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ABSTRACT Smart grid has evolved into a viable platform for participants of electricity market to
effectively regulate their bidding strategies based on demand-side management (DSM) models ascribed to its
immense technological advancements in recent years. Reliability of system operation as well as capital cost
investments can improve greatly with responsiveness of market participants. In this regard, efficient design,
implementation, evaluation of numerous demand response measures and development of robust short-term
price forecasting in the day-ahead transactions are of the utmost importance. Accuracy and efficiency of the
day-ahead price forecasting process are complex challenges in deregulated electricity market. The unstable
nature of electricity price compared to load series causes lower accuracy. Therefore, this research proposes a
hybrid method for electricity price forecasting via artificial neural network (ANN) and artificial cooperative
search algorithm (ACS). In parallel, a feature selection technique based on the combination of mutual
information (MI) and neural network (NN) is developed in this study to select the input variables subsets,
which have substantial impact on forecasting of electricity price. Actual data sets are collected from Ontario
electricity market of the year 2017 for the verification of simulation results. Finally, the simulation results
validated the premise of the proposed hybrid method through enhanced accuracy compared to the results
acquired by implementing hybrid support vector machine (SVM) and hybrid ANN optimization methods.

INDEX TERMS Artificial neural network, artificial cooperative search, deregulated electricity market,
electricity price forecasting.
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Number of features are selected in first
stage of feature selection

actual electricity price at time t

Predicted electricity price at time t
Activation function

Control parameter of ACS

Thiel’s inequality coefficient

Regression lines

Actual output

Next generation

Predicted output

Hourly interval

Weight assigned to the bias unit of j neu-
ron in output layer

Connection strength between it neuron in
last hidden layer and j neuron in output
layer

Hidden layer

Lower search space limits of j variable
Binary integer-valued matrix

Confirmed indicator

The squared correlation coefficient

h

The squared correlation coefficient
between experimental and predicted
values

Cuckoo search algorithm

Artificial cooperative search

fish swarm algorithm

Artificial intelligence

Multi-layer perceptron

Adaptive neuro-fuzzy inference system
Adaptive wavelet neural network

Back propagation

Differential evolution

Electricity demand at time t

Electricity price at time t

Particle swarm optimization

Residuals autocorrelation function

Root mean square error

Conditional entropy

Mutual Information

Number of lag order for electricity price
Auto regressive integrated moving average
Random shuffling function

Randomly generated number

Random selection function

Random permutation function

Uniform distribution function

Upper limits of j variable in search space
Activation threshold

Initial weight

Connection strength between neurons

i sub-superorganism productivity related
to o superorganism

i sub-superorganism productivity related
to B superorganism

Ve Global minimum
$/MW.h  Dollar per Megawatts hour
wy' The weight connecting from I-th features

to m-th hidden unit

wo, The weight connecting from m-th hiden
unit to network output

o Learning rate

B Distribution factor

ISO Independent System Operator

BP back propagation

PrNN probability neural network

OED orthogonal experimental design

PASA Projected assessment of system adequacy

ANN Artificial neural network

LSSVM  Least square support vector machine

WPT wavelet packet transform

RBFNN  radial basis function neural network

VB Virtual Budget

GA Genetic algorithm

MAPE Mean absolute percentage error

e (t) he whiteness of estimated residuals

MW Megawatts

NN Neural network

EPF Electricity Price Forecasting

SVM Support vector machine

T&D Transmission and distribution

DGs Distributed generations

NLEgp Number of lag order for electricity demand

HOED  Hourly Ontario electricity demand

HOEP Hourly Ontario electricity price

I. INTRODUCTION

The recent electricity grids are expected to maintain high
standards of quality to meet the growing diversity in demand
whilst providing a constant and reliable supply. These intri-
cate challenges are the driving force behind smart grid tech-
nologies to be constantly evolved and developed. Realization
of the smart grid technologies faces complex challenges such
as optimization of distributed generations (DGs) capacity,
transmission and distribution (T&D) systems and efficient
energy storage technologies. These challenges require exten-
sive research and substantial investment. Therefore, elec-
tricity price forecast plays an instrumental role in today’s
advanced electricity market as well as smart grid operation.
This forecasting helps every individual generator to deter-
mine the optimal bidding layout. Furthermore, decision of
joint agreement and investment in a new generation facility in
the long run are highly influenced by the price forecasting [1].
It is imperative to forecast electricity price for the generation
companies or Independent System Operator (ISO) as well
as different level of customers and investors. Basically, dif-
ferent bidders in competitive electricity market require the
future electricity prices to gear up their profit. Since the
recent energy markets are highly deregulated and nonlinear,
the price forecasting has become more complex compared
to previous days. Due to the nonlinearity and instability of

VOLUME 7, 2019



A. Pourdaryaei et al.: Hybrid ANN and ACS to Forecast Short-Term Electricity Price in De-Regulated Electricity Market

IEEE Access

this system, the accuracy of price prediction has become
lower [2]. Moreover, it leads to an explosive electricity market
by affecting the bidding policies.

Due to the uncertainty nature of electricity market price,
the supply and demand side managements are experienced
with numerous difficulties in day-ahead electricity mar-
ket [3]. The power suppliers may receive more privileges in
their short-term prediction of their rational offers by knowing
the preceding information of electricity market price vari-
ations [4]. Moreover, it helps the power suppliers to setup
their bidding strategies to enhance their profit in maximum
scale. On the other hand, it is very important for demand side
management to have the knowledge of market price changes
and variations to develop the short-term operational planning.
Therefore, in recent years, the researches in electricity market
for price forecasting have become more significant.

Forecasting techniques can be classified into three
categories in accordance to the forecasting framework i.e.
statistical models, time series methods and Artificial Intel-
ligence (AI) based approaches. Among different techniques,
Al-based forecasting approaches have gained significant trac-
tion in recent years as these approaches offer a remarkable
advantage of assuring a certain level of estimation accuracy
compared to high fluctuation of independent and dependent
variables in the statistical model [5]. For instance, ANN was
extensively adopted among different Al-based approaches
in [6] to forecast electricity demand and price. However, there
are criterions like convergence speed, weight adaptation algo-
rithm and network architecture selection over which the ANN
based methods’ accuracy and robustness are heavily depen-
dent. Support vector regression (SVR) was used in [7], [8]
for electricity price forecasting as it is capable of adapting
and encapsulating complicated relationships with the input
data. Conversely, Al techniques have the capability to handle
nonlinearity issues related to short term electricity price fore-
casting as these methods can remove different discriminators
in complex environment, and from past experience they can
recall, learn and store information which have made them
popular in the area of electricity price forecasting.

