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ABSTRACT The train control on-board subsystem (TC-OBS) plays an important role in the safety and
efficiency of the high-speed train’s operation. Therefore, there is an urgent demand for the analysis of
failure characteristics and the reliability of TC-OBS. In this paper, a specific data model is built for the
TC-OBS operational and failure data based on data cubes. This model analyzed the failure distribution
characteristics of TC-OBS from the combined angles of System Identification, Time and Operation Attribute
through the operations of data cubes. Thus, the representative units and systems can be the research objects
of the reliability evaluation. With these representative units and systems, this paper uses Bayesian estimation
combined with Markov Chain Monte Carlo (MCMC) to estimate the parameters of the time between
failures (TBF) distribution model and the reliability is analyzed. Simulation results show that the data model
based on data cubes can offer an efficient and convenient method to analyze the failure characteristics and
reliability of TC-OBS.

INDEX TERMS Train control system, reliability, failure distribution characteristics, data modeling.

I. INTRODUCTION
The rapid development of high-speed railways offers a
great development space for the economy and for people’s
livelihoods. Meanwhile, the operational safety of high-
speed railways becomes extremely important. The train
control on-board subsystem (TC-OBS) of the high-speed
railway (HSR) is the core part for train controlling, and its
safe and reliable operation is critical and basal for ensuring
the safe and efficient operation of HSRs. As a complex
and safety-critical system, the failure feature of the TC-OBS
is very important to the maintenance and repair work as
well as to the renewal of equipment. During the operation
process, the performance degradation of the system caused
by environmental interference, component wear, equipment
aging, etc., will lead to system reliability degradation, causing
failures, and creating hidden dangers to the safety of the HSR.
When the TC-OBS is running, it will automatically generate
log data of the running status and events of the system. The
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study of its data characteristics enables maintenance person-
nel to keep abreast of the system’s operation, so they can
timely repair and maintain the system to ensure the safety of
the HSR’s operation.

The processing of a system’s data should be efficient and
accurate for corresponding purposes. Huang and Zhou [1]
proposed the structure, elements, basic calculations and mul-
tidimensional reasoning method of the new knowledge model
for electric power based on ontology and the semantic web.
The work in [2] introduced random matrix theory to model
the massive data sets for power equipment monitoring and
big data mining analytics. Wang and Bai [3] built a fuzzy
spatiotemporal data model by expanding the standard mod-
eling language UML; thus, the model can describe the fuzzy
spatiotemporal objects better, and it is dynamic. After data
modeling, the operational status of the system can be effi-
ciently acquired.

The system’s failure feature is a mathematical description
that can represent the processes of fault distribution and evo-
lution. Studies on fault features play an important role in fault
diagnosis, reliability analysis, and maintenance strategies.
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Many scholars have recently carried out research on fault
features in the fields of power transmission systems, military
science, computer networks, and software engineering. The
work in [4] analyzed the time trend of the failure frequency
in communication networks using the cumulative number
of failures and estimated the relationship between failure
frequency and severity by the generalized Pareto probability
distribution. Zheng et al. [5] collected the fault recording
from one converter station when the communication failed
due to a disturbance in the AC system and calculated and sta-
tistically analyzed the turn-off angle of valves, zero-crossing
offset, and landing amplitude of bus voltage. Jager et al. [6]
proposed an integration step that evaluates the failure model
of shared information in relation to an application’s fault
tolerance and presented a mathematically defined generic
failure model as well as a processing chain for automatically
extracting failuremodels from empirical data. Thework in [7]
proposed a risk index system for the catenary lines of high-
speed railways considering the characteristics of time-space
differences to represent and quantify the characteristics of
risk. Arno et al. [8] analyzed the relationship between equip-
ment failure characteristics and reliability-basedmaintenance
to optimize preventative maintenance regime as well as a
corrective maintenance regime.

Few researchers focus on the data modeling of train control
system operational data. However, the application of systems’
operational data has been studied widely by many scholars
in the railway field, and they usually focus on the fault
diagnosis, failure prediction and reliability evaluation of train
control systems.

