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ABSTRACT Mobile crowd sensing (MCS) is considered as a powerful paradigm which takes advantage of
the pervasive sensor-embedded smartphones to collect data. However, MCS assumes all workers always
are trusted, and thus offering opportunities for malicious workers to conduct the crowd sensing data
falsification (CSDF) attack. To suppress such threat, recent efforts have been made to trust mechanism.
Currently, some malicious workers can collude with each other to form a collusive clique, and thus not
only increasing the power of CSDF attack but also avoiding the detection of trust mechanism. To ensure
honest data collection in MCS, we must fight against such collusive CSDF attack. Noting that the duality of
sensing data, we propose a defense scheme called BMCA from the design idea of binary-minmaxs clustering
analysis to suppress collusive CSDF attack. In the BMCA scheme, the logic AND operation corresponding to
the type of ‘‘1’’ and ‘‘0’’ historical sensing data is used to measure the similarity between any two workers.
Based on this, we find the feature that collusive CSDF attackers usually hold high trust value and a low
variance in their similarity vector. To detect collusive CSDF attackers, the min and max variance analysis is
introduced to design a new binary-minmaxs clustering algorithm. Moreover, the BMCA scheme can perfect
trust evaluation to prevent the trust value growth of collusive CSDF attackers. Simulation results show that
the BMCA scheme can enhance the accuracy of trust evaluation, and thus successfully reducing the power
of collusive CSDF attack against data collection in MCS.

INDEX TERMS Mobile crowd sensing, trust mechanism, clustering analysis, collusive attack.

I. INTRODUCTION
With the rapid development of mobile communication and
wireless sensing, a large number of sensors are integrated into
smart mobile terminals, which motivates mobile crowd sens-
ing (MCS) as an emerging paradigm to collaboratively collect
sensing data and extract knowledge in smart cities [1], [2].
MCS leverages the inherent mobility of mobile users (called
workers), the sensors embedded in mobile phones and the
existing communication infrastructures (Wi-Fi, 4G/5G net-
works) to collect and transfer urban sensing data [3]. Nowa-
days, MCS has been widely used in the intelligent traffic
detection [4], environment detection [5], smart healthcare [6],
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social network [7], etc. These applications open the door for
new innovative research and will significantly revolutionize
our daily lives [8].

Although with the various MCS-enabled innovative appli-
cations, the new sensing paradigm also encounters new chal-
lenges as ‘‘humans’’ act as sensors [9]. Actually, the success
of MCS requires the participation from a large number of
workers [10]. Due to the nature of openness and mobility,
MCS gives almost all mobile users the chance to partici-
pate in MCS activities as workers. However, the workers in
MCS maybe unreliable and vary in terms of ability, honesty,
depend-ability, loyalty and so on [11]. It may offer oppor-
tunities for malicious workers to corrupt the data collection
by launching CSDF attack. Such CSDF attack pattern can
be launched by two ways: individual or collusive. Compared
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with collusive attack, individual attack is less harmful and can
be suppressed. In the collusive pattern, the malicious workers
who collude with each other to form a collusive clique can
increase the power of CSDF attack and fake the sensing data
intentionally. If there are the adequate malicious workers,
a collusive clique can lead to a wrong decision in the data
aggregation.

Accordingly, trust mechanism is recognized as an impor-
tant part of the MCS platform in which the trust value of
mobile workers is evaluated and used to suppress CSDF
attack. With trust mechanism, trusted workers can not only
perform honest behaviors in MCS, but also fulfill the require-
ments of a certain task with high quality. The malicious
workers with low trust value will be rejected to in the MCS
task assignment. Currently, various trust mechanism stud-
ies have been presented [12]–[15]. They evaluate whether a
worker is trusted or not by his historical sensing behaviors
and give the low weights to less trusted workers or even
delete their sensing data when making a final decision in the
data aggregation. Nevertheless, collusive CSDF attackers can
improve their trust value with the help of each other, except
for increasing the attack power. Therefore, they may avoid
the detection of trust mechanism to corrupt the data collection
in MCS.

