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ABSTRACT Sign language is the most natural and effective way for communications among deaf and
normal people. American Sign Language (ASL) alphabet recognition (i.e. fingerspelling) using marker-less
vision sensor is a challenging task due to the difficulties in hand segmentation and appearance variations
among signers. Existing color-based sign language recognition systems suffer from many challenges such
as complex background, hand segmentation, large inter-class and intra-class variations. In this paper,
we propose a new user independent recognition system for American sign language alphabet using depth
images captured from the low-cost Microsoft Kinect depth sensor. Exploiting depth information instead
of color images overcomes many problems due to their robustness against illumination and background
variations. Hand region can be segmented by applying a simple preprocessing algorithm over depth image.
Feature learning using convolutional neural network architectures is applied instead of the classical hand-
crafted feature extraction methods. Local features extracted from the segmented hand are effectively learned
using a simple unsupervised Principal Component Analysis Network (PCANet) deep learning architecture.
Two strategies of learning the PCANet model are proposed, namely to train a single PCANet model from
samples of all users and to train a separate PCANet model for each user, respectively. The extracted features
are then recognized using linear Support Vector Machine (SVM) classifier. The performance of the proposed
method is evaluated using public dataset of real depth images captured from various users. Experimental
results show that the performance of the proposed method outperforms state-of-the-art recognition accuracy
using leave-one-out evaluation strategy.

INDEX TERMS American sign language alphabet recognition, hand segmentation, wrist line detection,
deep learning, PCANet, signer independent.

I. INTRODUCTION
Sign and gestures are considered as the most natural way
to convey messages among people through body move-
ments [1]–[4]. Though signs and gestures are classified as a
non-verbal communication, they can effectively deliver the
communicating messages among deaf and hearing-impaired
people [5]. The most widely used method of conveying
words/vocabularies using body gestures is sign language.

A plenty of research works in automatic Sign Language
Recognition (SLR) have been started two decades ago
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especially for American [6]–[8], Australian [9], Indian [10],
Korean [11], Chinese [12], Polish [13] and Arabic [14]–[16].
Many techniques based on different sensor types have been
developed. These approaches employed variety of methods
based on the combination of multiple sensors, machine learn-
ing, pattern recognition and image analysis techniques.

The approaches used to solve sign language recognition
problems can be classified into sensor-based and vision-
based methods [17]. In the sensor-based approaches, signer
almost wear a special glove or sensor in order to present
information of hand orientation, position, rotation and move-
ments. However, the goal of vision-based approaches is to
use images captured from camera without any need for extra
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sensors or gloves [5]. Existing vision-based approaches apply
various image processing and machine learning techniques to
analyze and represent signs using color images.

Recently, the existence of the low-cost depth cameras
allows researchers to extensively apply them in many com-
puter vision applications [18], [19]. Depth cameras such
as Microsoft Kinetic capture both color and depth images.
Microsoft Kinect device contains both an infrared emit-
ter/sensor and video camera to simultaneously capture depth
and color images of the scene. It permits long range inter-
action between hands and camera in the range from 0.5 to
4 meters which make it appropriate for indoor hand gesture
recognition applications. Depth information not only pre-
serves the 3D shape of the object but also exhibits invariance
to illumination and background variations. The robustness of
depth images against lighting conditions makes them relevant
to many real world applications. Since then, new systems
have been introduced to facilitate human-machine interaction
using Microsoft KinectTM [20], SoftKinetic [21] and Leap
Motion Controller (LMC) [22] sensors.

Automatic sign language recognition systems can be
categorized into three classes, namely sentence, words,
and fingerspelling recognition. Alphabetic sign language
recognition systems (i.e. fingerspelling) are considered as an
essential part to learn sign language for new users. It helps
signers to perform signs for names of people, cities and other
words without known signs. These systems always rely on
color images to capture texture and shape information of
the hand gestures. Color-based signer independent finger-
spelling methods suffer from many problems such as hand
segmentation, complex backgrounds, inter-class and intra-
class variations. However, depth-based methods overcome
these problems as they exploit the distance information of
hand from the camera while discarding other non-relevant
texture information.

In this paper, a new signer independent fingerspelling
recognition method is proposed based on leaning features
from depth image using Convolutional Neural Network
(CNN). Extracted high-level features from CNN can effi-
ciently represent the shape of hand gestures more robustly
than that of hand-crafted features. The overwhelming success
of convolutional neural network models and deep leaning
algorithms motivates many researchers to apply them in
sign language recognition problems. However, the complex
structure of recent CNN architectures and the high com-
putational cost of training prevent their utilization in real-
time applications. Motivated by the successful achievements
of PCANet deep learning architecture [23] in many object
recognition problems, our proposed method employs this
model to automatically learn depth features from the seg-
mented hand regions.