In the areas of fault diagnosis and failure prediction,
researchers mainly focus on the accurate and rapid detec-
tion of faults that are about to happen or have happened in
each part of the train control system such as the TC-OBS,
track circuit and so on. Ding et al. [9] proposed a method
based on fuzzy rules and a time series analysis for the online
failure prediction of the Automatic Train Protection system.
Zhao et al. studied fault diagnosis methods for track cir-
cuit [10], [11]. Bruin et al. [12] used the long short-term
memory recurrent neural network to accomplish the timely
detection and identification of faults in railway track cir-
cuits for the safety and availability of the railway network.
In [13], Wang et al. proposed a bilevel feature extraction-
based text mining that integrates features extracted at both
the syntax and semantic levels with the aim of improv-
ing the fault classification performance of the train control
system. Similarly, many researchers have conducted their
research on fault diagnosis through text mining and big data
analysis [14]–[17].

As for the application of train control system operational
data in reliability evaluations, research carried out according
to the different forms of equipment or system level of the
train control system. Sun et al. [18] proposed a life prediction
method for analyzing and assessing the reliability of railway
safety relays by blending the principal component analysis to
extract the key degradation features of relays. Xu et al. [19]

proposed an online performance degradation monitoring
approach for the onboard speed sensors of trains and provided
a compensation algorithm for the distorted speed readings
resulting from the existence of the performance degradation.
Zhu et al. [20] modeled the next generation communication-
based train control (CBTC) system with deterministic and
stochastic Petri nets (DSPNs), and the performance data were
converted as DSPN model parameters to evaluate the system
reliability. At the system level, Su and Che [21] introduced
Bayesian networks for the limitations of the traditional fault
tree analysis method to establish the reliability model of train
control systems, and the reliability of the train control system
and its redundant configuration was assessed. Additionally,
Morant et al. [22] and Pascale et al. [23] conducted their
research studies on reliability evaluations and maintenance
strategies for railway signaling systems.

Operational data and failure characteristics are important
to the reliability as well as the maintenance strategies for
the TC-OBS. However, research on the fault diagnosis and
reliability evaluation for TC-OBSs are carried out based on a
small amount of data. It is necessary to take full advantage
of the operational data of TC-OBSs to analyze the failure
distribution characteristics as well as to evaluate its reliability.

The rest of this paper is organized as follows. In Section II,
we establish a specific model for the operational data of
TC-OBSs based on data cubes to analyze the failure char-
acteristics and provide the necessary data for the reliability
evaluation. In Section III, the failure distribution character-
istics are analyzed using the data model of the TC-OBS,
and in Section IV the reliability of representative equipment
and systems, which are selected by the failure distribution
characteristics is estimated by Bayesian estimation. Finally,
conclusions and recommendation for future works are given.

II. DATA MODEL FOR TRAIN CONTROL
ON-BOARD SUBSYSTEM
In this section, we build a specific model for the operational
data of the TC-OBS based on the data cube to analyze the
failure characteristics and reliability of the TC-OBS.

Figure 1 shows the partial structure of the TC-OBS.
It includes several units working together to control the high-
speed train.While in operation, the working status of the units
in the TC-OBS are influenced by various factors that could
lead to failures, or even disasters.

The partial operational data of the TC-OBS is shown
in Figure 2. Most of the data are recorded by text formatting
which is difficult to process because of the misunderstanding
of different maintainers and the complexity of the operational
data. Thus, an effective model is needed for the analysis of the
operational data.

A complete data record contains three key elements: Sys-
tem Identification, Time, and Operation Attribute. System
identification represents where the data belongs. Time rep-
resents the time when the system operates, and Operation
Attribute represents the operational status, including the nor-
mal operational status and types of failures. To process and
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FIGURE 1. Partial structure of TC-OBS.

FIGURE 2. Partial operational data of TC-OBS.

analyze the data efficiently, we build a specific data model
based on the data cube.