In this paper, we analyze the characteristics of collusive
CSDF attack and propose a defense scheme called BMCA
from the design idea of binary-minmaxs clustering analysis
to suppress such attack. The main contributions of this paper
are as following:
• Abstract the MCS behaviors of each worker as a binary
variable ‘‘1’’ or ‘‘0’’, in which ‘‘1’’ denotes the false
behavior of a worker in a task by comparing their sens-
ing data with the final result of the data aggregation.
Noting that collusive CSDF attackers often launch ‘‘1’’
behaviors together in a certain task time and behave high
similarity among themselves, the logic AND operation
is introduced to measure the similarity, which can result
in less complex and lightweight in mathematical com-
putation.

• Introduce the min and max variance analysis to design
a new binary-minmaxs clustering algorithm. Noting that
collusive attackers often launch ‘‘1’’ behaviors together
again, each of them may get a low variance in their
similarity vector. While trusted workers often report
honest sensing data individually, each of them may get
a high variance in their similarity vector. Even though
both collusive CSDF attackers and trusted workers have
high trust value, this new clustering algorithm can dif-
ferentiate collusive CSDF attackers and trusted workers
effectively.

• Enhance the accuracy of trust evaluation. The special
punishment factor to sudden false MCS behaviors is
introduced to dynamically updating the trust value of
workers at each MCS action. By sharply reducing the
trust value of collusive CSDF attackers, the special
punishment factor can prevent the trust value growth

of collusive CSDF attackers. As a result, they can be
detected by trust mechanism.

The organization of this paper is as follows: In section II,
preliminaries related on MCS and trust mechanism are
described. We analyze collusive CSDF attack and construct
the BMCA scheme to suppress it in section III. Simulation
analysis of the BMCA scheme is performed in section IV.
Finally, we conclude this paper in section V.

II. PRELIMINARIES
A. MOBILE CROWD SENSING
Mobile crowd sensing (also called participatory sensing) is
an emerging paradigm of IoT [16] in which citizens every-
where voluntarily use their computational devices to capture
and share sensing data from their surrounding environments
in order to monitor and analyze some phenomenon (e.g.,
weather, road traffic, pollution, etc.) [17]. As shown in Fig.1,
there are threemain parties in anMCS platform, namelyMCS
service provider (SP), end user (EU), and MCS worker [11].

FIGURE 1. System architecture of MCS.

In the MCS platform, the SP could be an organizer that
assigns a task for crowd sensing. An EU could be an indi-
vidual or organization that lacks an ability to perform a
certain data collection task.Workers are the mobile users who
participate in MCS and perform the assigned tasks.

The life-cycle of MCS can be divided into four stages [3]:
task creation, task assignment, data collection and data aggre-
gation, which are briefly described as follows:

• Task creation: When EUs request services, the SP cre-
ates a sensing task to be given to workers with the
corresponding mobile applications.

• Task assignment: The SP selects workers and assigns
them with the specific sensing task.
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• Data collection: Once the workers have received the
assigned task, they can complete it and send their sens-
ing data to the SP.

• Data aggregation: The SP aggregates the received sens-
ing data to determine the final decision about the current
task, and sends it to EUs.

B. TRUST MECHANISM
Trust mechanism is increasing influence on many application
scenarios, including e-commerce [18], P2P file-sharing [19],
cooperative spectrum sensing [20], online social communi-
ties [21], etc.

Trust mechanism also plays significant roles in MCS, such
as 1) select trusted workers in the task assignment, 2) filter out
false sensing data reported by attackers in the data collection,
3) prevent malicious workers from participating into MCS,
and 4) assist the SP’s rapid decision-making reliably in the
data aggregation.

