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ABSTRACT Cydia Pomonella has great influence on the output and quality of apple, therefore, it is
an interesting subject to find out the optimum control strategy of Cydia Pomonella. A Cydia Pomonella
integrated management predator-prey model with Smith growth and linear feedback control is established in
this paper, and the pulse parameter linearity is dependent on controlling level. Firstly, we prove the existence
and uniqueness of order one periodic solution (OOPS) by using differential equation geometry theory and
successor functionmethod. Secondly, the stability of OOPS is proved by using the geometricmethod. Finally,
with the discussion of different parameters, we verify the theoretical results by numerical simulations, and
demonstrate the advantages and disadvantages of biological control strategy, chemical control strategy and
integrated control strategy. Moreover, the optimization model with minimum cost is established by using
OOPS and optimal control level of the model is obtained.

INDEX TERMS Integrated pest management, optimization, periodic solution, Smith growth.

I. INTRODUCTION
Apple is one of the four most famous fruits in the world. It can
supply the body with necessary nutritious elements, besides,
it has very rich medicinal value and a lot of therapeutic
effects. However, the output and quality of apple are greatly
influenced by Cydia Pomonella. Because Cydia Pomonella is
a kind of omnivorous drill borer, and it has very strong adapt-
ability, resistance, and reproductive performance, and it has
been spread extensively in almost all of the apple-producing
areas of six continents in the world. It is a kind of destructive
pest of kernel fruit trees, and it has serious influence on the
productivity and selling of the fruits at home and abroad.
Consequently, in order to decrease the management cost and
ensure the quality and quantity of apple, we need to establish
a practical biologic mathematical model and do the research
of the controlling strategy of Cydia Pomonella.

The associate editor coordinating the review of this article and approving
it for publication was Bing Li.

In biological mathematics, Logistic growth model

dx
dt
= rx(1−

x
K
)

is a simple but important biological system and it is built up
on the basis of the assumption that relative growth rate of
population size dx

xdt is linear function 1 − x
K of population

size, where x(t) denotes the densities of population at time t ,
r is the intrinsic rate of growth, andK is the constant carrying
capacity. A lot of scholars have establishedmanymodels with
logistic growth including Beddington-DeAngelis type [1],
Holling type [2]–[4], ratio-dependent type [5] and they also
have obtained some dynamical properties. Some scholars
believe that, to a certain extent, Logistic equations confirmed
the logical pattern of population growth and the limited
resources, however, individual reproduction and nutrition
supply has not been taken into consideration. Logistic growth
model is mainly applied to low biological population, such
as bacteria, yeasts, and floating algae etc [6]. In 1963, Smith
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studied a kind of algae called Daphnia in the lab. He found out
that the relevant data of this population did not accord with
linear rule [7]. Smith assumed that the relative growth rate of
the population density at time t is proportional to the amount
of remaining food at that time. i.e.

1
x
dx
dt
= r(1−

G(t)
ν

),

where G is the rate of food demand of a population with
a population density of x at time t . ν is the demand rate
for food when the population reaches the saturation state.
Smith supposed that the food consumed by the population
was mainly the food needed to sustain the organism itself:
c1x(t) and the food needed for the population to reproduce:
c2 dxdt . That is, the food F(x) consumed by the population can
be expressed as

F(x) = c1x(t)+ c2
dx
dt

Then,

dx
dt
= rx

(
1−

ν − c1x
ν + rc2x

)
.

When x(t) = K , the population no longer grows, the food
is only used for survival: ν = F(t) = c1K . Set D = rc2

c1
,

we shall get

dx
dt
= rx

(
1−

K − x
K + Dx

)
.

Smithmodel used hyperbolic function ν−c1x
ν+rc2x

to replace linear
function in Logistic model. It is a further improvement of
Logistics model.

Because there are many interactions between the prey
and the predator [9], [10], [46], so we assume that the pre-
dation is linearly dependent on the Cydia Pomonella and
Trichogramma densities with a predation coefficient q, i.e.
qx(t)y(t), and assume that the per capita conversion rate from
Cydia Pomonella to Trichogramma is saturated, i.e. lx(t)y(t)x(t)+b .
The Cydia Pomonella studied in this paper and the Daphnia
are both arthropods, so we think that Cydia Pomonella is
suitable for Simith growth rate [7]. In addition, we know
that Trichogramma belongs to invertebrates and invertebrates
can be described by Holling Type II functional response
function [8], so we think that Trichogramma can be described
by Holling Type II functional response function. Therefore,
a predator-prey model with Smith growth is structured as
follows: 

ẋ(t) =
px(t)− rx2(t)
k + ξx(t)

− qx(t)y(t),

ẏ(t) =
lx(t)y(t)
x(t)+ b

− my(t).
(1)

where x(t) represents the density of the Cydia Pomonella
at time t , y(t) represents the density of the Trichogram-
matid at time t . And the term lx(t)

x(t)+b is a Holling type II

functional response function. The parameters p, r, k, ξ, q,
m, b, are all positive.
Some other scholars have done a lot of work in the control

of pests such as biological control, chemical control, and
integrated pest management. Chemical control strategy is to
kill the pests directly by using chemicals [11], [12]. This
kind of method has very quick and obvious effect and it is
not very much limited by the regions and seasons, but the
natural enemies and the useful organisms are easily killed by
large quantity of pesticides, and the secondary insects will
prevail. At the meantime, chemical control has a great impact
on both human health and the environment. Biological control
is a kind of pests control method by using the methods of
natural enemies preying on pests and virus prevention and
some other measures [13]–[18]. This method do no harm to
the natural enemies, and is very friendly to the environment,
but it alters the biological structure, so it is only put into
use when the quantity of insects is not so large. Integrated
pest management(IPM) combines the chemical control and
biological control, and this method encourages to control
the pests within economic threshold, not to exterminate the
pests [10], [22]–[27].