An n-dimensional data cube [24] is a quadruple shown
in (1), where D is the set of dimensions of the data cube,
and H is the hierarchical set of dimensions. M is a set of
measures of the data cube, and 0 is the aggregate function
for the measures.

N = {D,H ,M , 0} (1)

The operational data of the TC-OBS has three dimensions
as described above: that is, System Identification, Time, and
Operation Attribute. Therefore, the set of dimensions D is
shown as (2), where S represents System Identification, T rep-
resents Time, and O represents Operation Attribute.

D = {S,T ,O} (2)

Because H is the hierarchical set of dimensions, in this
case, the hierarchical set is shown as (3), where HS , HT ,
HO represent the hierarchical set of dimension S, T and O,
respectively. HS and HO represent the coordinating relation
in systems and operational status, respectively. T represents
the concept hierarchy of time such as year ← month← day.

H = {HS ,HT ,HO} (3)

TABLE 1. Meanings of abbreviations for fault types.

The set of measuresM is the number of the specific opera-
tional status, and its element is expressed by ms,t,o where s ∈
S, t ∈ T and o ∈ O. Furthermore, the sum ofms,t,o represents
the number of operations of systems. The aggregate function
0 has different forms depending on different analytic targets
such as the sum function.

The dimension of Operation Attribute includes the normal
operational status and several types of failures. We use On
and Of to represent these two sub-dimensions, respectively.
Similarly, HO includes HOn and HOf , and ms,t,o includes
ms,t,on and ms,t,of .
Thus, we can get the failure data cube for the TC-OBS

shown in equation (4).

Nf = {Df ,Hf ,Mf , 0} (4)

where Df = {S,T ,Of }, Hf = {HS ,HT ,HOf }, Mf is the set
of ms,t,of and of ∈ Of .
According to the practical maintenance manual, the sub-

dimensionsOf includes 12 types such as the Balise Transition
Module type and the Communication type, and they are
shown in Table 1 along with their abbreviations.

Here is an illustration of the data cube for the operational
data of the TC-OBS shown in Figure 3. There are three
dimensions in Figure 3, and the content in each cuboid is
the number of the specific operational status in a specific
time, system and failure type. The S dimension includes the
different train numbers in which the TC-OBS is located.
T dimension includes the time of the specific operation.
Finally, the O dimension includes different types of failures
as well as the normal operational status. All the cuboids
represent the failure number and normal operation times in
all three dimensions.

There are two important operations of the data cube: slice
and dice. Slice selects just one specific dimension such as
S or T orA in operational data cubes. Dice selects two ormore
dimensions from the data cube. Both operations provide a
new subcube of the original data cube.We operate three slices
from the three dimensions of the failure data cube and operate
three dices from the combinations of these three dimensions.
Then, we get the hierarchical directed graph structure of the
data cube for the TC-OBS as shown in Figure 4.
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FIGURE 3. Illustration of data cube for operational data of TC-OBS.

FIGURE 4. Hierarchical directed graph structure.

Along with the hierarchical directed graph structure and
different demands on the analysis, the failure distribu-
tion characteristics can be extracted from different perspec-
tives. For example, because the operation attribute includes
different types of failures, we can get the distribution
of different types of failures in the dimension of time
from the node by Time and Operation Attribute, expressed
as T × O.

In this paper, we process the data from a specific type of
TC-OBS in a railway bureau of China in 2015, and the data
consists of more than 3000 records including 12 types of
failures andmore than 100 systems. The analysis in this paper
is based on these data.

Figure 5 illustrates the flowchart of the processing and
analysis of the TC-OBS data in this paper. First, the raw
data are preprocessed to delete useless information, and the
three key elements are reserved. Then, the data model of
the TC-OBS is established based on the data cube. Next,
the failure characteristics of the TC-OBS by different dimen-
sions are analyzed by applying the dice operation of the data
cube, and the representative units and systems are selected to
evaluate the reliability of the TC-OBS. Finally, the reliability
is evaluated by Bayesian estimation and the Markov Chain
Monte Carlo (MCMC) method. This method improves the
comprehensiveness and veracity of the failure distribution
characteristics and reliability evaluation in this data-driven
way and provides a new effective way for the maintenance
strategy of TC-OBSs.