Representative trust mechanism schemes in MCS are as
follows. To evaluate the trust value of workers, the refer-
ence [12] comprehensively considered a number of properties
that affect the honest sensing data, such as link reliability,
service quality, and region heat. In [13], a ranking-based is
proposed scheme that introduces trust and worker ability into
the evaluation of worker trust value. In [14], a dynamic-
trust-based recruitment framework (DTRF) is proposed for
MCS, inwhich real-time direct trust and lightweight feedback
aggregation trust are combined to select the well-suited work-
ers. In [15], a dynamical credibility assessment of privacy-
preserving [22] strategy is designed, in which the sensing data
are dynamically split into slices and the number of slices is
based on the trust of encountered workers. Specially, worker
trust is assessed in two dimensions including the quality of
contribution trust and social trust, which indicates how likely
a worker can fulfill its functionality and how trustworthy the
relationship between a worker and other workers will be,
respectively.

In trust mechanism, one of themost popular design is based
on beta function. It counts the number of false and honest
behaviors a worker has conducted in the data collection, and
then evaluates the trust value with beta probability density
function denoted by Beta(α, β) [23].

Beta(α, β) =
0(α + β)
0(α)0(β)

θα−1(1− θ )β−1 (1)

where θ is the probability of MCS behaviors, 0 ≤ θ≤1, α >
0, β > 0.
Noting that the sensing data fromworkers can be abstracted

as a binary variable (‘‘1’’ or ‘‘0’’), it is easy for workers to
behave two types of sensing behaviors: false or honest. Based
on the binary variable, a basic trust mechanism scheme called
Baseline can be described, in which the trust value of each
worker can be evaluated by two indexes: the number of false
sensing (fal) and the number of honest sensing (hon).

Take the i-th worker (Wi) as an example, fali and honi
denote the number of false sensing data and honest sensing

data reported byWi. In the Baseline, the trust value ofWi can
be evaluated as

Ti = Beta(fali + 1, honi + 1) (2)

Consider the condition 0(x) = (x − 1)! when x is an
integer [24]. Thus, the expectation value of the beta function
is E[Beta(α, β)] = α/(α + β). In this case, Ti can be further
evaluated as

Ti =
1+ honi

2+ fali + honi
(3)

Let δ denotes the threshold of trust value. For Ti≥δ, Wi
will be identified as an attacker, and vice verse. In order
to guarantee the performance of MCS, δ should satisfy two
requirements: 1) δ should be a rational value between 0 and
1 as Ti∈[0, 1], 2) the value of δ can be adjusted to suppress
malicious responses generated by malicious workers who
report false sensing data.

However, how to suppress collusive CSDF attack has not
been considered in current trust mechanism for MCS. In this
paper, we argue that securingMCSwith only trust mechanism
is not enough. Malicious workers can attain high trust value
with the help of each other. Specially, the malicious workers
with high trust value can launch CSDF attack together in a
collusive manner to corrupt the data collection.

III. COLLUSIVE CSDF ATTACK OVERVIEW
Due to the nature of openness and mobility, it is very easy for
malicious workers to launch CSDF attack by reporting false
sensing data, resulting in a wrong final decision of in the SP.

At first, malicious workers launch CSDF attack indi-
vidually and respectively. The individual CSDF attack and
defense have appeared in some existing works. In [25],
the authors analyze the problem of aggregating noisy labels
from crowd workers to infer the underlying true labels of
binary tasks. To address this problem, they also design
a reputation-based worker filtering algorithm that uses a
combination of disagreement-based penalties and optimal
semi-matchings to identify adversarial workers. In [26],
the authors develop an optimal attack framework in which the
attacker can not only maximize his attack utility but also dis-
guise the introduced malicious workers as normal ones such
that they cannot be detected easily. The strategy derived from
the proposed optimal attack framework makes the malicious
workers behave ‘‘smarter’’. If there is little hope to achieve
the attack goal on some objects, they will tend to agree with
the normal workers on those objects to gain higher weights,
and in turn, can exert stronger impact on other objects [26].
However, it is difficult for a malicious worker to improve his
trust value fast all by himself through this occasional reliable
behavior. Overall, the power of individual CSDF attack is
finite and can be suppressed by trust mechanism easily.