However, with the diversity of human intervention,
the control strategy of pests will lead to the fundamental
change of species population, and this phenomenon exists
in many dynamic systems. These phenomena can all be
described by impulsive differential equations [28]. On the
basis of this theory, a lot of researchers have established
human intervention model with periodic impulse, for exam-
ple, periodic spraying of pesticides combined with periodic
release of infected pests [29]–[32], periodic release of nat-
ural enemies and infected pests [33]–[38], periodic release
of natural enemies [19]–[21], [39]–[41], regular release of
pests infected with the disease [42]–[46]. We assume that the
control action in the above-mentioned models is carried out
at the same pest level. Zhang and Chen [47], Zhao et al. [48],
Wang et al. [49], [50] studied the control action which is car-
ried out on different pest levels. We will consider the control
strategy when the number of Cydia Pomonella is between two
control levels.

The organization of this article is as follows. In Section 2,
a Cydia Pomonella integrated management predator-prey
model is structured, and qualitative analysis of the model is
given. The existence, uniqueness and asymptotic stability of
the OOPS of system (2) are proved in Section 3. In Section 4,
numerical simulations of specific model are performed to
complement our theoretical results. Furthermore, in order to
reduce the total cost of Cydia Pomonella control, we formu-
late the optimization problem. The final conclusion is drawn
in Section 5.

II. CYDIA POMONELLA MANAGEMENT MODEL AND
QUALITATIVE ANALYSIS OF SYSTEM (1)
Based on the above introduction, the interaction between
Cydia Pomonella and Trichogrammatid is taken as examples.
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We establish the following pulse feedback control predator-
prey model with Smith growth.

ẋ(t) =
px(t)− rx2(t)
k + ξx(t)

− qx(t)y(t),

ẏ(t) =
lx(t)y(t)
x(t)+ b

− my(t),

 x < ET ,

1x(t) = −c(x)x(t),
1y(t) = −b(x)y(t)+ δ(x),

}
x = ET , y ≤ y,

(2)

where ET ∈ [SHT ,EIT ] denotes the threshold of Cydia
Pomonella, SHT is the biological control level(i.e. the thresh-
old with slight damage to the apple), EIT is the chemical
control level (i.e. Cydia Pomonella economic harm level).
We adopt the integrated control strategy when x = ET . y
represents Trichogrammatid threshold at Cydia Pomonella
level ET . δ(x) is defined as the number of artificial Tri-
chogrammatid. The control parameters δ(x), c(x), b(x) are
continuous functions defined on [SHT ,EIT ], which satisfy
δ(SHT ) = δmax , δ(EIT ) = δmin, c(SHT ) = 0, c(EIT ) =
cmax , b(SHT ) = 0, b(EIT ) = bmax . In this paper, the func-
tions δ(x), b(x), c(x) are linearly dependent on the Cydia
Pomonella control level xET [52],

δ(x) = δmax − (δmax − δmin)
x − SHT
EIT − SHT

,

b(x) = bmax
x − SHT
EIT − SHT

,

c(x) = cmax
x − SHT
EIT − SHT

,

(3)

where bmax < cmax and cmax ≤ 1− SHT
EIT in practice.

From the biological point of view, we only consider this
region: � = {(x, y)|0 < x ≤ ET , 0 ≤ y < H − ρx}, where
H is a sufficiently large constant satisfying dφ/dt|φ=0 < 0
where φ : y+ ρx + b = 0.
Theorem 2.1: If l > m + mbr

p holds, then system (1) pos-
sesses two boundary equilibriums: E0(0, 0) and E1(

p
r , 0), and

an internal equilibrium: E∗(x∗, y∗), where x∗ = mb
l−m , y

∗
=

pl−pm−rmb
q(kl−km+ξmb) . Furthermore, E0(0, 0) and E1(

p
r , 0) are saddle

points, and E∗(x∗, y∗) is a node or focus which is locally
asymptotically stable (see Fig. 1).

Proof: It is easy to prove that E0(0, 0) is always a saddle
point. The Jacobian matrix at E1(

p
r , 0) is

J(E1) =

−
pr

kr + pξ
−
pq
r

0
pl

p+ br
− m

 .
By calculations, we shall get

Det(J (E1)) = −
pr

kr + pξ
(

pl
p+ br

− m) < 0,

then E1(
p
r , 0) is saddle point.

J(E∗) =

− ξrx
∗2
−2krx∗+pk

(k+ξx∗)2
− qy∗ −qx∗

bly∗

(x∗ + b)2
lx∗

x∗ + b
− m



FIGURE 1. Phase diagram of system (1) with p = 1, r = 0.8,k = 3,
ξ = 0.6,q = 0.5, l = 0.5,b = 0.4,m = 0.2.

=

−
krx∗ + pξx∗

(k + ξx∗)2
−qx∗

bly∗

(xx∗ + b)2
0

 ,
by calculations, we have

Det(J (E∗)) = qx∗
bly∗

(x∗ + b)2
> 0,

Tr(J (E∗)) = −
krx∗ + pξx∗

(k + ξx∗)2
< 0,

then E∗(x∗, y∗) is a locally asymptotically stable node
or focus.

For system (2), set M = {(x, y)|x = ET , 0 ≤ y ≤ ȳ} and
set N = {(x, y)|x = (1− c(ET ))ET , 0 ≤ y ≤ c(ET )+ δmax}
are denoted as the the impulse set and the phase set respec-
tively. The isoclinic lines are l1 = {(x, y)|x = mb

l−m , y ≥ 0}
and l2 = {(x, y)|y =

p−rx
q(k+ξx) , x ≥ 0}. For any point A(xA, yA),

xA and yA are denoted as its horizontal coordinate and ordinate
coordinate respectively. We define the first integral of system
(2) as G(x, y) = G0. It can be seen from the qualitative
analysis of system (1) that implicit function G(x, y) = G0
is divided into upper and lower sections by isoclinal line l2 :
dx
dt = 0. Upper and lower sections are respectively denoted as
yG+ (x,A0) and yG− (x,A0), where A0((1− c(ET ))ET , yA0 ) is
the initial point.