The first step of the proposed method is to segment the
hand region from depth image. Hand segmentation based on
depth image can be achieved by thresholding depth values to
find the nearest object to the camera. A new simple algorithm
is also proposed to detect the wrist line and remove the hand

forearm. Another important step after hand segmentation is
to normalize the depth values to make it more relevant to
the next feature extraction stage. Two strategies are proposed
to train PCANet models, namely single PCANet and user-
specific PCANet feature model. The first one is trained using
samples collected from all users, while the second strategy
trains multiple PCANet models in which each model learns
specific features from a single user. The extracted features
are then recognized using linear Support Vector Machine
(SVM) classifier [24]. Extensive experiments using pub-
lic ASL benchmark dataset are conducted to evaluate pro-
posed method using leave-one-out strategy. The comparative
study with other state-of-the-art CNN-based fingerspelling
recognition methods reveals the robustness of the proposed
method.

The main contributions of the proposed method can be
summarized as follows:

1) A new efficient hand segmentation and wrist line detec-
tion algorithm based on depth image is proposed.

2) A simple unsupervised convolutional neural network
using PCANet is employed to describe hand gestures.

3) Evaluation of the proposed method using real database
of depth ASL alphabetic for signer independent
scenario.

The paper is organized as follows: Section II reviews
the related works of sign language recognition, Section III
explains the proposed method in details. The experimental
results are discussed in Section IV and finally, conclusions
are presented at the end of the paper.

II. RELATED WORKS
Recent development of various sensor types especially those
depend on depth information leads to the development of
many real time applications such as gesture and sign language
recognition [18], [20]. As a result of their low cost, sensors
such as Microsoft Kinect and leap motion controller [25] are
widely spread and used by many researchers [26]–[28]. Sign
language recognition problem can be divided into three sub-
problems: sentence, isolated words, and alphabet recognition.
This paper focuses only on recognizing American Sign Lan-
guage (ASL) alphabets. Most developed ASL alphabet recog-
nition systems consist of three stages: hand segmentation,
feature extraction and classification. Although there are many
research works toward solving ASL fingerspelling problem,
few works have been presented to tackle user independent
scenario since the amount of variations among signers are
very large.

Pugeault and Bowden [29] proposed an American
sign language hand gesture recognition system using
Microsoft Kinect sensor. In their work, The RGB and depth
of 24 English alphabetic images are collected fromfive differ-
ent signers. Gabor filters was used to extract texture features
while multiclass random forest classifier is trained to predict
the label of each fingerspelling letter. Experiments showed
that features extracted fromGabor filters could not efficiently
discriminate different signs. Their dataset was utilized in
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many research works and considered as a benchmark dataset
in this paper. Later works have been done byKeskin et al. [30]
utilizing a Randomized Decision Forest (RDF) for hand pose
estimation and hand shape classification. They introduced a
multilayered RDFs to assign each input depth pixels to hand
shape classes then hand pose is estimated.

Li et al. [31] used sparse auto-encoder (SAE) and principle
component analysis to learn features of hand gestures from
RGB-D images. Using two separate sparse auto-encoder with
convolutional neural networks, features are learned respec-
tively from color and depth channels. The combined features
from both channels was obtained using multiple PCA layers.
However, they showed experimental results onAmerican sign
language (ASL) dataset for signer dependent scenario only
without any discussion about the feasibility of their method
to solve signer-independent problem.

In Dong et al. [8] works, hand region is segmented into
parts using depth contrast feature and per-pixel classification
method. They developed a method to localize hand joint
positions using a hierarchical mode-seeking under kinematic
constraints. Random Forest (RF) classifier was then built to
recognize ASL signs from the obtained joint angles. Using
publicly available dataset, their method achieved above 70%
and 90% accuracy in recognizing all static ASL alphabet
signs using ‘‘leave-one-out’’ and ‘‘half-half’’ experimental
tests, respectively.

Zhang and Tian [32] encoded the 3D shape information
from depth maps using Histogram of 3D Facets (H3DF). The
3D local support surface was characterized by the 3D Facet
associated with the 3D cloud point. The 3D shapes and struc-
tures of various signs are represented by the H3DF descriptor.
The recognition results using SVM and sparse representation
(SR) classifiers for ASL alphabet reached 73.3% and 77.2%,
respectively.