Development of hybrid techniques has emerged as feasible
approach to overcome the nonlinearity involved in short-term
forecasting, which increases accuracy and improve reliabil-
ity. In [9], another technique has been presented in which
ARIMA procedure and wavelet transform (WT) are com-
bined adopting the power market prediction. To be more
precise, in this technique, first historical data is separated by
wavelet transform. Then, the ARIMA technique is applied
and the inverse wavelet transform is employed respectively
to obtain the final prediction outcomes. In [10], ANN has
been used to forecast the electricity price where the price and
quantities are found by using the estimated future parame-
ters and history. Exploiting fuel cost and demand as entry
data, a three-layer back propagation (BP) neural network
(NN) has also been introduced in this study. A combination
of the probability neural network (PrNN) and orthogonal
experimental design (OED) has been adopted in [11] to
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forecast the power price. The PNN and OED methods have
been used for classification and locating the best variable
respectively, which eventually increase the forecast preci-
sion. The support vector machine (SVM) and the projected
assessment of system adequacy (PASA) have been used
in [12] for prediction of price according to the price and
load history, and the entry data respectively. The work has
also used a regional data of south wales to carry out their
evaluations.

In [13], the fish swarm algorithm (FSA) has been selected
and used as a time series forecast procedure to select the
SVM variable. The work used the power price as data entry.
Wavelet packet transform (WPT) and feature selection have
been combined in [14] to introduce least square support
vector machine (LSSVM) algorithm for prediction purpose.
A probabilistic power price prediction method by combining
support vector regression (SVR) and ARIMA method has
been proposed in [15], [16]. A combination of three meth-
ods as WT, radial basis function neural network (RBFNN)
and ARIMA has also been used in [17]. In [18], another
mixed model has been presented based on interaction of
load and price prediction. Another model for price-directed
demand response has been introduced in [19], which Virtual
Budget (VB) approach is developed for couples’ price and
load prediction, and let automated morphing of a consumer’s
electricity demand. Another hybrid model has been proposed
in [20] to predict load and price. The work applied a hybrid
time-series and adaptive wavelet neural network (AWNN) to
predict the price. In [21], different states of multi-block based
forecast engine are applied for both price load forecasting
purposes. In this work, mechanism of forecasting consists
of multi-block neural network (NN) and was optimized by
an intelligence algorithm to increase training time and fore-
casting capabilities. In addition, genetic algorithms, particle
swarm optimization and cuckoo search technique have been
proposed in [22], [23] to perform better NN training as net-
work training is an important feature in ANN based price
forecasting.

Though remarkable advancements in precise electricity
forecasting have been achieved through ANN, SVR, ANFIS
and hybrid techniques, a precise and more accurate method
to enhance the accuracy of electricity price is still needed.
Moreover, all the aforementioned research regarding elec-
tricity price forecasting performs well though the forecasting
accuracy is still impoverished.

For instance, linearly structured time series are incapable
of capturing the nonlinear patterns and the frequent regu-
larity in underlying the data changes over time. Moreover,
the input parameters for electricity price forecasting are car-
ried out based on trial-and-error procedures and engineer
experience. Few researches have been observed where Al
techniques were employed for electricity price forecasting
due to its excellent nonlinear modeling capability. Another
vital aspect that enhances the accuracy and efficiency of
the forecasting is the proper feature selection. However,
the selection of proper features using the existing feature
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FIGURE 1. Ontario electricity market from 11.02.2017 to 17.02.2017.

selection techniques for electricity price forecasting by con-
sidering price non-linearity has been found to be difficult and
complex task, which made it essential to explore enhanced
feature selection techniques.

Therefore, in this research, to resolve the aforementioned
issues, a new hybrid approach for short-term electricity price
forecasting is proposed. The proposed approach is carried out
through the combination of artificial cooperative search algo-
rithm (ACS) and artificial neural network (ANN) to enhance
the precision of the forecasting even more. ACS is a meta-
heuristic algorithm, which has two-population. Unlike other
metaheuristic methods, it has only a single parameter, which
needs to be controlled and it does not possess high sensitivity
towards the initial value of the control parameter. In addition,
ACS operators exhibit high capabilities for exploitation of
better results and problem exploration in search space due
to its unique crossover and mutation process. Furthermore,
mutual information and ANN techniques have been com-
bined together to form a robust feature selection technique
for enhancing the accuracy of the proposed hybrid ACS-ANN
based price forecasting method. ANN has the potential of
simulating data with nonlinear and complex relationships,
which makes this approach preferable in the present study,
since the feature selection will be based on the non-linear
price signal.

To evaluate the accuracy of the methods proposed in
this work, the Ontario electricity market was considered for
the case studies. This is due the Ontario electricity market
has been recognized as one of the unstable markets in the
world as a result of its single settlement nature [24], [25].
Fig. 1 illustrates the relationship between hourly Ontario elec-
tricity price (HOEP) and hourly Ontario electricity demand
(HOED) within one week. As shown in the figure, electricity
price in Ontario electricity market is a function of electricity
demand in the deregulated electricity market. There is a high
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competition for electricity price when electricity demand is
very high and the generation is limited. Therefore, with the
inherent correlation between electricity price and demand,
prediction in smart grid environment such as Ontario electric-
ity market is more complex than the conventional power sys-
tems. Hence, a novel prediction approach should be applied
for this market to provide high accurate forecasts.
A summary of contributions of this research work is as
follows:
> The main contribution of the study is to propose a hybrid
electricity price forecasting technique based on efficient
ACS algorithm along with ANN method for enhancing
the accuracy of the price forecasting compared to exist-
ing forecasting methods. ACS has been used to search
the most suitable biases and weights values of ANN for
acquiring least error, which results in improved forecast-
ing accuracy. Although ACS has simple structure, due to
its effectiveness on solving multidimensional functions,
it has been widely used in various numerical problems.
Furthermore, only one factor is required to control in
ACS algorithm.
> The second contribution of the work is related to the
feature selection problem. To address this issue, a robust
hybrid feature selection technique based on the com-
bination of NN and mutual information techniques has
been developed. Here, NN has been used to choose the
best subset of features, where MI has been applied to
extract input variables with minimum redundancy and
maximum relevancy. By adding a penalty term to the
error function of the network, redundant network con-
nections can be distinguished from those relevant ones
by their small weights when the network training process
has been completed.
> Pertinence and precision of the proposed hybrid fore-
casting method are evaluated through comparison of
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FIGURE 2. The MLP architecture.

achieved results with that of hybrid SVM and hybrid
ANN methods, whose parameters are optimized by
particle swarm optimization (PSO) and Cuckoo search
algorithm (CSA).

Subsequent sections are organized as follows: Section 2
explains the short briefing on structure and evolution pro-
cess of ANN and ACS respectively. Section 3 presents the
development of short-term EP forecasting models. It also
describes the proposed feature selection to provide the most
influential features on short-term EP forecasting through fil-
tering input variables using MI in first stage and developing
neural network (NN) technique in second stage. Section 4
provides comprehensive discussion and results where sta-
tistical analysis is provided to ensure that the proposed
approach is strongly suitable and applicable for future elec-
tricity price forecasting in de-regulated electricity market.
Finally, section 5 concludes the work.