FIGURE 5. Flowchart of the process and analysis of TC-OBS data.

III. DATA-DRIVEN FAILURE DISTRIBUTION
CHARACTERISTICS ANALYSIS OF TC-OBS
The failure distribution characteristics are presented in many
ways such as the distribution of failure rate by time. It is dif-
ficult to cover all types of distribution characteristics unless
there is an efficient way to tease these characteristics from
all of the dimensions. The operational data cube mentioned
above is one efficient way to do that.

As shown in Figure 4, Level 1 of the hierarchical directed
graph structure contains the combinations of the three dimen-
sions that could be used as the basis for the classification
of the failure characteristics. Additionally, many extensions
could be obtained from these combinations.

A. FAILURE DISTRIBUTION CHARACTERISTICS BY SYSTEM
IDENTIFICATION AND TIME
The data subcube by System Identification and Time is a
quadruple shown in (5).

ScST = {DST ,HST ,MST , 0ST } (5)

where DST = {S,T }, HST = {HS ,HT }, MST = {for (s, t) ∈
(S,T )|ms,t =

∑nO
i=1ms,t,o} and nO is the sum of dimensionO.

0ST is the same as 0 in (1).
As mentioned above, dimension O includes On and Of .

Therefore, ScST includes two parts: the normal operation part
and the failure part. Based on equation (4), the failure data
subcube is a quadruple shown in (6).

ScSTf = {DSTf ,HSTf ,MSTf , 0STf } (6)

where DSTf = DST , HSTf = HST , 0STf = 0ST , MSTf =

{for (s, t) ∈ (S,T )|ms,t f =
∑nOf

i=1 ms,t,of } and nOf is the sum
of dimension Of .
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FIGURE 6. Operation time in 2015.

FIGURE 7. Monthly analysis on operation and failure for system 2547 in
2015.

Because M represents the set of specific operational sta-
tuses including the failures of systems, the number of opera-
tions and the failure of each system can be calculated through
equation (7) and equation (8) by making ms,t ∈ MST .

Ns = {for s ∈ S|
nT∑
i=1

ms,t } (7)

Nsf = {for s ∈ S|
nT∑
i=1

ms,t f } (8)

Figure 6 shows the operational time of partial systems.
It shows that the operational times of different systems differ
widely. For example, the operating times of System 2547 and
System 2523 are much longer than that of System 2307.
Different operational times leads to the different working
strengths of different systems. The longer the operating time
the system has, the more information it contains.

According to Figure 6, we make s = 2547, and the
number of operational and failure statuses of the system can
be calculated through equation (7) and equation (8) in which
the time dimension is measured in months as well as the
failure rate, which is shown in Figure 7.

FIGURE 8. Heatmap of failure types.

From Figure 7 we can see that there is no obvious depen-
dence between the number of failures and time, and the failure
rate is approximately 10% in months when the systems ran
more than 50 times. The failure rate of a few months is higher
than others because the numbers of operation times are fewer
in these months, and the numbers of failures are at a relatively
low level.

B. FAILURE DISTRIBUTION CHARACTERISTICS BY SYSTEM
IDENTIFICATION AND OPERATION ATTRIBUTE
In this section, we analyze the failure distribution from the
angle of system identification and operation attribute, espe-
cially in failure types.

Similarly, the data subcube by System Identification and
Operation Attribute is a quadruple shown in (9).

ScSO = {DSO,HSO,MSO, 0SO} (9)

where DSO = {S,O}, HSO = {HS ,HO}, MSO = {for(s, o) ∈
(S,O)|ms,o =

∑nT
i=1ms,t,o} and nT is the sum of dimension

T . 0SO is the same as 0 in (1).
Because O = Of

⋃
On, we can get that MSO =

MSOf
⋃
MSOn , where MSOn is the set of ms,of which is the

number of failures for a specific system and failure type.
Thus, we can draw the heatmap for the failure rate of each
type of failure by ms,of /ms,o as shown in Figure 8.