Wang et al. [33] proposed a superpixel earth mover dis-
tance metric for hand gesture recognition using Kinect depth
camera. The extracted depth, skeleton information, and tex-
tures are represented in the form of superpixels. The robust
Superpixel Earth Mover’s Distance (SP-EMD) metric was
applied to measure the dissimilarity between the hand ges-
tures. The accuracy using their distance metric and features
was 75.8% on the tested dataset.

Arif-Ul-Islam and Akhter [34] utilized PCA based feature
extraction with Gabor filter and orientation base hash code to
represent American sign language alphabets features. Artifi-
cial Neural Networks (ANN) was then used for classification.
Their method was evaluated using a database containing
576 ASL alphabet sign images of the 24 alphabets. Results
using both RGB and depth images proved to work compara-
tively better in both time and accuracy. However, authors did
not measure the performance of their method against signer
independent scenario and report results using only their own
collected database which is not publicly available.

Kang et al. [35] used convolutional neural networks
(CNNs) to built a recognition system from depth images.
They trained different CNNs for the classification of more

than 30 alphabets and numbers using five different sub-
jects. They tried different learning hyper-parameters and
achieved 83.58% accuracy for leave-one-out test strat-
egy using their benchmark dataset. On the other hand,
Ameen and Vadera [36] employed both color and depth
images in the ASL fingerspelling recognition using
CNNmodel. The developed CNNmodel contains two convo-
lutional layers to extract features from each input. Extracted
features from both layers are concatenated and fed into a fully
connected layer for classification. The reported accuracy
reached 80.34% using leave-one-out test strategy on the same
benchmark dataset.

Tao et al. [6] use CNN with multiview augmentation and
inference fusion. More perspective views are generated from
the original depth image and used in the training to improve
the performance of the CNN model. In the classification,
the scores of the different generated views were combined to
calculate the final decision. Although their method achieved
state-of-the art accuracy, it requires a high computational cost
to generate and test different views from the original depth
image.

Another approach for American sign language recogni-
tion exploiting Recurrent Neural Networks (RNN) and Leap
Motion Controller (LMC) was presented by Avola et al. [22].
LMC device was employed to detect and track the hand
and fingers and to provide position and motion information.
LMC was utilized to capture features of the angles between
finger bones. In addition to data acquisition using LMC, RNN
was used to model the long term contextual information of
temporal sequences in the dynamic gestures. Their system
was evaluated using an American sign alphabets containing
both static and dynamic gestures.

Deep learning algorithms are currently the predomi-
nant strategy to solve many computer vision and gesture
recognition problems [4], [31]. Recent researches have
employed different deep learning algorithms to solve hand
gesture recognition [37], [38]. Among other deep learning
algorithms, PCANet [23] considered as a new effective sim-
ple unsupervised deep learning method which successfully
used to solve many object recognition problems. In this
work, we employ the unsupervised PCANet model instead
of the commonly used supervised CNN architecture to learn
features from depth images of American fingerspelling.
The classification is performed using linear support vector
machine classifier to label the extracted PCANet features.

III. PROPOSED METHOD
The proposed signer independent fingerspelling recognition
method comprises three different stages, hand segmenta-
tion and preprocessing, feature extraction, and classification.
Fig. 1 shows the block diagram of the proposedmethod. Hand
segmentation is an important step of the method and can be
efficiently achieved by thresholding depth image to find the
pixels which represent hand region. After segmenting hand
from depth image, precise hand region is cropped by finding
the wrist line and remove hand forearm region. Pixel values
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FIGURE 1. Proposed method for American fingerspelling recognition.

of the cropped hand is then normalized to limit their values
within small range.

Extracting discriminative and invariant features consid-
ered as the most critical step in the system and can lead
to a successful fingerspelling recognition system. However,
selecting appropriate invariant feature extraction method for
input depth images is a difficult task. PCANet is employed
to automatically learn invariant features from the segmented
depth images to efficiently represent various alphabetic sign
classes. The two strategies illustrated in Fig. 2 are imple-
mented to learn different depth features from the available
training images. First, single PCANet and SVM models
are trained using a set of collected samples from all users
while the second strategy trains multiple PCANet and SVM
models in which each model learns specific features from a
single user. The combination of CNN/PCANet with linear
SVM classifier was previously utilized in [39], [40] to solve
handwritten digit recognition problems. It is well-known that
SVM training is based on solving a margin maximization
optimization problem which deliver a unique solution since
the optimization problem is convex. The decision boundary
learned by SVM classifier greatly improve the generalization
capability in comparison with other linear classifiers. In addi-
tion, SVM classifier is better than other non-linear classifiers
which are based on gradient descent optimization algorithm
and have local minima problem. The following subsections
explain the proposed method in more details.