III. DYNAMICAL ANALYSIS OF SYSTEM (2)
A. EXISTENCE OF THE ORDER ONE PERIODIC SOLUTION
OF SYSTEM (2)
1) CASE I: SHT ≤ ET ≤ MIN{EIT , X ∗}
Theorem 3.1: If l > m + mbr

p and SHT ≤ ET ≤
min{EIT , x∗} hold, then system (2) admits a unique OOPS.

Proof: Assume that the isoclinic line l2 intersects
with the phase set N at the point B(xB, yB), where xB =
(1− c(ET ))ET , yB =

p−r(1−c(ET ))ET
q(k+ξ (1−c(ET ))ET ) , σ . The trajectory
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FIGURE 2. The existence of the OOPS of system (2) in case I.
(a)σ = (1−b(ET ))yG− (ET ,B)+ δ(ET ). (b)σ > (1−b(ET ))yG− (ET ,B)+ δ(ET ).
(c)σ < (1− b(ET ))yG− (ET ,B)+ δ(ET ).

yG− (x,B) with the initial point B intersects with the impulse
setM at pointB− after time t , then pointB− jumps to the point
B+(xB+ , (1 − c(ET ))ET ) after the impulsive effects, where
xB+ = xB, yB+ = (1−b(ET ))yG− (ET ,B)+δ(ET ). According
to the location of point B+, there have two cases:

(i): σ ≥ (1− b(ET ))yG− (ET ,B)+ δ(ET ).
If σ = (1−b(ET ))yG− (ET ,B)+δ(ET ), then B+ coincides

with B and the successor function of B is f (B) = yB+ − yB =
0, so system (2) admits an OOPS B̂B−B+ (see Fig. 2(a)).

If σ > (1 − b(ET ))yG− (ET ,B) + δ(ET ), then point B+

is below point B, so the successor function of B is f (B) =
yB+ − yB < 0. The intersection of phase set and X-axis is
denoted as point D. The trajectory with the initial point D
intersects the impulse set M at point D−(xD− , yD− ), where
xD− = ET , yD− = yG− (ET ,D), then point D− jumps

to the point D+(xD+ , yD+ ) after the impulse effects, where
yD+ = (1 − b(ET ))yG− (ET ,D) + δ(ET ) > yD. Therefore,
the successor function of point D is f (D) = yD+ − yD > 0.
According to [53, Theorem 2.2], there is a point P∗ located
in DB and meets f (P∗) = 0. Therefore, system (2) possesses
an OOPS (see Fig. 2(b)).

(ii): σ < (1− b(ET ))yG− (ET ,B)+ δ(ET ).
In this case, we shall get that point B+ is above the point B,

then the successor function of pointB is f (B) = yB+−yB > 0.
The trajectory G(x, y) = G(B+) with the initial point B+

intersects the impulse set M at point B−1 (xB−1 , yB
−

1
), where

xB−1
= ET , yB−1

= yG− (ET ,B+). Then the trajectory jumps

to the point B+1 (xB+1 , yB
+

1
) after the impulse effects. In view

of the fact that any two tracks of the system (2) do not
intersect, we shall get yG− (ET ,B+) < yG− (ET ,B), that is,
yB+1

< yB+ . Therefore, the successor function of point B+ is
f (B+) = yB+1

− yB+ < 0. According to [53, Theorem 2.2],

there is a point P∗ that locates in BB+ and meets f (P∗) = 0.
Therefore, system (2) admits an OOPS (see Fig. 2(c)).

Now, we discuss the uniqueness of OOPS of system (2).
First, the uniqueness of OOPS of system (2) in the case of
σ ≥ (1− b(ET ))yG− (ET ,B)+ δ(ET ) is proved. We assume

that there exist twoOOPSs ̂P1P−1 P
+

1 and ̂P2P−2 P
+

2 with points
P1 ∈ DB and P2 ∈ DB, that is to say,

(1− b(ET ))yG− (ET ,P1)+ δ(ET ) = yP1 ,

(1− b(ET ))yG− (ET ,P2)+ δ(ET ) = yP2 ,

where yP1 < yP2 .
Denote dP1P2 (x) = yG− (x,P1) − yG− (x,P2), x ∈ [(1 −
c(ET ))ET ,ET ]. Because of

d ′P1P2 (x)

= y′G− (x,P1)− y
′

G− (x,P2)

= (
l

x + b
− mx)

·

[(
p−rx
k+ξx

−qyP1

)−1
yP1−

(
p−rx
k+ξx

−qyP2

)−1
yP2

]
,

where l(y) =
(
p−rx
k+ξx − qy

)−1
y with l ′(y) = p−rx

k+ξx(
p−rx
k+ξx − qy

)−2
> 0. Thus l(y1) < l(y2), i.e., d ′P1P2 (x) <

0. According to the above analysis, we can get dP1P2 ((1 −
c(ET ))ET ) > dP1P2 (ET ). It is known from system (2),

δ(ET ) = yP1 − (1− b(ET ))yP−1
= yP2 + dP1P2 ((1− c(ET ))ET )

−(1− b(ET ))[yP−2 + dP1P2 (ET )]

> yP2 − (1− b(ET ))yP−2 = δ(ET )

which leads to a contradiction. Therefore, the OOPS is unique
when σ ≥ (1− b(ET ))yG− (ET ,B)+ δ(ET ).
For σ < (1− b(ET ))yG− (ET ,B)+ δ(ET ), there is a point

P∗ ∈ BB+, which makes the trajectory P̂∗P
−
∗ P∗ the OOPS,
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that is to say, yP+∗ = yP∗ = (1− b(ET ))yP−∗ + δ(ET ). For any
point P′ ∈ BB+, the successor function of point P′ is

f (P′) = yP′+ − yP′

= (1− b(ET ))yP′− + δ(ET )− yP′

= (1− b(ET ))yP′− − yP′ + yP∗ − (1− b(ET ))yP−∗
= yP∗ − yP′ + (1− b(ET ))(yP′− − yP−∗ ),

that is,

f (P′) =


−dP∗P′ ((1− c(ET ))ET )
+(1− b(ET ))dP−∗ P′− (ET ), if yp′ > yp∗ ,

dp∗p′ ((1− c(ET ))ET )
−(1− b(ET ))dp−∗ p′− (ET ), if yp′ < yp∗ .

