1)τ ), ((k − 1)τ, kτ ), ((k − 2)τ, kτ ), ((k − 3)τ, kτ ),
((k−4)τ, kτ ), ((k−5)τ, kτ ), ((k−6)τ, kτ ) and ((k−7)τ, kτ ),
correspondingly; symbol ! denotes the factorial operator. Let
(13), (14), (15), (16), (17), (18) and (19) multiply 1, η1, η2,
η3, η4, η5 and η6, respectively. Adding them together yields a
general discretization formula with six parameters, which is
omitted because of the page limitation.

Moreover, to eliminate the terms f̈ (kτ ),
...
f (kτ ) and

f (4)(kτ ), we have
1+ η1 + 4η2 + 9η3 + 16η4 + 25η5 + 36η6 = 0,
1− η1 − 8η2 − 27η3 − 64η4 − 125η5 − 216η6 = 0,
1+ η1 + 16η2 + 81η3 + 256η4 + 625η5 + 1296η6 = 0,

that is,
η4 = −(21+ 10η1 + 24η2 + 27η3)/16,
η5 = (35+ 15η1 + 32η2 + 27η3)/25,
η6 = −(5+ 2η1 + 4η2 + 3η3)/12,

and further have{
b0 = 20/(35− 10η1 − 8η2 − 3η3),
b1 = −(805+ 970η1 + 536η2 + 171η3)/1200.

In addition, the characteristic equation of (8) is

ς6 + α1ς
5
+ α2ς

4
+ α3ς

3
+ α4ς

2
+ α5ς + α6 = 0,

where α1 = (395 − 970η1 − 536η2 − 171η3)/1200, α2 =
(395+230η1−536η2−171η3)/1200, α3 = (395+230η1+
664η2 − 171η3)/1200, α4 = (395 + 230η1 + 664η2 +
1029η3)/1200, α5 = −(295+ 130η1+ 284η2+ 249η3)/300
and α6 = (5+ 2η1 + 4η2 + 3η3)/12.
By using bilinear transformation [33], [34], i.e., ς = (ε +

1)/(ε − 1), the following equation is obtained:

%1ε
6
+ %2ε

5
+ %3ε

4
+ %4ε

3
+ %5ε

2
+ %6ε + %7 = 0,

where %1 = 525 − 150η1 − 120η2 − 45η3, %2 = 2625 −
750η1 − 600η2 − 225η3, %3 = 4900 − 1400η1 − 1120η2 −
420η3, %4 = 3500 − 1000η1 − 800η2 − 300η3, %5 =
7455+ 2670η1 + 4056η2 + 2241η3, %6 = −525+ 150η1 −
1800η2 − 1875η3 and %7 = 720+ 480η1 + 384η2 + 624η3.
Then, according to Routh stability criterion [33], [34], (7) is
finally obtained. The proof is thus completed. �
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