A. HAND SEGMENTATION AND WRIST LINE
LOCALIZATION
A fundamental step in most gesture recognition applications
is to efficiently segment hand regions from input image.
Segmenting hand from depth images is much easier than that
of color images [18]. Hand segmentation problem can be
easily tackled by assuming that the hand is the nearest object
to the depth camera [28]. That is, the depth values of the
hand are usually smaller than other objects in the image [6].
Assume that the raw depth image D is captured by Microsoft

Kinect camera, and the minimum value of the depth image
is Dm. All pixels lies in the range from Dm to Dm + T are
selected to represent hand region, the threshold value T is
selected empirically. The pixel values is then normalized to
increase the contrast of the hand region using the formula
D′ = Dm + T − D (ifD 6= 0). This step makes hand region
near to the camera more brighter, while far regions become
more darker. Then, this region is filtered using median filter
to remove noise.

Wrist line detection helps to remove hand forearm and
focuses on the hand region of interest [41]. The procedure is
based on the observation that the wrist line is directly located
under the palm region and above the forearm. To find thewrist
line, the following steps illustrated in Fig. 3 are explained in
details as follows:

1) The binary hand mask M is computed by thresholding
hand region image (D′ > 0).

2) The circle enclosed the palm region is estimated using
distance transform of the depth image denoted as
Dist(M ). The center (Xc,Yc) and the radius R of the
circle are calculated as the position and the maximum
value of Dist(M ), respectively.

3) Find the orientation of the hand using second moment
of the binary hand mask M , denoted as θ . The ori-
entation is obtained using the second order central
moment [41].

4) Find the line pass through the center of the circle along
the orthogonal direction of hand orientation θn = 90+
θ . The coordinates of the two points P1(X1,Y1) and
P2(X2,Y2) can be calculated as follows:

X1 = Xc + R cos(θn),

Y1 = Yc − R sin(θn)

X2 = Xc − R cos(θn),

Y2 = Yc + R sin(θn) (1)

5) The line pass through the palm center is shifted toward
the direction of the forearm to touch the enclosed palm
circle. The two shifted pointsP′1(X

′

1,Y
′

1) andP
′

2(X
′

2,Y
′

2)
are calculated as follows:

X ′1 = X1 + R| sin(θn)|,

Y ′1 = Y1 + R| cos(θn)|

X ′2 = X2 + R| sin(θn)|,

Y ′2 = Y2 + R| cos(θn)| (2)

Hand region is cropped by removing the lower part of
the hand forearm based on the above wrist line detection
algorithm. Finally, all cropped hands are centered and scaled
to a fixed size to exhibit shift and scale invariance.

B. SINGLE PCANET MODEL STRATEGY
In this strategy, a single PCANet model is trained using
all depth images of the available users to learn hand shape
features. Gesture recognition uses various types of geometric
features such as corners, edges, blobs, or ridges to represent
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FIGURE 2. (a) Single PCANet model strategy and (b) user-specific PCANet model strategy.

FIGURE 3. Steps of hand and wrist line localization using depth image.

the shape of gesture. The complexity of extracting good
geometric features makes appearance-based approaches pre-
dominant among other features. Appearance-based feature
extraction methods have been applied successfully for color
and gray images. However, there is no recommended feature
extraction method for depth images. Therefore, feature learn-
ing algorithms using convolutional neural networks can be
directly applied to learn features from depth images without
relying on the hand-crafted features.

The computational complexity of current convolutional
neural networks architectures makes them difficult to apply
in many real time applications. However, the recently devel-
oped architecture named PCANet [23] utilizes a simple
unsupervised learning algorithm compared to other methods
based on the expensive back-propagation algorithm. PCANet
model is trained to learn and represent both low and high-
level fingerspelling features using depth input images. The
feature extracted from PCANet is classified using linear
support vector machine classifier [24]. Fig. 4 shows the
structure of PCANet model containing two convolutional
layers used to learn different feature types from input depth
images.