Figure 8 shows the types of communications and relays
that occur frequently in most trains, and BTM failures are
distributed uniformly. These types of failures can be classified
as frequent faults. In addition, it can be seen that the numbers
of SDU failures occurring in two of the systems (they are
actually system 201 and system 2521) are far greater than in
other systems, to which more attention should be paid.

In addition, we can calculate the percentage of systems in
which the specific type of failures occurred among all the
systems through equation (9). The result is shown in Figure 9.

Figure 9 shows that communication, relay, BTM and DMI
type failures commonly occurred in most systems, while
TSG and VC type failures occurred only in a small number
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FIGURE 9. Proportions of failure types.

FIGURE 10. Time distribution of failure types.

of systems. This result can provide a reference for system
maintenance.

C. FAILURE DISTRIBUTION CHARACTERISTICS BY TIME
AND OPERATION ATTRIBUTE
The data subcube by Time and Operation Attribute is a
quadruple shown in (10).

ScTO = {DTO,HTO,MTO, 0TO} (10)

where DTO = {T ,O}, HTO = {HT ,HO}, MTO = {for(t, o) ∈
(T ,O)|

∑nS
i=1ms,t,o} and nS is the sum of dimension S. 0TO

is the same as 0 in (1).
Figure 10 shows the distribution of different types of fail-

ures by time based on the subcube by Time and Operation
Attribute in which the normal operating status is not selected.
It clearly shows that the failure rates of communication and
relay were always at a high level in 2015. The other types of
failures have a lower failure rate except for the BTM type in
December. It is important to emphasize the equipment for the
communication and relays as well as the BTM inDecember to
analyze the reason for the higher failure rate.

D. SUMMARY OF THE FAILURE DISTRIBUTION
CHARACTERISTICS
In Subsections III-A, III-B and III-C, we analyzed the failure
distribution by taking full advantage of the operational data

FIGURE 11. Histogram and kernel density estimation for selected data.

from TC-OBSs and we obtained different characteristics on
the operational and fault status of the TC-OBS. However,
it is difficult to analyze the reliability of all the systems as
well as the different units in the system in a shorter period
of time because of the massive quantity and scale of the
operational data. We take the analysis on failure distribution
characteristics that uses the full operational data as the basis
of the reliability analysis, and it helps us to determine which
subsystems have enough data to ensure an accurate reliability
analysis.

1) The operating times of different systems differ greatly
as do the number of failures. The longer the system
operates, the more failure information the system con-
tains, which makes the reliability evaluation more rep-
resentative.

2) Different types of equipment have different failure
times and failure rates, either in different systems or at
different times. It is important to put more focus on the
equipment with more failure times and higher failure
rates.

Based on the above subsections, we select communication
and relay equipment in 3 systems (indicated as Sys. 1, Sys. 2
and Sys. 3) to analyze their reliability characteristics.

IV. RELIABILITY EVALUATION BASED ON FAILURE
CHARACTERISTICS
A. BAYESIAN ESTIMATION FOR DISTRIBUTION FITTING
As mentioned above, we select communication and relay
equipment in Sys. 1, Sys. 2 and Sys. 3 to analyze their reliabil-
ity characteristics for the purpose of conducting a reliability
analysis on this type of TC-OBS. The data is processed to
obtain the time between failures (TBF) for these selected data,
and their histogram and kernel density estimation are shown
in Figure 11, which indicates that the TBF roughly follows
log-normal or Weibull distribution. In the field of reliability,
the life data of systems, especially electronic systems, mostly
follow an exponential distribution or a Weibull distribution.
Therefore, the Weibull distribution is chosen as the distribu-
tion for the TBF.