Il. ARTIFICIAL NEURAL NETWORK (ANN)

Artificial neural networks (ANNs) are inspired by human
brain consisting of millions of interconnected cells to inter-
pret and process the information [26], [27]. Thus, a learning
process will be simulated within the interconnected cell and
collectively performs tasks that surpass the supercomputers
with high-level computational capacity. As such, ANN is
developed, which consists of a highly interconnected network
known as neurons.

Fig. 2 shows the architecture of ANN, which consists
of input layer, hidden layer and output layer that are inter-
connected to each other. In each layer, it contains several
numbers of neurons. For example, in input layer, the number
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of neurons is equal to the number of input data. For the
output layer, the number of neurons represents the desired
outputs or results. Whereas, in hidden layer, there is no limit
to the number of neurons. However, these numbers of neurons
will affect the quality of learning process, learning time and
generalization process. The neurons are communicated with
each other through the weighted connection consisting of
weight and bias. In each neuron, the associated transfer func-
tion will interpret the input signal with respect to the output
signal. Besides, the numerical weights and biases within the
weighted connection are optimized in order to generalize and
fit between the input and output data. Then, an accumulated
experience and information during the ANN learning process
is stored in the form of network file. The saved network file
will have the capability to respond to the new input data,
which does not involve during the learning process.

MLP networks are usually applied to perform super-
vised learning tasks, which involve iterative training meth-
ods to adjust the connection weights within the network.
Generally, to achieve the preferred level of approximated
accuracy, a number of passes is required. Standard error
back-propagation algorithm is used for the adjustment of
the correction weights, where the gradient decent method is
applied to minimize the total error [28]. Back-propagation is
a systematic method used for training MLP networks and its
schematic diagram is briefly described in Table 1.

A. INITIALIZE WEIGHTS

The numerical or initial estimates of the linking strength
between all neurons (w;;) are allocated arbitrarily. Moreover,
the activation threshold (wy;) initial value is also randomly
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TABLE 1. General structure of back-propagation algorithm.

1. Initialize weights
Repeat
2. Apply a sample
Calculate the output of each neuron:
Summation
Addition of bias
Activation
End
3. Calculate the output errors
4. Backpropagation of the error

5. Update weights and biases
Until termination criteria are satisfied;

assigned to each neuron. This activation threshold is similar to
an autonomous term of the linear combination of the outputs
from the previous neurons. It is considered as a weight allot-
ted to a fictitious neuron known as bias unit with an output
value of 1. Therefore, the rule of the bias input (memory) is
to shift the origin of activation function for better learning.

B. APPLY A SAMPLE
The input vector {X1, X>, X3..., Xi/} having desired output
vector {y1, y2, ¥3, ..., Ymj 1S applied.

C. FEED-FORWARD COMPUTATION

Starting from the first hidden layer and propagating toward
the output layer, each input unit (x;) assigns initial weight
(w;) and broadcast this weight to all neuron in the first hidden
layer.

i. Each neuron in the first hidden layer (n;) sums its input
weights by

k
n_inj = Z wiiXi + woj (1)
i=1
ii. The activation function (f) process the output signal of
each neuron (#;) in hidden layers by

nj = f (n—inj) )

Generally, the activation functions are one of the linear,
logistic sigmoid and bipolar sigmoid (hyperbolic tangent)
activation functions. The linear activation function is

nj =f (n-inj) = n_in; 3)

In MLP networks, if the neurons have linear activation func-
tions, the capabilities of the network is no better than a
single layer network with linear activation function. Thus,
nonlinear activation functions (sigmoid functions) are used,
which usually limit the output signal of each neuron to the
values between two asymptotes.
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The logistic sigmoid function is the most widely used
activation function in MLP, given by

1

- 4
(i) @

nj =1 (n-inj) =
The hyperbolic tangent function as formulated by Eq. (5) is
another sigmoidal function used as activation function for
neurons in hidden layer of MLP networks. The hyperbolic
tangent function is closely related to the bipolar sigmoid
function as

1 — ef("—inj) 1 — gf("—i”j)

nj=f (n-inj) =

— = ; 5
de ) - Tretm O
iii. The output signal j neuron of total (N) neuron in hidden
layer (L) denoted by (njL) is transferred to next hidden layer
as follows:

N
nk=f (Z wink ! 4 woj) (6)
i=1

iv. The output signal of each neuron in the last hidden layer
is propagated toward the output layer as follows:

m
ji=¢ (Z hijni + h0j> (7
i=1

where (g), (h;;) and (hq;) are the activation function of output
layer known as transfer function, the connection strength
(weight) between i neuron in last hidden layer and " neuron
in output layer, and the weight assigned to the bias unit of ;"
neuron in output layer respectively.

D. CALCULATE THE OUTPUT ERRORS
The error information term of each neuron in output layer is
computed as follows:

m
§i=0—3)¢ (Z hijn; + h0j> (8)
i=1

E. BACKPROPAGATION OF THE ERROR
The error backward is propagated to the input layer through
each hidden layer using the error information term.

The backward weight correction term from output layer to
last hidden layer and its bias correction term are computed by

Ah,‘j = aﬁjni (9)
Ahoj = Ol(Sj (10)

where « is the learning rate.
The error information term of each neuron in last hidden
layer is calculated from multiplying the summation of its

backward weights correction by derivative of its activation
function as follows:

m N
Aj = (Z thi]') Xf/ (Z Wiihi + WOj) (11)
i=1 i=1
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The backward weight correction term from the hidden
layer (L) is sent to its hidden layer below (L-7) and its bias
correction term are computed as follows:

Awyj = aAjnjL*‘ (12)
AWoj = OlAj (13)

The error information term of each neuron in hidden layer is
calculated as follows:

N N
Asj = (Z A,-w,,) x f! (Z wyny ™! +w0j> (14)
i=1 i=1

The backward weight correction term from first hidden layer
is sent to the input layer and its bias correction term are
computed as follows:

Aswij = aAgiX; (15)
Aswo; = aAg; (16)

F. UPDATE WEIGHTS AND BIASES

Each neuron in the output layer updates its bias and weights
by

hij (t + 1) = hjj (1) + Ahy (17)
h()j t+1) = /’ll‘j 1)+ Ahoj (18)

Each neuron in hidden layer updates its bias and weights by

Wij (t+1) = Wij () + AW,’j (19)
woj (1 + 1) = w;; (1) + Awy; (20)

Each neuron in first hidden layer updates its bias and weights
by

wi (£ + 1) = wyi (1) + Agwy @1
woj (1 + 1) = wij (1) + Aswy; (22)

Finding the optimal values of different weights and biases
is achieved by training of the networks. Generally, to find
the appropriate values of weights and biases of the ANN,
different techniques are used. The optimum training of ANN
is achieved by ACS.