There is f (P′) < 0 for any P′ ∈ BB+ with yP′ > yP∗ and
f (P′) > 0 for any P′ ∈ BB+ with yP′ < yP∗ . Thus the OOPS
is unique in the case of σ < (1−b(ET ))yG− (ET ,B)+δ(ET ).

2) CASE II: (1− C(ET ))ET < X ∗ < ET < EIT
Theorem 3.2: If l > m + mbr

p , (1 − c(ET ))ET < x∗ <
ET < EIT and ET > τ0 hold, then system (2) does not
possess OOPS; if l > m + mbr

p , (1 − c(ET ))ET < x∗ <
ET < EIT and ET ≤ τ0 hold, then system (2) possesses a
unique OOPS.

Proof: Denote τ0 = max
x∗<x≤EIT

{x|yG− (x, ((1 −

c(ET ))ET , 0)) < yG− (ET ,D)}. According to the magnitudes
between ET and τ0, two cases are discussed: (i): ET > τ0
The trajectory with the initial point D will approach the

stationary point E∗ after time t . For any points in the region
� will go on approaching the point E∗. Therefore, there does
not exist an OOPS in this case.

(ii):ET ≤ τ0.
We denote that the isoclinic line l2 intersects the impulse

setM at the pointC . The trajectory passing pointC intersects
the phase set x = (1−c(ET ))ET at the pointA1 andB1, where
point A1 and B1 are located above and below isoclinic line
dx
dt = 0, respectively. The successor point of point A1 is point
A+1 . By applying a similar method of Theorem 3.1, we can
prove the existence and uniqueness of OOPS (see Fig. 3).

B. STABILITY OF THE ORDER ONE PERIODIC SOLUTION
Next, we prove the stability of the OOPS by using the geo-
metric method. Considering system (4),

ẋ =
px(t)− rx2(t)
k + ζx(t)

− qx(t)y(t) , f (x, y),

ẏ =
lx(t)y(t)
x(t)+ b

− my , g(x, y),

 x < ET ,

1x = −c(x)x(t),
1y = −b(x)y(t)+ δ(x),

}
x = ET , y ≤ y,

(4)

we denote that the trajectory of OOPS of system (4) is P̂Q,
and the period is T . For any constant ε > 0, we choose a

FIGURE 3. The existence of the OOPS of system (2) in case II.

point P1(xP1 , yP1 ), where xP1 = (1 − c(ET ))ET and yP1 ∈
(yP, yP + ε). The trajectory ϕ(t,P1) with starting point P1
intersects the impulse set at the pointQ1, then pointQ1 jumps
to the point P+1 after the impulse effects (see Fig. 4).

The normal lines at the point P and Q intersect the trajec-
tory P̂1Q1 at the point P0 and Q0, respectively. And these
two normals are denoted as −→n1 and −→n2 , respectively. Let
|PP0| = u, |QQ0| = v, according to [51, Lemma2.7],
v = v(u) is the successor function, we shall get dv(u)

du =

exp
(∫ T

0

(
∂f
∂x +

∂g
∂y

)
dt
)
.

According to [54, Lemma 4.1], it follows that

v
u
=

√
f 2(P)+ g2(P)√
f 2(Q)+ g2(Q)

exp
(∫ T

0

(
∂f
∂x
+
∂g
∂y

)
dt
)
.

Let α and β be the angles between the normal line−→n1 and the
y-axial,−→n2 and the y-axial. Because point P1 is close enough
to point P, we get

u = |PP0| ≈ |PP1| cosα,

v = |QQ0| ≈ |QQ1| cosβ.

Because the tangent line −→τ1 of the trajectory P̂Q at point
P satisfy −→τ1 = (f (P), g(P)), we get cosα = f (P)

√
f 2(P)+g2(P)

.

Analogously, cosβ = f (Q)
√
f 2(Q)+g2(Q)

. So we get

|QQ1|

|PP1|
=
|QQ0|

cosβ
·
cosα
|PP0|

=
v
u
·
cosα
cosβ

=

√
f 2(P)+ g2(P)√
f 2(Q)+ g2(Q)

·
f (P)√

f 2(P)+ g2(P)

·

√
f 2(Q)+ g2(Q)

f (Q)
· exp

(∫ T

0

(
∂f
∂x
+
∂g
∂y

)
dt
)

=
f (P)
f (Q)

∫ T

0

(
∂f
∂x
+
∂g
∂y

)
dt.
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FIGURE 4. The illustration of OOPS of system (4).

Now, impulsive effects would be considered.

yP+1
= yQ1 − b(ET )yQ1 + δ(ET )

yP = yQ+ = yQ − b(ET )yQ + δ(ET )

|P+1 P| = yP+1
− yP

= yQ1 − yQ − b(ET )(yQ1 − yQ)

= [1− b(ET )](yQ1 − yQ)

= [1− b(ET )](|QQ1|)
|P+1 P|

|PP1|
= (1− b(ET ))

(
|Q1Q|
|PP1|

)
If
|P+1 P|
|PP1|

< 1, then we can get |ϕ(t,P+1 )−ϕ(t,P)| < ε, t > t0.
So we can prove that the OOPS is asymptotically stable on the
upper side of the region.

Similarly, the OOPS is asymptotically stable on the lower
side of the region. And then we have the following theorem:
Theorem 3.3: Suppose that system (4) has a periodic tra-

jectory P̂Q with point P and point Q locate in phase set and
impulse set respectively. Let

µ0 =
f (P)
f (Q)

exp
∫ T

0

(
∂f
∂x
+
∂g
∂y

)
dt

If |µ| = |(1− b(ET ))µ0| < 1, then the OOPS of the system
(2) is orbitally asymptotically stable.