To avoid the detection of trust mechanism, some malicious
workers attempt to collude with each other and submit false
sensing data together at the same time. This attack pattern
can be called collusive CSDF attack. Generally, the collusive
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attack pattern can increase the power of malicious workers,
which can be launched through three methods.

In the first method, a malicious worker can acquire mul-
tiple IDs to fake sensing data through the sybil attack [27].
There are many schemes to defense against the Sybil
attack [28], [29]. Specially, if each IP is restricted to acquire
an ID, this attack pattern can be addressed easily. In the sec-
ond method, a malicious worker can control multiple com-
puters by embedding trojan viruses. This attack pattern can
suppressed by using a good antivirus software. In the third
method, multiple malicious workers collaborate together to
fake sensing data. In this attack pattern, each malicious
worker only has an ID. Currently, this attack pattern is used as
a popular collusive attack, especially in MCS to fake sensing
data. Although this collusive attack pattern is considered
in [30], how to improve the trust value of malicious workers
is not discussed. Except for increasing the attack power,
collusive CSDF attack can also be launched to avoid the
detection of trust mechanism.

In this paper, we further analyze the characteristics ofMCS
and the collusive CSDF attack demand, and thus finding
three types of threats that can be achieved by collusive CSDF
attackers, including increase the attack power, improve trust
value and disturb the data aggregation.
• Increase the attack power: As we know, ‘‘more hands
make light work’’ and ‘‘more people, more powerful’’.
Inspired by this, malicious workers can conspire with
each other to form a collusive clique to increase the
attack power, and thus faking sensing data intentionally
to corrupt the data collection.

• Improve trust value: By collusion, collusive CSDF
attackers can improve their trust value quickly. For
instance, one of collusive CSDF attackers can disguise
as an EU and preselect a data aggregation decision.
Then, this attacker would tell it to his conspirers in
advance as well as send a Query message to the SP.
Their trust value can be improved quickly if their sens-
ing data are consistent as the SP’s decision in the data
aggregation.

• Manipulate the data aggregation: With high trust
value, collusive CSDF attackers can avoid the detection
of trust mechanism, and thus reporting their false sens-
ing data to manipulate the data aggregation successfully
and mislead the SP to make a wrong decision.

To maintain the opportunity to manipulate the data aggre-
gation, collusive CSDF attackers are extremely sensitive to
their trust value. As shown in Fig.2, they begin collusive
CSDF attack procedure under the constraint

‖Ti≤δ + λ‖≤
Nc
2

where Nc is the number of collusive CSDF attackers and
Wi is one of them, ‖Ti≤δ + λ‖ denotes the number of
collusive CSDF attackers under the case Ti≤δ + λ. Here,
λ(0≤λ < 1− δ) is the initial trust warning line for collusive

FIGURE 2. Collusive CSDF attack procedure.

CSDF attackers. It is too late to improve trust value when
‖Ti≤δ‖≤

Nc
2 . In this situation, the majority of collusive CSDF

attackers may be marked as malicious. This attack pattern
continues until ‖Ti > δ‖ = Nc. Then, collusive CSDF
attackers can increase their attack power to corrupt the data
collection and manipulate the data aggregation successfully.

IV. PROPOSED DEFENSE SCHEME
In this section, we propose a defense scheme called BMCA
from the design idea of binary-minmaxs clustering analy-
sis to suppress collusive CSDF attack in MCS. Moreover,
the BMCA scheme can be used to perfect trust evaluation.

A. DESIGN IDEA
To design the defense scheme of collusive CSDF attack,
we analyze its attack threats, and thus finding three kinds of
general features as follows.
• Binary data: Workers generally report honest or false
sensing data in the data collection. Thus, the sensing
behaviors of workers in the MCS environment can be
abstracted as the binary data with the type of ‘‘1’’ or ‘‘0’’
sensing data.

• Action together: Collusive CSDF attackers always
report false sensing data together nomatter which threats
they would launch.

• High trust value: Collusive CSDF attackers often have
high trust value. With the help of each other, they can
improve their trust value to avoid the detection trust
mechanism.