Ill. ARTIFICIAL CORPORATIVE SEARCH ALGORITHM
The ACS is an algorithm that involves two-population search
method and it is based on coevolution process. A few draw-
backs of metaheuristic approaches have been overcome by
this ACS; e.g. the parameters of initial values are over sensi-
tive, have too many control parameters and when more time
is required to compute between exploitation of better results
and exploration of problem’s search space [29].

ACS can be controlled by only one parameter and this is
not sensitive to the initial value. In order to keep balance

between exploration and exploitation, crossover and mutation
are utilized in this algorithm. The functions of these operators
are different in the crossover and mutation strategies than
other methods, such as GA and DE. The advantage of ACS
is that it has a memorization process to explore the feeding
areas. It comprises of seven stages: initialization, selection
of Predator, selection of Prey, mutation, crossover, boundary
control, and export the best individual. Table 2 shows the
generic structure of ACS.

IV. DAY-AHEAD SHORT-TERM EP FORECASTING

From the relation between electricity price and demand situ-
ations, it exhibits a time series spread over hourly intervals,
which can be seen in a competitive electricity market. On the
contrary, the price of electricity is a function of demand of
electricity. The price of electricity depends on its present
value ¢ as well as electricity price’s and demand’s past values.
It can be expressed as (30), as shown at the bottom of this
page, where NLgp is the electricity demand lag order, EP
(t) and ED (t) are the price and demand of electricity at
instantaneous time ¢ assuming them as a time series and NLgp
is the lag order number for the price of electricity.

This work is focused on the implementation of ANN-ACS
method for hourly Ontario electricity price (HOEP) fore-
casting. From [24], the input HOED and HOEP past data
sets for the year of 2017 have been acquired. Historical data
has variable range and Eq. (31) is used to normalize the
independent and dependent variables. Normalizing specific
data entails calibrating the data collected on distinct scales
to an estimate common scale, usually applied before data
processing.

Z(t) —min(Z)

20 = max(Z) — min(Z) +1 D

where normalized data is represented by Z, the data to be
normalized is represented by Z and the hourly interval is
represented by 7.

For the purpose of electricity price forecasting in this
study, only one week of exogenous variables (NLgp =
NLEgp = 168) with hourly lagged values are assumed, where,
total 336 exogenous variables lagged values are available.
Overburdening the machine learning algorithms with excess
amount of features results in a sluggish learning process,
rendering a deplorable performance and overfitting the train-
ing data. Therefore, only features significantly affecting the
output (for electricity price forecasting process) should be
assigned to machine learning algorithm.

In the context of statistics and machine learning, feature
(variables or predictors) selection, also known as attribute
selection, variable selection or variable subset selection is a
method for selecting a subset of relevant features in model

_ (EPGt—1),EP(t—2),EP@t—3),...,EP(t—NLgp)
EP@) =f (ED(t),E Dt —1),ED(t—2),ED(t—3),....,ED(t —NLED)> (30)
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TABLE 2. General framework of ACS.

Step 1: Initialization

The ACS algorithm consists of
two superorganisms; o and S
which  have artificial  sub-
superorganisms equal to the

ai’j’.g:0~U(lowj,upj) Vi :f(al‘)

ﬁi, .;g=0~U(lowj,upj) Yiep = fiB;)

population dimension. By using for (23)
Eq. (23) the individual initial i= {1,2,3,...nPop} , j={123,...nVar}
values of i" sub-superorganism
belong to each superorganism (¢  where,
and f) are defined. nVar is respective optimization variable number;
up;and low; are the 7" variable’s upper and lower search space limits;
nPop is the individuals population size in the superorganisms a and f;
U is the constant distribution function;
g is the generation number;
yi;pand y;., are the "™ sub-superorganism productivity linked to « and /8 superorganisms;
Step 2: Selection of Predator . A " g i ;
The Predator sub-superorganism if a< then predator: = o, o= , key: =
of ACS algorithm ispdetegmined a,b~U(0,1) P yp redator Vo Y (24)
randomly through the ‘if-then- C— C— -
else’ chision grule from two else predator: =J. ypredator' B yﬁ’ key:=2
superorganisms in each generation here:
using Eq. (24). where: o . . ..
key is a memory to trail in each iteration the origin of Predator;
;= is the update action;
b and a are generated numbers randomly;
Step 3: Selection of Prey b " ’
From two superorganisms, the if a< then prey:=a, else prey:=
arbitrary selectri)on (%f Prey sub- ’ a,b~U(01) e previ=p (25)
superorganism will be executed - :
using Eq. (25) in this step. prey: = permuting (prey)
Step 4: Mutation = —
Thep ACS method’s mutation x=predator + R.(prey = predator)
process will perform biological R= 4.a.(b-c )‘ (26)
interaction of location x among a,b,c~U(0,1)
Prey  sub-superorganisms and
Predator based on Eq. (26).
Step 5: Crossover
In the crossover process, the Mij =1,
active individuals of the Predator *
indicated by a binary integer- .
valued matrix (M), are determined ifa<(p 'bﬂ a,b~U(0,1) then M i,randperm(randi(nVar)) =0
using Eq. (27).
else Mi,randi(nVar)=0 27)
if Mi,j >0 then xl-’j::predatorl-,j
for
i= {1,2,3,...,nP0p} ,Jj= {1,2,3,...,nVar}
where,
randperm(nVar) is arbitrary permutation function,
P is the optimization algorithm control parameter,
randi(nVar) is arbitrary selection function.
Step 6: Boundary control 7 .. . .. . e~ . . 28
In pcase of hagitat limits are i (xl’] <low] )or (xl’J >up] ) then xl’] U(ZOW] )upj ) @)
violated by obtained interaction
location x, then boundary control
will be used to update the related
interaction location using Eq. (28).
Step 7: Export the global if fix;)< Yi;predator then predatory:=x; , Yispredator' = Sfix;) (29)

minimum:

In the final step, as global
minimum the best individual
fitness value will be exported and
based on Eq. (29) its position will
be determined which will be
considered as global minimizer.

if key=1then a:= predator , Yo=Y preqaor
else p:= predator , YB =Y predator

Yg =min(ypredatr)r)

if yg< Vg1 then global minimum:=yg , global minimizer:= predatorg ,

g=g+1
for
i= {1,2,3,...,nP0p} .8 ={],2,3,...,gMax}
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construction. The objective of using feature selection tech-
niques is a three-fold [30]:

1. Improving the prediction performance of the predictors
by reducing overfitting (formally, reduction of variance).

2. Providing faster and more cost-effective process to con-
struct the model (facilitate learning process).

3. Providing a simplified model that makes it easier to
interpret (improving the generalization ability).

For electricity market price forecasting, mutual informa-
tion (MI) technique has been broadly employed in [31].
However, this technique is facing difficulties due to the
lagged values of the candidate input comprising of price, load
demand and other variables provided by the electricity mar-
ket. Thus, the individual probability distribution and the joint
probability distribution of the candidate input are difficult to
be obtained. Besides, it is noted that the electricity price is a
time variant signal. Therefore, long history of the candidate
input is not relevant to be used as the market conditions evolve
every time. As such, it can mislead or give inaccurate price
forecast process due to the lack of information values [32].