IV. SIMULATIONS AND OPTIMIZATION
A. NUMERICAL SIMULATIONS
In this paper, we construct a pulse feedback control
predator-prey model with Smith growth. We prove the exis-
tence, uniqueness and stability of the OOPS of system (2).
We give a special example to verify the theoretical results in
this section. For the specific model

ẋ =
x − 0.8x2

3+ 0.6x
− 0.5xy,

ẏ =
0.5xy
x + 0.4

− 0.2y,

 x < ET ,

1x = −c(x)x,
1y = −b(x)y+ δ(x),

}
x = ET , y ≤ y,

(5)

FIGURE 5. The phase diagram (a), time series of Cydia Pomonella
(b) and Trichogrammatid (c) starting from (x0, y0) = (0.15,0.6). Control
parameters: biological control strategy: ET = 0.3, c = 0, b = 0 and
δ = 0.4; chemical control strategy: ET = 0.3, c = 0.5, b = 0.2
and δ = 0; integrated control strategy: ET = 0.3, c = 0.5,
b = 0.2 and δ = 0.4.

with a simple calculation, the internal equilibrium of the free
system is E∗(x∗, y∗) = (0.267, 0.498), which is orbitally
asymptotically stable. let SHT = 0.1, EIT = 0.4, δmax = 0.1,
δmin = 10%δmax = 0.1, cmax = 0.75, bmax = 0.3. The
simulations are carried out by changing one main parameter
ET and fixing all other parameters. The control parameters δ,
c, b are computed in equation (3).

Firstly, the biological control strategy, the chemical control
strategy and the integrated control strategy are compared by
numerical simulation and are illustrated in Fig.5. Fig.5 shows
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FIGURE 6. The phase diagram (a), time series of Cydia Pomonella (b) and
Trichogrammatid (c) starting from (x0, y0) = (0.15,0.6). Control
parameters:ET = 0.2, c = 0.25, b = 0.1 and δ = 0.7. The solution of
system (2) is presented in blue full line and the solution of free
system (1) is represented in green dotted lines.

that the integrated control strategy is more effective than
biological control strategy and chemical control strategy in
Cydia Pomonella management.

For case I in Sect 3.1.1, the Cydia Pomonella con-
trol level is selected as ET = 0.2. The phase portrait
of Cydia Pomonella density and Trichogrammatid density
and time series starting from (x0, y0) = (0.15, 0.6) are
showed in Fig.6. It shows that the trajectory admits the
OOPS. For case II in Sect 3.1.2, the Cydia Pomonella
control level is selected as ET = 0.35. The phase

FIGURE 7. The phase diagram (a), time series of Cydia Pomonella (b) and
Trichogrammatid (c) starting from (x0, y0) = (0.15,0.5). Control
parameters:ET = 0.35, c = 0.625, b = 0.25 and δ = 0.25. The solution
of system (2) is presented in blue full line and the solution of free
system (1) is represented in green dotted lines.

portrait of Cydia Pomonella density and Trichogram-
matid density and time series starting from (x0, y0) =
(0.15, 0.5) are showed in Fig.7. It shows that the tra-
jectory tends to be periodic (i.e., the OOPS exists). For
a little higher Cydia Pomonella control level, such as,
ET = 0.4, the phase portrait of Cydia Pomonella den-
sity and Trichogrammatid density and time series starting
from (x0, y0) = (0.15, 0.5) are shown in Fig.8 and it
shows that the trajectory tends to the positive equilibrium
E∗(x∗, y∗) = (0.267, 0.498).
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FIGURE 8. The phase diagram (a), time series of Cydia Pomonella (b) and
Trichogrammatid (c) starting from (x0, y0) = (0.15,0.5). Control
parameters:ET = 0.4, c = 0.75, b = 0.3 and δ = 0.1. The solution of
system (2) is presented in blue full line and the solution of free
system (1) is represented in green dotted lines.

B. OPTIMAL CYDIA POMONELLA CONTROL
LEVEL DETERMINATION
Our objective is to select a Cydia Pomonella level between
SHT and EIT and minimize the cost of per unit period.
The following optimization problem is considered in order
to solve the this problem.

Let d1 denote the unit cost of releases of the Trichogram-
matid, d2 be the unit cost of the chemical control (i.e. the price
of pesticide and the price of the environment disruption). Our
final objective is to make the cost per unit time lowest in the

FIGURE 9. Impulse period T of the OOPS varies with the cydia pomonella
control level ET.

FIGURE 10. The cost per unit time
Vcost

T on the cydia pomonella control
level ET .

process of Cydia Pomonella control. Let Vcost represent the
total cost in single period, which is a function of the yield
of releases of Trichogrammatid δ(ET ) and chemical control
strength c(ET ). Then Vcost = d1δ(ET ) + d2c(ET ). Thus,
the optimization model is constructed as follows
minVcost (ET )T (ET )
s.t. SHT ≤ ET ≤ EIT .

The optimum economic threshold ET ∗ is obtained after
solving the objective function problem, which results in
the optimum release amount of the Trichogrammatid δ∗ =
δ(ET ∗), the optimal chemical control strength c∗ = c(ET ∗)
and the optimal control period of chemical control is T ∗ =
T (δ∗, c∗). Certainly, it should be pointed out that the optimum
Cydia Pomonella control level ET is dependent on the ratio
of ζ = d2

d1
.

The impulse period T of the OOPS varies with the Cydia
Pomonella control level ET , as is shown in Fig.9 ( param-
eter values are presented in Table.1), and the cost per unit
time Vcost

T is shown in Fig.10. Assume d1 = d2 = 2000,
we shall get ζ = 1. From Fig.9 and Fig.10, the optimal Cydia
Pomonella threshold is ET ∗ = 0.3, the optimal chemical
control strength is c∗ = c(ET ∗) = 0.5, the optimal release
amount of the Trichogrammatid is δ∗ = δ(ET ∗) = 0.4,
and the optimum frequency of the chemical control is
T ∗ = 15.42. According to Fig.11, we shall get that the
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FIGURE 11. The change in the cost per unit time
Vcost

T on the cydia
pomonella control level ET for ζ = 5,2,1,1/5.

optimum Cydia Pomonella level ET ∗ is dependent on the
economic ratio of ζ = d2

d1
.