The probability density function (PDF) and cumulative
distribution function (CDF) of the Weibull distribution are
shown in equations (11) and (12), respectively.

f (t) = λβtβ−1 exp(−λtβ ), t ≥ 0 (11)
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F(t) = 1− exp(−λtβ ), t ≥ 0 (12)

Although classical statistical techniques such as the max-
imum likelihood estimation (MLE) have been developed to
estimate the parameters of distributions, they do not work
well with small-to-moderate sample sizes. In this study,
the amount of failure data for each unit is small. In contrast,
Bayesian estimation has an advantage in small-to-moderate
sample sizes. It combines the sample information and prior
information and has the ability to update the prior information
through posterior information and observational data. There-
fore, we chose the Bayesian estimation to conduct the param-
eter fitting for the Weibull distribution. The Bayes theorem is
shown as equation (13):

p(θ |y) =
f (θ |y)p(θ )∫
f (y|θ )p(θ )dθ

(13)

where p(θ |y) is the posterior density function, p(θ ) is the prior
density function and f (θ |y) is the sampling density function
for y. After the test, the value of y is certain and the sampling
density function is the function of unknown parameter θ
which is also called likelihood function.

The prior distributions for λ and β in equation (11) are
usually set as the gamma distribution and the log-normal
distribution shown as equations (14) and (15), and their prob-
ability density functions are shown as equations (16) and (17).

λ ∼ Gamma(α, θ) (14)

β ∼ LogNormal(µ, σ 2) (15)

fg(λ|α, θ) =
θα

0(α)
λα−1 exp(−θλ) (16)

fln(β|µ, σ 2) =
1

β
√
2πσ 2

exp[−
1

2σ 2 (ln (β)− µ)
2] (17)

With the independence of these two parameters, the joint
prior density function is shown as equation (18).

p(λ, β) = fg(λ|α, θ)fln(β|µ, σ 2) (18)

Considering a random sample consisting of n observations
(x1 < x2 < . . . < xn), when equation (11) is the density
function, the likelihood function of this sample is:

L(x1, x2, . . . , xn|λ, β) =
n∏
i=1

λβxiβ−1 exp(−λxiβ ) (19)

The relationship among the posterior distribution (PO),
the prior distribution (PR) and the likelihood function (LF)
is as shown:

PO ∝ PR× LF (20)

Therefore, the joint posterior distribution density function
is determined by equation (21).

p(λ, β|x1, x2, . . . , xn) = p(λ, β) · L(x1, x2, . . . , xn|λ, β)

(21)

FIGURE 12. Trace of β for 6 groups of data.

Obviously, it is extremely difficult to obtain the joint
posterior distribution density function in (21). Because of
the difficulty of the analytical calculation for the Bayesian
estimation, we used the MCMC to produce samples from the
posterior distribution that can be used as an approximation of
the probability distribution. In this paper, we use the MCMC
method containing Metropolis algorithms to generate sam-
ples of model parameters from equation (21) and to carry out
the sample-based posterior analysis based on these generated
posterior samples.

B. NUMERICAL TEST
1) DATA PREPARATION
The sets of time between failures of the communication and
relay equipment in Sys. 1, Sys. 2 and Sys. 3 are the data used
to do the numerical test.

2) PARAMETERS FITTING
The MCMC method containing Metropolis algorithms is
used to implement the sampling procedure, and 35000 sam-
ples are generated from the joint posterior distribution (21)
with 5000 samples for burn-in. Figure 12 and Figure 13
are the traces of β and λ. They clearly show that the
traces of all the parameters are indistinguishable from
each other, which means that the iterative process became
stable.

Figure 14 and Figure 15 are the autocorrelation functions
(ACF) of each parameter, and it can be seen that the ACF
tends to be zero after several iterations and the degree of
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FIGURE 13. Trace of λ for 6 groups of data.

FIGURE 14. ACF of β for 6 groups of data.

autocorrelation is very lowwhich means that the convergence
property is excellent.

Table 2 shows the posterior quantities of the parameters as
well as the posterior confidence intervals. As we can see from
Table 2, the standard deviations of the parameters are at a low
level, which means that the precision of the posterior mean
values meets the requirements. Combining the analysis on the

FIGURE 15. ACF of λ for 6 groups of data.