Considering the ‘‘Binary data’’ and ‘‘Action together’’
of general features, we introduce the design idea of
binary-minmaxs clustering analysis based on the logic AND
operation to construct the defense scheme called BMCA to
suppress collusive CSDF attack. In addition, the ‘‘Action
together’’ of general feature canmake collusive CSDF attack-
ers behave a low variance in their similarity vector. In this
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basis, we analyze the ‘‘High trust value’’ of general feature to
design the algorithm of detecting collusive CSDF attackers.

FIGURE 3. Architectural view of the BMCA scheme.

As shown in Fig.3, the BMCA scheme is conducted in
two successive stages: binary behaviors analysis and collu-
sive CSDF attackers detection. In the first stage, we design
the logic AND distance calculation between any two work-
ers in line with the type of ‘‘1’’ or ‘‘0’’ sensing data and
measure their similarity. In the second stage, an algorithm
with binary-minmaxs clustering analysis is designed to detect
collusive CSDF attackers.

B. BINARY BEHAVIORS ANALYSIS
It is worth noting that the sensing data from each worker can
be abstracted as a binary variable: false or honest. Based on
this, the SP can abstract the MCS behaviors of workers as:
‘‘1’’ or ‘‘0’’. Specifically, the false behavior of a worker in a
task by comparing their sensing data with the final decision of
the SP can be abstracted as ‘‘1’’, whereas the honest behavior
of a worker can be abstracted as ‘‘0’’.

The ‘‘1-0’’ database is designed as an extensible database,
whose size corresponds to the task times of MCS actions.
After each MCS action, the SP should add a row in the ‘‘1-
0’’ database to record the abstracted binary behaviors related
on the sensing data from workers. When the current MCS
action is numbered as the k-th task time, the size of the ‘‘1-
0’’ database is k. In the ‘‘1-0’’ database, n is the total number
of workers in the MCS platform.

Take the i-th worker (Wi) as an example, Wi(bi)k is
recorded as Wi(1)k when Wi reported false sensing data,
Wi(bi)k→Wi(0)k when reported honest sensing data and
Wi(bi)k→Wi(−)k when reported nothing at the k-th task time.

In the collusive CSDF attack, we have known that mali-
cious workers report false sensing data together to corrupt
data collection. That is, they often launch ‘‘1’’ behaviors
together in a certain task time and behave high similarity
among themselves. Therefore, the logic AND operation (&)
can be introduced to measure the similarity. Take Wi and
Wj as an example of any two workers, if Wi(bi)k→Wi(1)k ,

Wj(bj)k→Wi(1)k , 1&1 = 1 under the logic AND operation.
Otherwise, 1&0=0 or 0&1=0.
For the convenience of measuring the similarity between

any two workers, the history binary behaviors of each worker
should be extracted from the ‘‘1-0’’ database as a vector
in the current MCS action. For Wi, his behaviors vector
can be represented as Bi = [Wi(bi)1,Wi(bi)2, · · · ,Wi(bi)k ].
If Wi(bi)1→Wi(0)1, Wi(bi)2→Wi(−)2, Wi(bi)k→Wi(1)k , Bi
can be definitely described as [0, −, · · · , 1].

Obviously, the redundant data such as Wi(−)2 or Wj(−)6
are useless to measure the similarity between Wi and Wj.
Since ‘‘1’’ is useful to analyze the collusive features of mali-
cious workers, it can be set Wi(−)2 = Wi(0)2 and Wj(−)6 =
Wj(0)6. As a consequence, both the honest behavior and
nothing reported by a worker can be abstracted as ‘‘0’’.

For Wi and Wj, the logic AND operation between Bi and
Bj can be described as

Bij = Bi&Bj (4)

Then, the similarity between Wi and Wj can be measured
as

simij =
|`ij| + cij
|Bij| + cij

, |1ij|≤|Bij| (5)

where |`ij| denotes the amount of ‘‘1’’ in Bij and |Bij| = k−1
is corresponding to the amount of elements in Bij.