TABLE 1. Value of parameters.

V. CONCLUSION
The interaction between Cydia Pomonella and Trichogram-
matid is taken as examples in this paper. We establish a
pest integrated management predator-prey model with Smith
growth and pulse feedback control. Cydia Pomonella inte-
grated management strategy is adopted between the biologi-
cal control level and the chemical control level. The purpose
of this study is to obtain the optimal control level of the
Cydia Pomonella and minimize the cost of Cydia Pomonella
control.

Based on the above analysis, the OOPS always exists for
any release amount of the Trichogrammatid and chemical
control strength if the Cydia Pomonella control levelET satis-
fies SHT ≤ ET ≤ min{EIT , x∗}. While for (1−c(ET ))ET <
x∗ < ET < EIT , the OOPS exists only when the Cydia
Pomonella control level ET satisfies ET ≤ τ0. In order to
reduce the cost of Cydia Pomonella management, we set
up optimization model and obtain a optimal control level.
We verify that the integrated control strategy is more effective
than chemical control and biological control by numerical
simulation. Moreover, numerical simulations complement
our theoretical results.

In this paper, system (2) is the case of biological control
of [49] when x = h1, system (2)is the case of comprehensive
control of [49] when x = h2. Therefore, our proposed
control strategy is more general. Meanwhile, we formulate
the optimization problem to minimize the total cost of Cydia
Pomonella control.

In addition, the optimization problem proposed in this
paper needs to be further improved. In future research, wewill
consider the specific functional relationship between cost and
period, and cost and threshold to make our optimization more
scientific and more realistic.

COMPETING INTERESTS
The authors declare that they have no competing interests.

AUTHOR’S CONTRIBUTIONS
All authors read and approved the final manuscript.

REFERENCES
[1] T. C. Gard, ‘‘Global analysis of the predator–prey system with

Beddington–DeAngelis functional response,’’ J. Math. Anal. Appl.,
vol. 281, pp. 395–401, May 2002.

126074 VOLUME 7, 2019



Z. Shi et al.: Cydia Pomonella Integrated Management Predator-Prey Model With Smith Growth and Linear Feedback Control

[2] M. A. Idlango, J. J. Shepherd, and J. A. Gear, ‘‘Logistic growth with a
slowly varying Holling type II harvesting term,’’ Commun. Nonlinear Sci.
Numer. Simul., vol. 49, pp. 81–92, Aug. 2017.

[3] Y. Z. Pei, H. N. Wang, C. G. Li, and S. J. Gao, ‘‘An immune model
with logistic growth and Holling type-II functional response,’’ Acta Math.
Sinica, vol. 54, no. 2, pp. 301–312, 2011.

[4] H. Cheng, F. Wang, and T. Zhang, ‘‘Multi-state dependent impulsive
control for Holling I predator-prey model,’’ Discrete Dyn. Nature Soc.,
vol. 2012, Apr. 2012, Art. no. 181752.

[5] L. N. Guin and P. K. Mandal, ‘‘Spatial pattern in a diffusive predator–prey
model with sigmoid ratio-dependent functional response,’’ Int. J. Biomath.,
vol. 7, no. 5, 2014, Art. no. 1450047.

[6] W. Fengying and W. Ke, ‘‘Economic harvesting model with variable
price and cost for population with smith growth and cui lawson growth,’’
J. Biomath., vol. 19, no. 3, pp. 328–336, 2004.

[7] F. E. Smith, ‘‘Population dynamics in daphnia magna and a new model for
population growth,’’ Ecology, vol. 44, no. 4, pp. 651–663, 1963.

[8] L. S. Chen, X. Y. Song, and Z. Y. Lu, Mathematical Models and Methods
in Ecology. Chengdu, China: Sichuan Education Publishing House, 2003.

[9] L. Nie, Z. Teng, L. Hu, and J. Peng, ‘‘Existence and stability of periodic
solution of a predator–prey model with state-dependent impulsive effects,’’
Math. Comput. Simul., vol. 79, no. 7, pp. 2122–2134, 2009.

[10] K. Sun, T. Zhang, and Y. Tian, ‘‘Dynamics analysis and control optimiza-
tion of a pest management predator–prey model with an integrated control
strategy,’’ Appl. Math. Comput., vol. 293, pp. 253–271, Jan. 2017.

[11] B. Liu, Y. Zhang, and L. Chen, ‘‘The dynamical behaviors of a
Lotka–Volterra predator–prey model concerning integrated pest manage-
ment,’’ Nonlinear Anal., Real World Appl., vol. 6, pp. 227–243, Apr. 2005.

[12] T. Zhang, X. Meng, and Y. Song, ‘‘The dynamics of a high-dimensional
delayed pest management model with impulsive pesticide input and
harvesting prey at different fixed moments,’’ Nonlinear Dyn., vol. 64,
pp. 1–12, Apr. 2011.

[13] S. J. Walde, ‘‘Immigration and the dynamics of a predator-prey interaction
in biological control,’’ J. Animal Ecology, vol. 63, no. 2, pp. 337–346, 1994.

[14] O. Arino, A. El Abdllaoui, J. Mikram, and J. Chattopadhyay, ‘‘Infection
in prey population may act as a biological control in ratio-dependent
predator–prey models,’’ Nonlinearity, vol. 17, no. 3, p. 1101, 2004.

[15] A. J. Terry, ‘‘Biocontrol in an impulsive predator–prey model,’’ Math.
Biosci., vol. 256, pp. 102–115, Oct. 2014.

[16] F. Li, X. Meng, and X. Wang, ‘‘Analysis and numerical simulations of
a stochastic SEIQR epidemic system with quarantine-adjusted incidence
and imperfect vaccination,’’ Comput. Math. Methods Med., vol. 2018,
Feb. 2018, Art. no. 7873902.