The main purpose of mutual information is to obtain the
mutual correlation between two arbitrary variables X and Y,
while, by using one variable information amount is achieved
in this technique with regard to another variable which is ran-
dom in nature. In other words, the mutual information is zero
if variable X does not have any information related to variable
Y and vice versa. As such, these two random variables are
independent. High mutual information is obtained if variable
X is a deterministic function of variable Y as well as variable
Y as a deterministic function to variable X [33]. The link
between MI and CE is depicted in Fig. 3. It can be seen that X
and Y are closely related and dependent on each other when
Ml is large.

Apart of the entropy, conditional entropy (CE) is also
observed. It is a measure of the average uncertainty of the first
random variable after the second random variable. As shown
in Fig. 3, Pxy(X,Y)’s joint probability distribution is used to
achieve mutual information among X and Y and MI(X,Y) ran-
dom variables’ as the random variable entropy is complexly
related with the theme of mutual information.

Let X = {EP(t — 1), EP(t — 2), EP(t — 3),...,EP(t —
NLgp), ED(t), ED(t — 1), ED(t —2), ED(t —3), ..., ED(t —
NLEp)} as a vector of all input features and Y = EP(t) as the
target or output feature. The electricity price and demand are
denoted by EP (t) and ED (t) respectively. Fig. 3 shows a
figure with the equation of computation of the mutual infor-
mation (MI) between each individual input and output fea-
ture. For example, MI {EP (t-1); ED (t)} calculates the mutual
information between the first lagged value of electricity price
and electricity demand. Then, based on the calculated value

H(XY) = H(X) + CE(Y/X) = H(Y) + CE(X]Y)

MICXY) = H(Y) - CE(YX) = H(X) - CE(Y]X)

MI(X,Y)=~[ [ P(X, V)log,(P(X, V))dXdY

FIGURE 3. Mathematical relationship between conditional entropy and
mutual information.

of MI, all the input features are sorted in descending order.
Strong dependency between each variable of input and output
is represented by higher value of MI. Lower MI value than
the threshold TH is removed as it indicates less significant
influence on the output while the remaining of the input
features will form a subset, SX C X.

In the second stage, elimination of the redundant features
is done and the neural network algorithm focusing on finding
and removing those features is applied. Fig. 4 shows the uti-
lization of the applied algorithm of three-layer feed forward
neural networks. The input to the hidden layer and from the
hidden to the output layer is weak for the redundant input.
Therefore, it will be eliminated due to having less significant
effect on the network accuracy. Commonly, the error function
defined during the training process is defined as follows:

1 ¢ 5
=-> (ti—y) (32)
ni:l

where n represents the number of observation, ¢ represents
output of the network and y represents the real value. In order
to detect irrelevant and redundant features, a penalty function
is added to the error function as per Eq. (33), as shown at the
bottom of this page, where o1, oy and B are coefficients that
control the influence of the penalty function. 4 is the number
of hidden units, nf is the number of features selected in the
first stage, is the weight connecting from I-¢h attribute to m-th
hidden unit, and is the weight connecting from m-th hidden
unit to network output.

The NN model will first evaluate the accuracy of the net-
work, N using the set of input features SX = {X1,...,X nf},
SX C X, nf < (NLgp+NLEgp). Then, the number of features

h nf

my2 h
POV =ar (3 f(;"(l )m)2 > f(;”( o) ) <ZZ(W;"> + Z(w ) (33)

m=1 [=1
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( Xi={X1, X2+ ee Xn}

Hidden layer Output layer

Xi={X1, X200y Xn}

_ Xnf={xX1, X2....., Xn}

N\

h
War

FIGURE 4. Second stage of feature selection based on the neural network model (NN).

is sequentially reduced to form a new set of input features
and subsequently evaluate the accuracy of that network, Ny
where k = {1, 2, ... ., nf}. The accuracy of the network will
be computed to determine the total number of features that
can be eliminated. The steps of applied feature selection are
outlined as follows:

1. Given the input vector SX = {X1,...,X,/},SX C X is
divided into two data set, which are training set, SX; and
testing set SX;;. The network N is trained and the accuracy
of the trained network is calculated for both SX;, and SXj;.
In this algorithm, the value of «1, a2 and B are set to 1071,
10~* and 0.03 respectively as mentioned in [34].

2. Suppose SX = {X1, ..., X} is the input features of the
network, N does not include several nf features. For
instance, SX = {4, 5, ..., nf} are the input features of
network N3. The network N3 is trained and the accuracy of
the training and testing set, ASX; and ASX;, respectively
are calculated.

3. The network Ny is ranked based on the accuracy of the
testing set as ASX! > ASX2 > ... > ASXY. Sub-
sequently, the average value of this accuracy ASX; ® is
computed.

4. The process is continued by updating the penalty param-
eter. If the accuracy of the network N; denoted by
ASX;Y is smaller than ASX{"®, the weight values w"
and w9, are multiplied by 1.1. Otherwise, the values
will be divided by 1.1. This allows significant input to
have higher connection magnitude after the network is
retrained. It is important to note that the input feature,
which has weak connection magnitude, will be eliminated
in this algorithm.

Feature selection technique is of utmost concern for selecting
the important input variables. By selecting a feature, the con-
tributions of the final predictor variables (HOED and HOEP
in preceding hours) in the best NN model were evaluated.
After developing and controlling several models with dif-
ferent combinations of input variables, these variables were
identified. A hybrid feature selection is applied in order to
reduce the running time. In the first stage of hybrid feature
selection, relevancy threshold of TH = 0.46 has been chosen
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for filtering the redundant features, and after filtering 60 rel-
evant features are selected. In the second stage, (NN) is used
in this study to select the input variables subsets, which have
substantial impact on forecasting of electricity price. In this
stage, hybrid MI and NN has been used to choose 31 dissimi-
lar and most relevance features among the previously selected
60 candidates, which for the process of forecasting have been
used as input. The description of the implemented feature
selection method is presented in Fig. 5(a). The input variables
subsets chosen by (MI 4+ NN) as follows:

ED(t), EP(t-1), ED(t-1), EP(t-2), ED(t-2), EP(t-3),
EP(t-23), EP(t-24), ED(t-24), EP(t-25), ED(t-25, EP(t-48),
EP(t-49), EP(t-72), EP(t-73), ED(t-73), EP(t-96), EP(t-97,
ED(1-97), EP(t-121), ED(t-121), EP(t-144), ED(t-144), EP(t-
145), EP(t-168), ED(t-168), EP(t-169), EP(1-192), EP(t-
193), EP(t-337 ), EP(t-505)