TABLE 2. Results for parameters fitting.

trace and the ACF of the parameters, we can conclude that
the MCMC method has a strong convergence; in other word,
the results of the parameter fitting are sufficiently accurate.
The densities of λ and β for the 6 groups of data are shown
in Figures 16 and 17, respectively.

After fitting the distribution, the hypothesis test should be
done on the distribution model. In this study, mean value of
each parameter is used to conduct the hypothesis test with
the Kolmogorov-Smirnov (K-S) test method. First, we sort
the TBFs from smallest to largest and calculate the value of
the cumulative distribution function F(ti) and the cumulative
sample frequency Fn(ti) on every data element. The test
statistics are then calculated by equation (22).

Dn = sup
ti
|Fn(ti)− F(ti)| (22)

Table 3 shows the results of the K-S test of the parameters.
DB and ρB are the results of the K-S test method with the
threshold valuesDε and ρε = 0.05. IfDB < Dε and ρB > ρε,
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FIGURE 16. Density of λ for 6 groups of data.

FIGURE 17. Density of β for 6 groups of data.

then the distribution fitting holds. The results clearly show
that all the selected data follow the Weibull distribution.

In addition, we applied theMLE to estimate the parameters
of the Weibull distribution as a comparison. The parame-
ters estimated by the MLE are λ̂MLE and β̂MLE as shown
in Table 4. Furthermore, DMLE and ρMLE are the results of
the K-S test for the MLE and are also shown in Table 4.
Comparing DB and ρB from Table 3 with DMLE and ρMLE

TABLE 3. Results of hypothesis test for Bayesian estimation.

TABLE 4. Results of hypothesis test for MLE.

from Table 4, we can see that for each unit, DB is always
smaller thanDMLE , and ρB is always bigger than ρMLE , which
means the Bayesian estimation is better than MLE in this
case.

3) RELIABILITY ANALYSIS
In this section, we chose the degree of reliability, failure rate
and mean time between failures (MTBF) as the indicators
for reliability. The degree of reliability represents the trend
for reliability over time. The failure rate is the frequency
at which the system or equipment fails per unit of time,
and the MTBF is the average of the interval between two
adjacent faults of the system, which is also one of the most
important indicators for the system’s reliability. The degree of
reliability, failure rate, andMTBF are calculated by equations
(23), (24) and (25), respectively.

R(t) = exp(−λtβ ) (23)

r(t) = λβtβ−1 (24)

MTBF = λ−
1
β 0

(
1+

1
β

)
(25)

where 0 is the Gamma function.
Figure 18 shows the reliability function (97.5% confi-

dence interval) of the 6 units in Table 3. The reliability
declines smoothly, and different units have different descent
velocities. The time when the posterior median reliability of
Sys. 1-COM and Sys. 2-COM drops to 50% is more than
100 hours, while the same time of the other units is less
than 100 hours. This finding indicates that different units in
different systems have different reliability characteristics, and
thus, the maintenance work should be carried out with each
individual.

The failure rate function decreases monotonously over
time and levels off, which means that these units are in an
early failure period and a random failure period as shown
in Figure 19. Additionally, it can be seen that the failure rate
of Sys. 1-COM is lower than any of the other units, which
indicates that the reliability of Sys. 1-COM is the highest.
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FIGURE 18. Reliability function.

FIGURE 19. Failure rate of 6 units.

TABLE 5. MTBF of units.

This can also be proved by theMTBF of these units in Table 5,
which is calculated by equation (25).

V. CONCLUSION
This paper builds a specificmodel for operational data as well
as for the failure data of train control on-board subsystems
based on the data cube, and failure distribution characteristics

are analyzed based on the slice and dice operations of the data
model. After the failure distribution characteristics are ana-
lyzed, the representative equipment and systems are selected
to analyze the reliability evaluation, which is estimated by
Bayesian estimation. Further studies are expected to analyze
the influence of different systems and their failure situations
on the system’s reliability.
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