[17] F. Liu and F. Wang, ‘‘Entropy-expansiveness of geodesic flows on closed
manifolds without conjugate points,’’ Acta Math. Sinica, vol. 32, no. 4,
pp. 507–520, 2016.

[18] Y. Wang, ‘‘Beyond regular semigroups,’’ Semigroup Forum, vol. 92,
pp. 418–448, Apr. 2016.

[19] Y. Zhang, B. Liu, and L. Chen, ‘‘Extinction and permanence of a two-
prey one-predator systemwith impulsive effect,’’Math. Med. Biol., vol. 20,
no. 4, pp. 309–325, 2003.

[20] Y. Tian, K. Sun, and L. Chen, ‘‘Geometric approach to the stability
analysis of the periodic solution in a semi-continuous dynamic system,’’
Int. J. Biomath., vol. 7, no. 2, 2014, Art. no. 1450018.

[21] Y. Li, D. Xie, and J. Cui, ‘‘Complex dynamics of a predator–prey model
with impulsive state feedback control,’’ Appl. Math. Comput., vol. 230,
pp. 395–405, Mar. 2014.

[22] R. Shi, X. Jiang, and L. Chen, ‘‘A predator–prey model with disease in
the prey and two impulses for integrated pest management,’’ Appl. Math.
Model., vol. 33, pp. 2248–2256, May 2009.

[23] Y. Li, H. Cheng, J. Wang, and Y. Wang, ‘‘Dynamic analysis of unilateral
diffusion Gompertz model with impulsive control strategy,’’ Adv. Differ-
ence Equ., vol. 2018, Jan. 2018, Art. no. 32.

[24] Z. Liang, G. Pang, X. Zeng, and Y. Liang, ‘‘Qualitative analysis of a
predator–prey system with mutual interference and impulsive state feed-
back control,’’ Nonlinear Dyn., vol. 87, no. 3, pp. 1495–1509, 2017.

[25] H. Cheng and T. Zhang, ‘‘A new predator–prey model with a profitless
delay of digestion and impulsive perturbation on the prey,’’ Appl. Math.
Comput., vol. 217, no. 22, pp. 9198–9208, 2011.

[26] Y. Zhang, F. Wang, J. Wang, and Y. Huang, ‘‘Adaptive finite time control
of nonlinear quantized systems with actuator dead-zone,’’ IEEE Access, to
be published. doi: 10.1109/ACCESS.2019.2922748.

[27] Y. Li, H. Cheng, and Y. Wang, ‘‘A Lycaon pictus impulsive state feedback
control model with Allee effect and continuous time delay,’’ Adv. Differ-
ence Equ., vol. 2018, p. 367, Dec. 2018.

[28] L. S. Chen, ‘‘Pest control and geometric of semi continuous dynamical
system,’’ J. Beihua Univ., vol. 12, no. 1, pp. 1–9, Oct. 2011.

[29] Y. Tian, T. Zhang, and K. Sun, ‘‘Dynamics analysis of a pest management
prey–predator model by means of interval state monitoring and control,’’
Nonlinear Anal., Hybrid Syst., vol. 23, pp. 122–141, Feb. 2017.

[30] G. Liu, X. Wang, X. Meng, and S. Gao, ‘‘Extinction and persistence in
mean of a novel delay impulsive stochastic infected predator-prey system
with jumps,’’ Complexity, vol. 2017, Jun. 2017, Art. no. 1950970.

[31] K. Liu, T. Zhang, and L. Chen, ‘‘State-dependent pulse vaccination
and therapeutic strategy in an SI epidemic model with nonlinear inci-
dence rate,’’ Comput. Math. Methods Med., vol. 2019, Feb. 2019,
Art. no. 3859815.

[32] N. Gao, Y. Song, X. Wang, and J. Liu, ‘‘Dynamics of a stochastic SIS
epidemic model with nonlinear incidence rates,’’ Adv. Difference Equ.,
vol. 1, p. 41, Dec. 2019.

[33] H. Zhang, P. Georgescu, and L. Chen, ‘‘On the impulsive controllability
and bifurcation of a predator–pest model of IPM,’’ Biosystems, vol. 93,
pp. 151–171, Sep. 2008.

[34] Y. Pei, G. Zeng, and L. Chen, ‘‘Species extinction and permanence in a
prey–predator model with two-type functional responses and impulsive
biological control,’’ Nonlinear Dyn., vol. 52, pp. 71–81, Apr. 2008.

[35] S. Zhang, X. Meng, and X. Wang, ‘‘Application of stochastic inequalities
to global analysis of a nonlinear stochastic SIRS epidemic model with
saturated treatment function,’’ Adv. Difference Equ., vol. 2018, no. 1, p. 50,
Dec. 2018.

[36] F. Liu, ‘‘Continuity and approximate differentiability of multisublinear
fractional maximal functions,’’ Math. Inequalities Appl., vol. 21, no. 1,
pp. 25–40, 2018.

[37] F. Liu, Q. Xue, and K. Yabuta, ‘‘Rough maximal singular integral and
maximal operators supported by subvarieties on Triebel–Lizorkin spaces,’’
Nonlinear Anal., vol. 171, pp. 41–72, Jun. 2018.

[38] A. Miao, T. Zhang, J. Zhang, and C. Wang, ‘‘Dynamics of a stochastic
SIR model with both horizontal and vertical transmission,’’ J. Appl. Anal.
Comput., vol. 8, no. 4, pp. 1108–1121, 2018.

[39] J. Wang, H. Cheng, H. Liu, and Y. Wang, ‘‘Periodic solution and control
optimization of a prey-predator model with two types of harvesting,’’ Adv.
Difference Equ., vol. 2018, Jan. 2018, Art. no. 41.

[40] W. Lv and F. Wang, ‘‘Adaptive tracking control for a class of uncertain
nonlinear systems with infinite number of actuator failures using neural
networks,’’ Adv. Difference Equ., vol. 2017, Dec. 2017, Art. no. 374.

[41] L. Mailleret and F. Grognard, ‘‘Global stability and optimisation of a
general impulsive biological control model,’’ Math. Biosci., vol. 221,
pp. 91–100, Oct. 2009.