V. SIMULATION RESULTS AND DISCUSSION

In this paper, the electricity price forecasting (EPF) accuracy
of Ontario mainland is forecasted by employing ANN-ACS,
which is known as the one of the most volatile electric-
ity market. Significant features are determined by develop-
ing a feature selection (MI + NN) as input for forecasting
analysis in this section. Moreover, to evaluate the useful-
ness of ANN-ACS for short-term EPF accuracy, the pro-
posed method is compared with well-known Al- techniques
that include ANN-PSO, ANN-CSA, ANN, SVR-ACS, SVR-
PSO, SVR-CSA and SVR. Fig. 5(b) shows the methodology
used for forecasting the short-term electricity price. Sequen-
tial steps to obtain Al-based models for short-term EP fore-
casting are carried out for all models as follows:

Step 1: Considering one month in each season (i.e., win-
ter (February), spring (May), summer (August) and autumn
(November)), the efficacy of the applied methods has been
evaluated for EPF in different seasons due to seasonal effects.
The Ontario electricity market particular data (HOEP and
HOED) for 2017 is selected by taking independent variables
and HOEP as the dependent variable. Both of them consist of
two subsets, at first for training of design phase, the first three
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FIGURE 5. Framework of (a) 2-stages feature selection technique and (b) Forecasting of electricity price.

weeks hourly data is used and where for testing phase the last
week data of each month is exploited.

Step 2: Designing training phase entail derivation of algo-
rithms responsible for connecting the input variables to the
output variables and Eq. (31) is used to normalize the input
and output variables to make the learning process swift.

Step 3: To predict the electricity price (EP) precisely,
metaheuristic methods is implemented for seeking the opti-
mal coefficients of ANN and SVM by minimizing the cost
function as follows:

N
F = Z |(EP(I)0bserved - EP(t)forecasted)| (34
t=1
where EP (t)opserved and EP(t)forecasiea are the actual and
predicted electricity price respectively and N represents the
number of observation.
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The coefficients of ANN and SVM models (w) are deter-
mined by

w=arg min F (35)

Step 4: The purpose of designing a testing phase is
to evaluate the model performance on the results of Al
approaches applied on datasets having no function in build-
ing models. Various assessment criteria are applied to quan-
tify the performance of the prediction models, such as root
mean square error (RMSE), mean absolute percentage error
(MAPE), and Thiel’s inequality coefficient (U — statistic)
as:

MAPE %
_ l ﬁ: |(EP([)0bserved - EP(l)farecasted)| x 100 (36)
N =1 EP(t)observed
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TABLE 3. Parameter tuning of investigated methods.

Applied Parameters setting
methods
Hidden layer:2
ANN (MLP) Transfer function: logarithmic sigmoid
Learning algorithm: Levenberg-Marquardt PB
0:1/6
SVM(SVR) RBFkerne €l
v:0.5
ACS Number of individuals = 100
Control parameter (P)=0.15
Swarm population (Np)=100
PSO Winax = 0.9,Wmin =0.4
CiI=C— 2
Number of nests (Np) = 100
CSA Probability of an alien egg (Pa) = [0, 1]
Distribution factor (8) = 1.5
RMSE

N

1
= ﬁ Z (EP(t)observed — EP(t )forecasted )2
t=1

37

RMSE

N
ILV Z (EP(I)observed)z +

N
1lv Z (EP (t )forecasted )2
t=1 =1

(38)

U -statistic always generates binary results [0, 1], where zero
represents higher forecasting precision and one represents
estimation is as inaccurate as a nai ve guess.
Appropriateness description of a given data series obtained
through models is ensured through the whiteness test, also
known as the Durbin-Watson test [26], acquired after a con-
firmatory analysis. The main objective of this confirmatory
analysis is that it can confirm the whiteness of estimated
residuals (e(t)) and also confirms the un-correlation between

them. Residuals autocorrelation function (RACF) is used to
provide this calculation defined by:

N
> (e(t) et — 1))'

t=2

RACF = (39)

N

> (e(0))?

i=1
Results of RACF are ranged between 0 and 1. RACF value
falls outside a confidence level if it substantially differs from
zero, implying un-correlation (whiteness) of residuals and
hinting that a crucial independent variable has been excluded
from the investigated model.

Successful methodologies in the literature of electricity
price forecasting are taken under consideration to define the
control parameters of the simulated methods due to highly
problem dependent parameter setting of Al based methods
and the lack of consensus regarding their optimal values in
this study. All parameter settings of the applied methods and
ANN-ACS model are summarized in Table 3.

The machine learning methods performances in winter
season of 2017 for Ontario EPF is presented in Table 4.
From the results tabulated in Table 4, it can be said that
the whiteness of the estimated residuals for all developed
models has been validated by the calculated RACF values,
which are in an affirmed confidence range. Moreover, all
developed models are able to describe the given set of data
sufficiently. The analysis that has been done on Ontario elec-
tricity market regarding the evaluation of forecasting accu-
racy of methods concludes that according to multi-criteria
decisions using the mean rank of the methods, each indica-
tor (absolute error, RMSE, U -statistic and MAPE) is ranked
as ANN-ACS > ANN-PSO = SVR-ACS > ANN-CSA >
SVR-PSO > SVR-CSA > ANN > SVR. The comparison
of the developed models with the existing similar models
concludes that ANN-ACS approach performs exceptionally

TABLE 4. Comparison among the studied methods’ electricity price forecasting accuracy in one month of Winter 2017 of Ontario.

Methods
Performance Indexes

SVM SVM- SVM- SVM- ANN ANN- ANN- ANN-

CSA PSO ACS CSA PSO ACS

RACF Training 0.0002 0.0033 0.0019 0.0024 0.0008 0.0007 0.0021 0.0032

Testing 0.0011 0.0112 0.0009 0.0031 0.0012 0.0014 0.0015 0.0019

Whole set 0.0017 0.0014 0.0016 0.0077 0.0014 0.0023 0.0004 0.0003
Absolute Training 21.7654 21.0076 19.9976 19.1654  21.5438 20.2265 19.7476 18.9976

error Testing 8.2789 8.0356 7.8795 7.3245 8.0234 7.7657 7.2358 7.0021
Whole set 30.0443 29.0432 27.8771 26.4899 29.5672 27.9922 26.9834 25.9997

RMSE Training 0.0912 0.0897 0.0884 0.0862 0.0902 0.0873 0.0867 0.0847

Testing 0.0883 0.0879 0.0868 0.0853 0.0876 0.0862 0.0851 0.0840

Whole set 0.0898 0.0884 0.0872 0.0860 0.0887 0.0870 0.0862 0.0845

U-statistic Training 0.0492 0.0465 0.0460 0.0425 0.0483 0.0456 0.0429 0.0412

Testing 0.0467 0.0458 0.0451 0.0431 0.0455 0.0447 0.0416 0.0405

Whole set 0.0474 0.0462 0.0458 0.0429 0.0471 0.0450 0.0421 0.0410

MAPE (%) Training 5.3481 5.1256 5.1124 4.7864 5.2346 5.0345 4.8564 4.6781

Testing 5.1876 4.9981 4.9861 4.7641 5.0121 4.8719 4.6486 4.4917

Whole set 5.2119 5.0237 4.9996 4.7775 5.1455 4.9228 4.7334 4.5760
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FIGURE 6. ANN-ACS performance during training of testing phase and design phase and its corresponding error for EPF in one month of winter

2017 of Ontario.