1) PCANet MODEL
PCANet contains two stages of convolutional layers in which
all input patches are previously normalized using zero-mean
normalization method. The first stage of PCANet contains a
filter bank of L1 filters used to convolve the input depth image
and produce L1 feature map images. Each of the generated
L1 feature map image is then convolved with another high
level L2 filters which gives another L1 × L2 feature map
images. The first convolutional layer of PCANet learns low-
level features while second convolutional layer captures high
level features. The output layer of PCANet has L1 image
banks each containing L2 feature map images. Then, the out-
put feature map images from the second convolutional layer
are binarized using simple thresholding method to convert
them into binary images. The binary images in each bank
is combined into one integer image. Each of the L1 output
images is partitioned into B blocks. The histogram of the
values in each block is then calculated. All the histograms of
blocks are concatenated to generate the final feature vector of
the input image.

The convolution layers of PCANet utilizes Principal Com-
ponent Analysis (PCA) algorithm to learn a set of orthogonal
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FIGURE 4. The architecture of PCANet model.

filters. PCA is an orthogonal linear transformation method
used to reduce the dimensionality of the input data. The
covariance matrix of the original dataset is factorized to find
eigenvalues and eigenvectors. The most important informa-
tion can be retained by keeping the eigenvectors correspond-
ing to the largest eigenvalues. Eigenvectors correspond to
the smallest eigenvalues are always discarded. The selected
eigenvectors are used as the basis/filters in the convolutional
layers while all local patches are convolvedwith them to high-
light the most important features of the input depth image.

Let assume that we have N input training depth images of
sizem×n {Di}Ni=1, and a patch of size k1×k2 is extracted and
collected from each pixel of all input images. The collected
patches are represented by {di,1, di,2, di,mn} ∈ <k1k2 where
di,j denotes the j−th patch inDi. The patchmean is subtracted
from each patch, then the set of patches are vectorized and
arranged into a matrix D̂i = [d̂i,1, d̂i,2, ..., d̂i,Nmn]. For all
training depth images, the same matrix is constructed to give:

D̂ = [D̂1, D̂2, ..., D̂N ] ∈ <k1k2×Nmn (3)

PCA is utilized to remove the redundancy in D̂ and to
minimize the reconstruction error by finding an orthonormal
filters along the directions of maximum variance. Let the
number of selected filters in the first convolutional layer
equals L1. The problem can be solved using Singular Value
Decomposition (SVD) method to find the principal eigenvec-
tors of D̂D̂T using:

min
v∈<k1k2×L1

‖D̂− VV T D̂‖2, s.t. V TV = IL1 (4)

where IL1 represents the identity matrix with size L1×L1. The
selected L1 eigenvectors are rearranged to matrix to generate
the convolutional filter kernelW 1

l as:

W 1
l = matk1,k2 (ql(XX

T )) ∈ <k1×k2 , l = 1, 2, ...,L1, (5)

where matk1,k2 (v) is a function that rearrange the vector v ∈
<
k1k2 into a matrix W ∈ <k1×k2 and ql(XXT ) represents the

l − th principal eigenvectors. The l − th filter output of the
i− th input depth image at the first stage is:

Dli = D̂i ∗W 1
l , i = 1, 2, ...,N , (6)

where ∗ denotes two-dimensional convolution operator. The
input image D̂i is zero-padded before convolution to produce
an output image of the same size as the input image. Output of
the first convolutional layer will be used to learn PCA filters
in the consecutive second layer.

The procedure have been done in the first stage is repeated
to learn high-level features at the second stage. Similar to
the first stage, all image patches collected from the output
of L1 filters D̂li images are mean-removed, vectorized, and
concatenated to generate the matrix:

Ŷ = [Ŷ 1, Ŷ 2..., Ŷ L1 ] ∈ <k1k2×L1Nmn (7)

The eigenvectors of Ŷ Ŷ T are calculated and L2 second
stage PCA filters are selected and rearranged into convolu-
tional kernelW 2

l as:

W 2
l = matk1,k2 (ql(YY

T )) ∈ <k1×k2 , l = 1, 2, ...,L2, (8)

For every input image Dli in the second stage, it will be
convolved with L2 filters to produce L2 output images,

Oli = {Di ∗W
2
l }

L2
l=1. (9)

The number of output images in the second stage will be
L1L2 since each input image will be convolved with L1 and
L2 filters in the first and second stage respectively. This pro-
cess can be repeated to build deeper architecture of PCANet
and learn other high-level features.

The output stage in PCANet is a simple thresholding and
histogram calculation. The real-valued L1L2 output images
obtained from convolutions in the second stage are converted
into binary using a simple Heaviside step function as:

H (Dli ∗W
2
l )
L2
l=1. (10)

where H (.) denotes the Heaviside step function which pro-
duce zero for negative inputs and one for positives. The L1L2
output binary images are combined and converted into Oli
decimal image. Each pixel in the output image will take an
integer value in the range [0, 2L2 − 1].