Specially, cij is used to record the continuous false behav-
iors of malicious workers. For instance, ifWi andWj suddenly
report false sensing data simultaneously at the q-th task time,
they may continues to report false sensing data at the (q+1)-
th, · · · , (q+cij)-th task time. Such continuous false behaviors
can increase the similarity between Wi and Wj. The continu-
ous parameter cij can be recorded by Algorithm 1.

Algorithm 1 Record cij Value
Input: Bij
Output: cij
1: Initialize cij = 0, q = 1
2: for each bqij∈Bij(1≤q < |Bij|) do

3: if (bqij == 1&&bq+1ij == 1) then
4: cij ++
5: q++
6: end if
7: end for

The continuous parameter cij can make Wi and Wj behave
a higher similarity due to their continuous false behaviors.
It can be proofed that

|`ij| + cij
|Bij| + cij

≥
|`ij|

|Bij|
(6)

Proof:

|`ij| + cij
|Bij| + cij

−
|`ij|

|Bij|
=

cij ∗ (|Bij| − |`ij|)
|Bij| ∗ (|Bij| + cij)

≥0
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TABLE 1. Description of the ‘‘1-0’’ database style.

Likewise, we can measure the similarity between Wi and
other workers, and thus generating a similarity vector forWi,
which is expressed as

SIMi = [simi1, · · · , simij, · · · , simin] (7)

For all workers, their similarity vectors of can compose a
matrix SIMn×n.

SIMn×n =

 sim11 · · · sim1n
...

. . .
...

simn1 · · · simnn

 (8)

With the similarity measure, the distance between Wi and
Wj can be calculated as

dij =
1
n

n∑
p=1

(simip − simjp) (9)

It can be found that collusive CSDF attack can make Wi
and Wj behave high similarity but short distance between
themselves.

C. COLLUSIVE CSDF ATTACKERS DETECTION
In the BMCA scheme, we design a binary-minmaxs cluster-
ing algorithm to differentiate collusive CSDF attackers and
trusted workers. First of all, we need to select two samples as
the initial minmax vectors of this algorithm by analyzing the
variance of each similarity vector from workers.

Considering that both collusive CSDF attackers and trusted
workers have high trust value, the variance analysis should be
performed in SIMh×h from the workers with high trust value
(�) at the current MCS action, in which h is the number of the
workers with high trust value. Obiviously, h≤n. Compared
with SIMn×n, it can prompt the detection efficiency to per-
form binary-minmaxs clustering algorithm in SIMh×h, since
our main purpose is to detect collusive CSDF attackers who
hold the characteristics of high trust value.

Since collusive attackers often launch ‘‘1’’ behaviors
together, each of them may get a low variance in SIMi. Let
var(·) denote the variance function, the initial min vector (µ1)
is corresponding to collusive attackers, which can be derived
from the SIMi with the lowest variance.

µ1 = min
Wi∈�

(var(SIMi)) (10)

Since trusted workers often report honest sensing data indi-
vidually, each of them may get a high variance in SIMi. The

initial max vector (µ2) is corresponding to trusted workers,
which can be derived from the SIMi with the highest variance.

µ2 = max
Wi∈�

(var(SIMi)) (11)

With the initial minmax vectors {µ1, µ2}, the binary-
minmaxs clustering analysis can be designed by Algorithm 2
to detect collusive CSDF attackers.

Algorithm 2 Binary-Minmaxs Clustering Analysis
Input: �, SIMh×h, {µ1, µ2},

Output: the set of collusive CSDF attackers (91) and trusted

workers (92)

1: repeat

2: Initialize 91 = 92 = ∅

3: for i = 1, i≤h, i++ do

4: Calculate the distance dis between SIMi and µs

(1≤s≤2) with with equation (9)

5: if di1 > di2 then

6: 91 = {Wi}∪91

7: else

8: 92 = {Wi}∪92

9: end if

10: end for

11: Update the new min vector µ′1 = min
Wi∈91

(var(SIMi))

12: Update the new min vector µ′2 = max
Wi∈92

(var(SIMi))

13: for s = 1, s≤2, s++ do

14: if µ′s 6=µs then

15: Update µ′s = µs

16: else

17: Keep the current minmax vectors unchanged

18: end if

19: end for

20: until the current minmax vectors are not updated again
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D. PERFECT TRUST EVALUATION
To suppress such threat, the special punishment to sudden
false MCS behaviors is introduced to prevent the trust value
growth of collusive CSDF attackers at each MCS action.