[42] L. Wang, L. Chen, and J. J. Nieto, ‘‘The dynamics of an epidemic model
for pest control with impulsive effect,’’ Nonlinear Anal., Real World Appl.,
vol. 11, pp. 1374–1386, Jun. 2010.

[43] T. Zhang, X. Meng, and T. Zhang, ‘‘Global analysis for a delayed SIV
model with direct and environmental transmissions,’’ J. Appl. Anal. Com-
put., vol. 6, no. 2, pp. 479–491, 2016.

[44] Z. Shi, Y. Li, and H. Cheng, ‘‘Dynamic analysis of a pest management
smith model with impulsive state feedback control and continuous delay,’’
Mathematics, vol. 7, no. 7, p. 591, 2019.

[45] X. Lv, L. Wang, and X. Meng, ‘‘Global analysis of a new nonlinear
stochastic differential competition system with impulsive effect,’’ Adv.
Difference Equ., vol. 2017, Sep. 2017, Art. no. 296.

[46] Z. Shi, J. Wang, Q. Li, and H. Cheng, ‘‘Control optimization and homo-
clinic bifurcation of a prey–predator model with ratio-dependent,’’ Adv.
Difference Equ., vol. 2019, p. 2, Dec. 2019.

[47] H. Zhang, L. Chen, and P. Georgescu, ‘‘Impulsive control strategies for
pest management,’’ J. Biol. Syst., vol. 15, no. 2, pp. 235–260, 2007.

[48] L. Zhao, L. Chen, and Q. Zhang, ‘‘The geometrical analysis of a predator–
prey model with two state impulses,’’ Math. Biosci., vol. 238, no. 2,
pp. 55–64, 2012.

[49] J. Wang, H. Cheng, Y. Li, and X. Zhang, ‘‘The geometrical analysis of a
predator-prey model with multi-state dependent impulses,’’ J. Appl. Anal.
Comput., vol. 8, no. 2, pp. 427–442, 2018.

[50] J. Wang, H. Cheng, X. Meng, and B. G. S. A. Pradeep, ‘‘Geometrical
analysis and control optimization of a predator-prey model with multi
state-dependent impulse,’’ Adv. Difference Equ., vol. 2017, Aug. 2017,
Art. no. 252.

VOLUME 7, 2019 126075

http://dx.doi.org/10.1109/ACCESS.2019.2922748


Z. Shi et al.: Cydia Pomonella Integrated Management Predator-Prey Model With Smith Growth and Linear Feedback Control

[51] Z. Y. Zhang, Geometrical Methods in the Theory of Ordinary Differential
Equations. Beijing, China: Peking Univ. Press, 1987, pp. 262–272.

[52] K. Sun, T. Zhang, and Y. Tian, ‘‘Theoretical study and control optimization
of an integrated pest management predator–prey model with power growth
rate,’’ Math. Biosci., vol. 279, pp. 13–26, Sep. 2016.

[53] T. Zhang, X. Meng, R. Liu, and T. Zhang, ‘‘Periodic solution of a pest
management Gompertz model with impulsive state feedback control,’’
Nonlinear Dyn., vol. 78, no. 2, pp. 921–938, 2014.

[54] H. Guo, L. Chen, and X. Song, ‘‘Dynamical properties of a kind of
SIR model with constant vaccination rate and impulsive state feedback
control,’’ Int. J. Biomath., vol. 10, no. 7, 2017, Art. no. 1750093.

ZHENZHEN SHI received the B.S. degree from
the Weifang College, Weifang, China, in 2017.
She is currently pursuing the M.S. degree with
the College of Mathematics and Systems Science,
Shandong University of Science and Technology,
Qingdao, China. Her research interests include
applied mathematics and biological mathematics.

HUIDONG CHENG received the B.S. degree
from Qufu Normal University, Qufu, China,
in 1986. Since 2001, she has been with the Shan-
dong University of Science and Technology, Qing-
dao, China, where she is currently a Professor
and a Master Tutor. Her current research inter-
ests include applied mathematics and biological
mathematics. Her awards and honors include the
Shandong Province University Excellent Scien-
tific Research Achievement Award, the Shandong

Province Coal Science and Technology Progress Award, and the Shandong
Soft Science Outstanding Achievement Award.

YU LIU received the B.S. degree in English
from Shandong Normal University, in 2002, and
the M.S. degree in linguistics and applied lin-
guistics from the Shandong University of Sci-
ence and Technology, in 2010, where she has
been a Lecturer of general English, since 2002.
Her research interests include applied linguistics
and second language acquisition. Her awards and
honors include the Honorable Mentor of First
Prize of College English Test-Band Four, SDUST,

the Third Prize in the Teaching Contest, College of Foreign Languages,
SDUST, and the My Favorite Teacher Award by Students, SDUST.

YANING LI received the B.S. degree from Qilu
Normal College, Jinan, China, in 2016. She is cur-
rently pursuing the M.S. degree with the College
of Mathematics and Systems Science, Shandong
University of Science and Technology, Qingdao,
China. Her research interests include applied
mathematics and biological mathematics.

126076 VOLUME 7, 2019


	INTRODUCTION
	CYDIA POMONELLA MANAGEMENT MODEL AND QUALITATIVE ANALYSIS OF SYSTEM (1)
	DYNAMICAL ANALYSIS OF SYSTEM (2)
	EXISTENCE OF THE ORDER ONE PERIODIC SOLUTION OF SYSTEM (2)
	CASE I: SHT ET MIN{EIT, X*}
	CASE II: (1-C(ET))ET < X* < ET < EIT

	STABILITY OF THE ORDER ONE PERIODIC SOLUTION

	SIMULATIONS AND OPTIMIZATION
	NUMERICAL SIMULATIONS
	OPTIMAL CYDIA POMONELLA CONTROL LEVEL DETERMINATION

	CONCLUSION
	REFERENCES
	Biographies
	ZHENZHEN SHI
	HUIDONG CHENG
	YU LIU
	YANING LI