T li =
L2∑
l=1

2l−1H (Dli ∗W
2
l ). (11)
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FIGURE 5. Example of color American sign language alphabet images performed by five different users.

Local histograms are calculated from the decimal images
to efficiently represent local information captured by fil-
ters in the second convolutional layer. Each L1 decimal
image T li , l = 1, ...,L1 is divided into B blocks. Local
histogram with 2L2 bins is calculated for each block and
all histograms are concatenated into one vector denoted
as Bhist(T li ). The final feature vector of the input depth
image Di can be defined by the set of block-wise histograms
as:

fi = [Bhist(T 1
i ), ...,Bhist(T

L1
i )]T ∈ <2

L2L1B. (12)

In case of fingerspelling application, the divided local
blocks can be either overlapped or non-overlapped. Using
local histogram and overlapped blocks helps to increase the
robustness of the features as it offers some degree of transla-
tion invariance.

C. USER-SPECIFIC PCANET MODEL STRATEGY
One drawback of the single PCANet model based learning
method is the requirement of re-training the PCANet model
when presenting new users. This problem can be handled
through training a single PCANet model for each user as
depicted in Fig. 2(b). In order to add new user to the system,
the images captured from the new user is used to train a new
PCANet and SVM models without any need to use dataset
from previous users. Therefore, the simplification of this
learning procedure helps to reduce the computational cost
of training the system. Compared with the single PCANet
model strategy, the user-specific PCANet model strategy
train multiple PCANet and SVM models. Formally, let the
new user depth images be presented to the system, hands
are segmented and preprocessed. Then, a separate PCANet
model will be trained to learn user-specific features using the
previously-described PCANet learning algorithm. After that,
linear SVM model is trained to classify signs of this user.
The trained SVM user models generate p scores denoted as:
s1, s2, ...., sp which are fused to find the final score of the
input depth image. In this work, maximum fusion operation

is employed to find the label of input unknown fingerspelling
sign.

IV. EXPERIMENTAL RESULTS
In this section, we examine the performance of the proposed
system for signer independent recognition scenario. All depth
images in the database are first segmented to extract the hand
region from all users. The segmented hand region is then
preprocessed and resized into 32 × 32 pixels. A prototype
has been built using hand segmentation, proposed features
extraction and linear SVM classifier to test the effective-
ness of the proposed method. In the following experiments,
the optimal parameters of PCANet model is obtained empir-
ically by changing filter sizes, number of filters, block sizes
and block overlap ratio. In all experiments, the performance
of the proposed method is evaluated using leave-one-subject-
out test strategy.

A. AMERICAN FINGERSPELLING DATABASE
In order to make a fair comparison with other related
works [8], [36], the publicly available ASL fingerspelling
dataset [29] was used in the evaluation. The dataset con-
tains both color and depth images of the ASL fingerspelling
alphabet recorded by five different users. The dataset contains
24 ASL fingerspelling signs excluding letters J and Z as
both of these contains motion. The dataset was generated
using Microsoft Kinect camera and contained more than
60,000 images. Also, there are more than 500 images for each
particular sign of each user. Moreover, the alphabetic signs
are captured at different viewpoint by slightly rotating hand
in front of the camera. Example of the 24 ASL fingerspelling
images in both color and depth are shown in Fig. 5 and Fig. 6.

B. EFFECT OF CHANGING PATCH SIZE
In this experiment, the effect of changing patch/filter size on
the recognition accuracy of the proposedmethod is examined.
The number of filters in the first and second stage is fixed to 8.
The size of block used for histogram computation is selected
to be 8×8 pixels without block overlap. The recognition accu-
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FIGURE 6. Example of depth American sign language alphabet images performed by five different users.

FIGURE 7. Cross-user recognition accuracy of the PCANet by varying
patch/filter size.

racy is calculated using testing depth images from the first
user while tacking the training samples from the remaining
users (2, 3, 4 and 5). We vary the size of filters in the first
and second stage from 3 × 3 to 13 × 13. The results shown
in Fig. 7 reveal that PCANet achieve best accuracy when the
filter size become 7× 7 pixels. These results show that using
moderate filter size is preferable than both small and large
sizes. Mostly, deep CNN models which have many convo-
lutional layers utilize small filter size. However, the shallow
structure of PCANet model (two convolutional layers only)
permits it to use a slightly larger filter size than other CNN
models. In the next experiments, the size of convolutional
layer filters is chosen to be 7× 7 pixels.