For instance, ifWi suddenly report false sensing data at his
k-thMCS action, his trust value will be reduced by the special
punishment factor, which can be evaluated as:

ϕi = (1− θ ) ∗ log|honi−fali|(k + ci) (12)

OnceWi continues to report false sensing data at the (k+1)-
th, · · · , (k + ci)-th MCS action, his trust value will be contin-
uously reduced by ϕi.
Therefore, the trust value ofWi at the k-th MCS action can

be dynamically updated as:

DTi =

{
Ti −1i ∗ ϕi, Ti > ϕi

0, Ti≤ϕi
(13)

where 1i = 1 means that the special punishment factor will
militate when Wi suddenly reports false sensing data at his
k-th MCS action. Or else, 1i = 0.
Let 8 is the set of workers in the current MCS action and

is 0 is the set of these workers’ trust value. Algorithm 3 can
be performed to perfect trust evaluation.

Algorithm 3 Perfect Trust Evaluation
Input: 8, 0, 91 and 92

Output: the updated 0

1: for each Wi∈8 do

2: if Wi∈91 then

3: fali = fali + 1 and his sensing data are deleted

4: ci ++

5: if ci > 1 then

6: Calculate ϕi with equation (12)

7: Dynamically update the trust value of Wi with

equation (13)

8: end if

9: else

10: honi = honi + 1

11: end if

12: end for

V. SIMULATION ANALYSIS
A. SIMULATION SETUP
We perform simulations to validate the performance of the
BMCA scheme and discuss the simulation results. The simu-
lation elements are shown in table II.

TABLE 2. Description of simulation elements.

FIGURE 4. Collusive CSDF attack vs. occasional CSDF attack under
forming high-trust attackers.

FIGURE 5. Suppressing malicious responses.

The simulations are performed by cycle-based fashion.
At each cycle, workers are selected randomly to execute
MCS actions with each other. After several cycles, a trusted
network topology is gradually generated by trust mechanism.
The SP then utilizes it to execute the following MCS actions,
and update the trust value on the corresponding workers.
In our simulations, the behavior pattern for trusted workers
is modeled to always report honest sensing data, while the
behavior pattern for collusive CSDF attackers is to alterna-
tively report false or honest sensing data together depending
on whether their trust value is greater than the threshold δ.
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FIGURE 6. Variation of collusive CSDF attackers’ trust value.
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B. SIMULATION RESULTS
One of main goals of collusive CSDF attackers is to improve
their trust value. As we know, an attacker such as Wi can
be detected by Ti < δ in trust mechanism. To get more
attack opportunities, Wi need to be disguised as a high-trust
attacker, i.e. Ti≥δ. As shown in Fig.4, collusive CSDF attack-
ers can form high-trust attackers with less rounds of attack.
Generally speaking, occasional CSDF attackers improve their
trust value by reporting honest sensing data when there is
little hope to achieve the attack goal [26], whereas collusive
CSDF attackers can help with each other. So, collusive CSDF
attackers can become high-trust faster than occasional CSDF
attackers.

To suppress collusive CSDF attack better under the defense
of the BMCA scheme, it is necessary to select a rational
value of δ. As Ti∈[0, 1], δ can be considered from the three
types of optional states [low, medium, high]. Then, we can
perform the simulation of suppressing malicious responses
to validate the effectiveness of the BMCA scheme under
the three types of optional states of δ. In this simulation,
0.3, 0.5 and 0.8 denotes the low, medium and high state of
δ respectively. As shown in Fig.5, the performance of the
BMCA scheme at δ = 0.8 is the best. Therefore, the rational
value of δ should be selected as 0.8 in the simulations. We can
also find that the BMCA scheme is better than Baseline in
suppressing malicious responses, even though δ is selected
as 0.8 for Baseline.