TABLE 5. Comparison among the studied methods’ electricity price forecasting accuracy in one month of Spring 2017 of Ontario.

Methods

Performance Indexes

SVM SVM- SVM- SVM- ANN ANN- ANN- ANN-
CSA PSO ACS CSA PSO ACS

RACF Training 0.0027 0.0007 0.0009 0.0038 0.0038 0.0020 0.0021 0.0027
Testing 0.0017 0.0025 0.0011 0.0005 0.0041 0.0007 0.0009 0.0038
Whole set 0.0002 0.0012 0.0024 0.0022 0.0015 0.0019 0.0024 0.0003
Absolute Training 6.4791 6.4579 6.4660 6.4412 6.4734 6.4121 6.3125 6.1247
error Testing 2.4827 2.4106 24111 2.3916 2.5973 2.3974 2.2745 2.0542
Whole set 8.9618 8.8685 8.8771 8.8328 9.0707 8.8095 8.5870 8.1789
RMSE Training 0.0338 0.0324 0.0329 0.0320 0.0334 0.0315 0.0307 0.0294
Testing 0.0276 0.0253 0.0258 0.0249 0.0281 0.0254 0.0248 0.0213
Whole set 0.0319 0.0310 0.0317 0.0303 0.0326 0.0301 0.0272 0.0255
U-statistic ~ Training 0.0214 0.0200 0.0203 0.0197 0.0209 0.0189 0.0176 0.0167
Testing 0.0115 0.0102 0.0106 0.0099 0.0118 0.0103 0.0091 0.0084
Whole set 0.0195 0.0191 0.0194 0.0187 0.0199 0.0180 0.0168 0.0159
MAPE (%) Training 1.3512 1.3130 1.3245 1.3017 1.3481 1.2849 1.2734 1.2656
Testing 1.1405 1.1312 1.1368 1.1275 1.1456 1.1317 1.1268 1.1120
Whole set 1.2855 1.2519 1.2592 1.2489 1.2887 1.2403 1.2189 1.2044

better. Table 4 also shows that the ANN-ACS based method
is superior term of MAPE = 4.58 %, U-statistic = (.04,
RMSE = 0.08 and absolute error = 25.99. Fig. 6 presented
the performance test of ANN-ACS method in winter season
of 2017 when the training is executed for both testing and
design phase.

Table 5 shows a tabulated performance of the applied
machine learning techniques in Ontario region for EPF in
spring season of 2017. According to the RACF values,
the conclusion can be drawn that the estimated residuals of
all obtained models are white at a confidence interval level.
The accuracy of the methods is ranked as ANN-ACS >
ANN-PSO > ANN-CSA > SVR-ACS > SVR-CSA > SVR-
PSO > SVR > ANN, which is based on multi-criteria

VOLUME 7, 2019

decisions adopting the mean rank of the methods for each
indicator (U -statistic (0.02), MAPE(1.2%), RMSE (0.03), and
absolute error (8.18)). Hence, the most efficient model is
ANN-ACS. Fig.7 illustrates the performance of ANN-ACS
in spring season for the same region.

The performance results of different machine learning
methods are tabulated in Table 6 for EPF for the same area
in summer 2017. The RACF values, like in summer season,
declare the whiteness of estimated residuals at a confidence
interval level for all obtained models. The forecasting accu-
racy of these methods is ranked as ANN-ACS > SVR-ACS
> ANN-CSA > ANN-PSO > SVR-CSA > SVR-PSO >
SVR > ANN in terms of multi-criteria decisions, which the
mean rank of the methods for each indicator (U -statistic,
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FIGURE 7. ANN-ACS performance during training of testing phase and design phase and its corresponding error for EPF in one month of

spring 2017 of Ontario.

TABLE 6. Comparison among the studied methods’ electricity price forecasting accuracy in one month of Summer 2017 of Ontario.

Methods
Performance Indexes

SVM SVM- SVM- SVM- ANN ANN- ANN- ANN-

CSA PSO ACS CSA PSO ACS

RACF Training 0.0022 0.0015 0.0021 0.0002 0.0013 0.0006 0.0012 0.0023
Testing 0.0030 0.0018 0.0010 0.0007 0.0018 0.0023 3.2E-6 0.0017

Whole set 0.0019 0.0002 0.0006 0.0011 0.0025 0.0018 0.0014 0.0004
Absolute Training 17.9023 17.6621 17.8920 16.4623 18.1209 17.5581 17.5632 15.6175
error Testing 42757 4.2268 4.2561 4.0235 43213 4.1085 4.1955 3.9247
Whole set 22.1780 21.8889 22.1481 20.4858 22.4422 21.6666 21.7587 19.5422

RMSE Training 0.0736 0.0719 0.0727 0.0682 0.0748 0.0691 0.0708 0.0674
Testing 0.0444 0.0425 0.0436 0.0395 0.0456 0.0402 0.0416 0.0380

Whole set 0.0723 0.0706 0.0719 0.0673 0.0731 0.0685 0.0695 0.0659

U-statistic ~ Training 0.0398 0.0384 0.0392 0.0367 0.0410 0.0375 0.0379 0.0352
Testing 0.0246 0.0235 0.0242 0.0211 0.0257 0.0213 0.0221 0.0194

Whole set 0.0367 0.0353 0.0361 0.0324 0.0378 0.0336 0.0342 0.0308

MAPE (%) Training 2.8496 2.7998 2.8312 2.7138 2.8534 2.7622 2.7834 2.6423
Testing 2.7543 2.6866 2.7385 2.5941 2.7980 2.6330 2.6532 2.5514

Whole set 2.7965 2.7651 2.7811 2.6895 2.8267 2.7254 2.7442 2.6241

MAPE, RMSE, and absolute error) is used to extract this
ranking. To be more precise, U-statistic, MAPE, RMSE and
absolute error are 0.03, 2.62%, 0.07 and 19.54 respectively
for ANN-ACS. Additionally, ANN-ACS can be concluded
as the most promising and advanced model than any other
applied methods used for Ontario’s short-term electricity
price forecasting. The performance analysis of ANN-ACS for
EPF in summer 2017 is depicted in Fig. 8 during both training
and testing design phases for Ontario region.