C. EFFECT OF CHANGING THE NUMBER OF FILTERS
The next experiment examines the impact of changing the
number of filters in the first stage of PCANet. The filter size
of the network is fixed into k1 = k2 = 7, and the non-
overlapping block size is set as same value of the previous
experiment. We vary the number of filters in the first stage L1
from 2 to 10 while the number of filters in the second stage
L2 is fixed into 8. It can be observed from the results shown
in Fig. 8 that the accuracy is improved when the number
of filters reach 7. However, increasing the number of filters
beyond 7 leads to significant increase in the computational

FIGURE 8. Cross-user recognition accuracy of the PCANet by varying the
number of filters in the 1st stage.

cost of the PCANet. Thus, choosing the appropriate number
of filters should compromise between computational com-
plexity and accuracy. One major drawback of PCANet model
is its exponential increase of the number of feature maps
when going more deeper. As a consequence, the computa-
tional complexity will increase exponentially for training and
testing. Therefore, the commonly used structure of PCANet
model consists of two convolutional layers with eight filters.

D. EFFECT OF CHANGING BLOCK SIZES AND BLOCK
OVERLAP RATIO
In this work, we show the changes of the recognition accuracy
of the PCANet by varying the block size used for histogram
computation. The parameters of the PCANet are set to k1 =
k2 = 7 and L1 = 7,L2 = 8. Various block sizes are
considered for evaluation which varies from 4×4 to 24×24.
The results shown in Fig. 9 explain the robustness of PCANet
features as the block size increases until it reaches half of the
image size. Since increasing the block size leads to increas-
ing the tolerance for image variations, block size of 8 × 8
provides more robustness against fingerspelling variations
across users. However, increasing the block size beyond half
of the image size decreases the accuracy as the local spatial
information of the hand shape will be lost.
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FIGURE 9. Cross-user recognition accuracy of the PCANet by varying the
block size used for histogram computation.

FIGURE 10. Cross-user recognition accuracy of the PCANet by varying the
block overlap ratio.

TABLE 1. Optimal PCANet parameter values for both single PCANet and
user-specific PCANet models employed in the experiments.

In addition, we study the impact of changing block overlap
ratio from 0.1 to 0.7. Fig. 10 reveals that increasing the
overlap ratio improves the accuracy but at the expense of
increasing the size of feature vector. The selected block over-
lap ratio for all subsequent experiments will be 0.4. Table 1
shows the optimum selected parameters of PCANet structure
for both single and user-specific feature models.

E. COMPARISON BETWEEN SINGLE AND
USER-SPECIFIC MODELS
This experiment compares the performance of single and
user-specific models using leave-one-subject-out evaluation
strategy. Table 2 shows the recognition accuracy for each
user individually. The accuracy for each user depends on
how much of the performed signs of this user are similar
to other remaining users. User 3 gives the highest accuracy
while user 4 gives the lowest one compared with others.
The superiority results of user 3 is achieved because most

TABLE 2. Performance of the proposed system using
leave-one-subject-out strategy.

FIGURE 11. Recognition accuracy for each user using color and depth
images.

of the signs are performed in similar way to other users. For
all test users, the performance of single PCANet is always
better than user-specific PCANet model. In addition, feature
representation using a single PCANet trained from all users
is more invariant than features extracted from user-specific
models. One important limitation of utilizing user-specific
model strategy is its extra computational cost (time and space
complexity) compared to that of single model as we need
to calculate features and scores from multiple PCANet and
SVM models, respectively.

F. COMPARISON BETWEEN COLOR AND DEPTH INPUT
IMAGES
The performance of using color instead of depth images
is measured in this experiment. The recognition accuracy
for each user is measured using either depth images (with
and without preprocessing) or color images without pre-
processing. The results shown in Fig. 11 reveal that depth
images performs better compared to color images. Moreover,
the proposed preprocessing algorithm significantly improves
the results. Since preprocessing helps to focus on the region
of interest while other non-relevant regions are discarded. The
proposed hand and wrist line detection algorithm works effi-
ciently for depth image as we can easily discard the forearm
and cluttered background. While the complex background
and the skin-like regions can not be easily removed from
color images. Thus, using depth image in sign language
and hand gesture recognition is more efficient than color
images.
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TABLE 3. Comparison of proposed method with other stat-of-the-art
using leave-one-out strategy.

FIGURE 12. Average recognition accuracies of all alphabets using
leave-one-out strategy on the ASL benchmark dataset.

FIGURE 13. Confusion matrix of all alphabets using leave-one-out
strategy for user #1.