To analyze how collusive CSDF attack can affect the per-
formance of trust mechanism, we firstly choose six collusive
CSDF attackers randomly to observe the variation of their
trust value in the Baseline and BMCA scheme. Fig.6 shows
that collusive CSDF strategies make the attacker’s trust value
fluctuates along with cycles. The trust value usually out-
weighs δ in Baseline. Fortunately, the trust value of collusive
CSDF attackers can be reduced by the BMCA scheme. This is
because the special punishment to sudden false MCS behav-
iors is introduced to dynamically updating the trust value of
collusive CSDF attackers at each MCS action.

We note that collusive CSDF attackers will deviate the real
trust value by forming high-trust workers, and thus causing
some network trust errors (nte). A higher errors indicate lower
accuracy in the evaluation of trust value. With nte, we can
analyze how collusive CSDF attack affects the performance
of trust mechanism from the entire network. nte can be spec-
ified by:

nte =
1
Nw

Nw∑
i=1

√
1
T ′i

(T ′i − Ti)
2 (14)

where T ′i and Ti are the actual and measured trust value of Ti,
respectively.

In the simulation of nte, the actual trust value of a mali-
cious worker is randomly assigned in the interval (0, 0.5].
Without loss of generality, we employ the averaged nte data
of 100 cycles as the simulation results. As shown in Fig.7,
the BMCA scheme can reduce nte better than Baseline. Even

FIGURE 7. nte with the guard of BMCA.

though the percentage of collusive CSDF attackers is 50%,
the nte of the TFAA scheme merely achieves 0.28.

Finally, we validate the performance of BMCA in terms
of attack success ratio when collusive CSDF attackers fake
sensing data with high trust value. Without loss of generality,
we employ the averaged attack success ratio data of 50 rounds
of attack as the simulation results. At each round of attack,
several workers are selected randomly to perform an MCS
action from trusted workers and collusive CSDF attackers.
In an MCS action, if the collusive CSDF attackers with high
trust value are more than the majority of workers, they would
attack successfully.

FIGURE 8. Suppressing attack success ratio.

As shown in Fig.8, the attack success ratio against the
Baseline scheme amplifies with the percentage of collusive
CSDF attackers. This is because collusive CSDF attackers’
trust value usually outweigh δ in the Baseline scheme, so they
canmanipulate the decision result of the SPwith false sensing
data easily. Fortunately, collusive CSDF attackers are difficult
to improve their trust value to outweigh δ in the BMCA
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scheme. Consequently, collusive CSDF attackers are impos-
sible to manipulate the decision result of the SP, since the
collusive CSDF attackers with high trust value cannot become
the majority of workers.

VI. CONCLUSION
In this paper, we analyze the threats of collusive CSDF attack
and propose the BMCA scheme to suppress such attack. The
BMCA scheme is conducted in two successive stages: binary
behaviors analysis and collusive CSDF attackers detection,
in which binary-minmaxs clustering analysis based on the
logic AND operation is introduced to design the BMCA
scheme due to the type of ‘‘1’’ or ‘‘0’’ historical sensing data.
With the special punishment to sudden false MCS behaviors,
the BMCA scheme can be used to prevent collusive CSDF
attackers’ trust value from growing in the trust evaluation.
Simulation results show that our BMCA scheme can enhance
the accuracy of trust evaluation and suppress collusive CSDF
attack success ratio effectively. In addition, we must continue
to fight against the potential threats against MCS. Except
for collusive CSDF attack, malicious workers may launch
their attack strategies in different tasks. For instance, they
behave harmless in some uninterested tasks in order to attain
high trust value and always behave harmful in their interested
tasks. In the future work, we need to further study a defense
scheme from the design idea of distinctive trust evaluation for
different tasks to suppress such threat.
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