The ANN-ACS performance for EPF of Ontario region in
autumn season of 2017 is compared with other AI- methods
for the purpose of further examination of solution methodol-
ogy as shown in Table 7. From the values obtained for RACF,
it can be shown that the estimated residuals of all models are
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uncorrelated and the obtained models sufficiently describe
the given set of data. Based on Table 6, the forecasting
accuracy of the applied methods is ranked as ANN-ACS >
ANN-CSA > ANN-PSO > SVR-ACS > SVR-CSA > ANN
> SVR-PSO > SVR. By using the mean rank of multi-criteria
decisions methods, the ranking for each indicator (absolute
error, RMSE, U -statistic and MAPE) in the whole set has been
performed. According to the findings, from the comparison
of studied methods for electricity market in Ontario region in
autumn season, ANN- ACS approach performs much better
than other methods in terms of electricity forecasting since it
has higher precision.

The values of U-statistic (0.04), MAPE (3.79%), RMSE
(0.08), and absolute error (29.73) are presented in Table 7.
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FIGURE 8. ANN-ACS performance during training of testing phase and design phase and its corresponding error for EPF in one month of summer

2017 of Ontario.

TABLE 7. Comparison among the studied methods’ electricity price forecasting accuracy in one month of Autumn 2017 of Ontario.

Methods

Performance Indexes

SVM SVM- SVM- SVM- ANN ANN- ANN- ANN-
CSA PSO ACS CSA PSO ACS

RACF Training 0.0025 0.0031 0.0027 0.0017 0.0003 0.0026 0.0021 0.0010
Testing 0.0018 4.5E-6 0.0008 0.0006 0.0026 0.0011 0.0014 0.0004
Whole set 0.0004 0.0013 0.0016 0.0005 0.0009 8.5E-6 0.0012 0.0015
Absolute Training 30.1020 29.6511 30.0013 28.4102 29.7746 25.1034 26.5052 24.5157
error Testing 8.4558 7.9803 8.2000 7.4699 8.0012 5.8814 6.7417 5.2168
Whole set 38.5578 37.6314 38.2013 35.8801 37.7761 30.9848 33.2469 29.7325
RMSE Training 0.0892 0.0830 0.0841 0.0824 0.0833 0.0805 0.0812 0.0801
Testing 0.0820 0.0779 0.0813 0.0746 0.0805 0.0658 0.0681 0.0610
Whole set 0.0867 0.0821 0.0835 0.0812 0.0827 0.0791 0.0802 0.0783
U-statistic ~ Training 0.0577 0.0546 0.0562 0.0530 0.0559 0.0458 0.0521 0.0427
Testing 0.0383 0.0362 0.0375 0.0351 0.0366 0.0301 0.0345 0.0275
Whole set 0.0549 0.0505 0.0524 0.0486 0.0518 0.0406 0.0463 0.0382
MAPE (%) Training 4.6910 4.5013 4.5788 4.4436 4.5463 4.1279 42357 4.0324
Testing 4.1015 3.9447 3.9934 3.6232 3.9721 3.3948 3.5468 3.0880
Whole set 4.5968 4.2451 4.4319 4.1864 4.4170 3.9761 4.0145 3.7865

Fig. 9 depicts the ANN-ACS performance for forecasting the
electricity price in autumn season of 2017 during the training
and testing phase for Ontario region. From the demand side
management perspective, the negative price can be controlled
in whole seasons by providing incentive for using the electric-
ity in a particular time to curtail the consumption accordingly
when the demand is low in order to stabilize the frequency
and voltage of grid.

The wvalidity of mathematical models developed by
ANN-ACS is verified through the application of different
statistical methods as external validation. To evaluate the
performance of the developed model, following attributes are
recommended [36]-[39]:
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I. If amodel generates |R| > 0.8, a strong correlation exists
between the observed and predicted values.

II. If a model generates 0.2 < |R| < 0.8, a correlation
exists between the observed and predicted values.

III. If a model generates |R| < 0.2, a weak correlation
exists between the observed and predicted values.
The studied model’s statistical factors for forecasting are
computed for different month of Ontario mainland as well.
The develop model fulfill all the statistical requirements as
tabulated in Table 8. Findings indicate that the developed
model is a promising and optimistic approach to be imple-
mented for forecasting the future electricity price in de-
regulated electricity market.
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FIGURE 9. ANN-ACS performance during training of testing phase and design phase and its corresponding error for EPF in one month of autumn
2017 of Ontario.

TABLE 8. ANN-ACS model’s Statistical factors for EPF in one month of Winter, Spring, Summer and Autumn 2017 of Ontario.

ANN-ACS approach

Ttem Formula Condition Winter Spring Summer Autumn
1 R 0.8<R, 0.9987 0.9933 0.9850 0.9998
Zn (hxt,)
2 K :? 0.85<k<1.15 0.9976 0.9985 0.9962 0.9970
h,
=1t
3 K = 2 (hx1) 0.85<k'<1.15 10030 1.0011 1.0023 1.0008
no_2
Zizl l;
R*-R’
4 m= 720 | m | <0.1 -0.0033 -0.0039 -0.0042 -0.0024
R
R*-R/’
5 _ o | n | <0.1 -0.0033 -0.0039 -0.0041 -0.0024
n=—0s . .
6 R, =R x(]_ ‘Rz _RU2 ) 0.5<R,, 0.9974 0.9923 0.9865 0.9980
" o\
R2=1— Zi:l(li —h ) he = kxt. 0 8<R02<1 0.9998 1.0000 1.0000 0.9996
0 220 i * *
al fi
Where Z':l( j
Zi hi _tia ) '
Ro‘2 I_L)wti =K xn, 0.8<R, 24 0.9998 1.0000 1.0000 0.9996
= (e
VI. CONCLUSION achieved through proper feature selection, which entails
In this research, for forecasting day ahead of electricity price, selection of relevant attributes of data amidst a vast
a hybrid ANN-ACS method has been developed, which has pool of irrelevant and redundant features. In this work,
been verified with the Ontario electricity market based on by combining ANN and mutual information techniques,
hourly electricity demand and hourly electricity price. a hybrid feature selection technique has been proposed
o Feature selection is a fundamental element of machine for the selection of optimum subset of features within
learning algorithms. High predictive accuracy can be a pool of 60 features, to be employed as input for direct
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prediction method. The robustness of the proposed tech-
nique is evident through efficient selection of the most
suitable features by removal irrelevant and redundant
attributes.

The results have shown the robustness of the devel-
oped ANN-ACS model in Ontario electricity market.
In the case of electricity price forecasting, it provides
a higher forecasting precision and simplicity compared
to other AI methods in terms of MAPE = 4.58%, 1.2%,
2.62% and 3.79 % in winter, spring, summer and autumn
respectively.

In developing the sustainable smart grid in forthcom-
ing days, the importance of the proposed approach is
inevitable to EP forecasting. Therefore, the presented
synthesis can be a profound contrivance to develop
energy strategies for the electricity participants in bid-
ding as well as for the EP forecasting researchers plainly.
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