G. COMPARISON WITH STATE-OF-THE-ART METHODS
In this experiment, the performance of the proposed method
is compared with other state-of-the-art methods. Leave-one-
out strategy is employed for testing. Training images from
four users are used to train the proposed PCANet model
while images of the remaining user are used for testing. The
model parameters of PCANet are set according to the best
parameters obtained from the previous experiments shown
in Table 1.

Table 3 shows a comparison with state-of-the-art hand-
crafted features and CNN architectures. Single PCANet
model outperforms all models with acceptable margin. It is
clear that using single PCANet model trained from depth
images successfully represents the shape of hand gesture
and improve the accuracy. Results reveal that splitting up

FIGURE 14. Confusion matrix of all alphabets using leave-one-out
strategy for user #2.

FIGURE 15. Confusion matrix of all alphabets using leave-one-out
strategy for user #3.

FIGURE 16. Confusion matrix of all alphabets using leave-one-out
strategy for user #4.

the training of the feature extraction stage from the clas-
sification is better than the results obtained from end-to-
end training of deep convolutional neural networks used
in [6], [36]. Although the computation of the hand-crafted
features like Gabor filters [29], LBP [42] and HOG [33]
is faster, its performance can not be further improved as
compared to the versatile CNN structures.

The average accuracies of all the 24 signs are computed
from all users and illustrated in Fig. 12. The model gives
good performance (> 90%) on 15 signs (a, b, c, d, f, g,
h, i, l, m, o, u, v, w and y). However, for the remaining
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FIGURE 17. Confusion matrix of all alphabets using leave-one-out
strategy for user #5.

FIGURE 18. Example of confused-pair samples from each user.

9 signs (e, k, n, p, q, r, s, t, and x), the average accura-
cies are lower than or equal 80%. The unsatisfactory perfor-
mance of these 9 signs is due to the large variations among
users in performing these signs and the large similarities
among sign themselves. The confusion matrices and the most
confused sign pairs for each of the five users are shown
in Figs. 13, 14, 15, 16, 17 and 18, respectively. For exam-
ple, as shown in Fig. 18, different subjects perform signs
in different ways than other users which make it difficult
to recognize signs for the unseen user in the leave-one-out
evaluation strategy. In addition, some sign pairs have very
similar shape which can not be easily discriminated.

Obviously, PCANet has similar structure with many CNN
architectures and can be considered as a special type of
auto-encoder with the goal of minimizing the reconstruc-
tion error. However, as contrary to the CNN architectures
used in fingerspelling recognition [6], [36], PCANet does
not contain non-linearity and pooling layers between stages

which highly reduce its computational cost. Thus, the time
and space complexity of PCANet can be approximated as a
linear order O(nmk1k2(L1 + L2)) [23] which depends on the
product of input image resolution n × m, patch size k1 × k2,
and number of filters in each stage(L1,L2). The linear SVM
classifier is also depends linearly on the length of final feature
vector calculated from PCANet. The complexity of training
the linear SVM classifier using LIBLINEAR library [43]
is approximately linear in the number of features [44].
In addition, the preprocessing stage is linearly depends on the
input image resolution.

There are many advantages of the proposed method such
as: 1) Extracting hand region and wrist line using depth
image is simple and efficient than using color images.
2) Using unsupervised PCANet model instead of the super-
vised CNN is computationally efficient in both training and
testing. 3) PCANet training does not require any labeled
data as it utilizes a simple unsupervised learning algorithm.
4) Training PCANet does not require extra GPU processing
power as contrary to the recent CNN deep learning algo-
rithms. 5) Separating the feature extraction stage from clas-
sification helps to reduce the computational cost of training
and allows the pretrained PCANet feature extractor to be
reused. However, one important limitation of this method is
that increasing the number of convolutional layers of PCANet
beyond two exponentially increases the number of features
and hence increases the time and space complexity.

V. CONCLUSION
This paper proposes a new efficient method for user inde-
pendent American fingerspelling recognition based on depth
images and PCANet features. Hand segmentation is per-
formed using thresholding operation on the depth image.
Depth values of the segmented hand region is normalized to
improve the performance. Hand shape features are learned
through the efficient PCANet deep learning architecture.
Features extracted from depth images can handle cross user
differences and image condition variations and thus give a
promising results compered to color images. Experimental
results show that using single PCANet model is better than
using multiple user-specific PCANet models. The proposed
system is tested using a public benchmark dataset collected
from five different users and give average accuracy of 88.7%
using leave-one-out evaluation strategy. The performance
of the proposed method outperforms other state-of-the-art
methods.
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