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ABSTRACT Blind image quality assessment (BIQA) methods aim to predict quality of images as perceived
by humans without access to a reference image. Recently, deep learning methods have gained substantial
attention in the research community and have proven useful for BIQA. Although previous study of deep
neural networks (DNN) methods is presented, some novelty DNNmethods, which are recently proposed, are
not summarized for BIQA. In this paper, we provide a survey covering variousDNNmethods for BIQA. First,
we systematically analyze the existingDNN-based quality assessmentmethods according to the role of DNN.
Then, we compare the prediction performance of various DNN methods on the synthetic databases (LIVE,
TID2013, CSIQ, LIVE multiply distorted) and authentic databases (LIVE challenge), providing important
information that can help understand the underlying properties between different DNN methods for BIQA.
Finally, we describe some emerging challenges in designing and training DNN-based BIQA, along with few
directions that are worth further investigations in the future.

INDEX TERMS Deep learning, blind image quality assessment (BIQA), deep neural networks (DNN)
model, deep features, quality prediction.

I. INTRODUCTION
With the development of social media and the increasing
demand for imaging services, an enormous amount of visual
data is making its way to consumers. Digital images are
likely to be inevitably degraded in the processes from con-
tent generation to consumption. The acquisition, processing,
compression, transmission, or storage of images is subject
to various distortions, resulting degradation in visual quality.
Therefore, methods for image quality assessment (IQA) have
been extensively studied for the purpose of maintain, control
and enhance the perceived image quality.

In principal, subjective assessment is the most reliable way
to evaluate the visual quality of images [1], [2]. But this
method is time-consuming, expensive, and difficult to imple-
ment in real-world systems. Therefore, objective assessment
of image quality has gained growing attention in recent
years. To what extent a reference image is used for quality
assessment, existing objective IQAmethods can be classified
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into three categories: full-reference (FR), reduced-reference
(RR) and no-reference/blind (NR/B) methods. The FR IQA
methods make full use of the undistorted reference images
to compare with distorted images and measure the difference
between them [3]–[5], while the RR IQA methods use partial
information in reference images [6]–[8]. However, in many
practical applications, it is difficult to obtain a reference
image of the distorted image to be assessed, making power-
ful FR and RR IQA methods inapplicable. On the contrary,
the BIQA methods have no access to the reference images to
evaluate image quality [9], [10]. Thus, it has become increas-
ingly important to develop effective BIQA methods which
can predict image quality without any additional information.

Most exiting BIQA methods follow the flowchart shown
in Fig. 1. Some BIQA methods is developed based on clas-
sical regression methods [11]. Researchers attempt to design
some hand-crafted features that could discriminate distorted
images, and then train a regression model to predict image
quality. Early BIQA methods are based on a distortion spe-
cific approach [78], [79], which commonly uses the prior
knowledge of the distortion types for quality prediction.
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FIGURE 1. The flowchart of existing BIQA methods.

In this approach, the distortion-specific features relevant to
quality perception are extracted and used for quality estima-
tion. Li et al. [78] propose a BIQA method based on the
blur distortion. They first calculate the gradient image to
characterize the blur distortion. Then, they divide the gradient
image into blocks and extract the energy features of each
block relevant to the blur distortion. Finally, the image quality
is obtained by normalizing the moment energy. However,
when image is distorted via unknown distortion channels,
it becomes much more difficult to find specific features to
measure image quality.

Recently, in order to assess the image quality without the
prior knowledge of distortions, the non-distortion-specific
BIQAmethods have been developed. The natural scene statis-
tics (NSS)-based methods are widely used to extract reli-
able features, which assume the natural images share certain
statistics and the occurrence of distortions may change these
statistics [14]–[16], [80]–[82]. In [14], [16], they aim to uti-
lize NSS model, including the multivariate Gaussian (MVG)
model [14] and the Generalized Gaussian distribution (GGD)
model [16], to extract low-level image features for quality
prediction. Although those methods have greatly improved
the BIQA performance, there still exists a large gap between
prediction scores and subjective scores. In order to further
improve prediction performance, Wu et al. [15] use the
multi-channel fused image features to simulate the hier-
archical and trichromatic properties of the human vision.
Then, the k-nearest-neighbor(KNN)-based model is used
to evaluate image quality. Similarly, Ji et al. [80] assume
that image quality is highly correlated with the degraded
visual information. Therefore, they use the joint entropy of
degraded features to assess image quality, which stimulates
the visual information of the images. Instead of studying
the quality-relevant image features, Wu et al. [81] focus on
exploring efficient learning models. They propose a novel
local learning method to improve the prediction performance,
which is beneficial to the training of the complex and large
data sets.

However, the obvious limitation of those BIQAmethods is
that the hand-crafted features may not be able to adequately
represent complex image structures and distortions. There-
fore, to improve prediction performance, attempts have been
made to adopt deep BIQA methods, recently. The motivation
is that the deep neural network (DNN) can automatically
capture more deep features relevant to quality assessment and

optimize these features to improve prediction performance by
using back propagation method. Therefore, the DNN can be
applied to various image quality assessment (IQA) methods
[83], [84] and provides a very promising option for address-
ing the challenging BIQA task.

It is well known that deep learning techniques have
achieved great success in solving various images recognition
and object detection tasks [17]–[20]. The main reason is that
it relies heavily on large-scale annotated data, like the image
recognition oriented ImageNet [21] dataset. Unfortunately,
for BIQA task, since there is a lack of sufficient ground truth
labels IQA data for training, it is difficult to straightforwardly
apply DNN to BIQA directly. This is because the DNN can
lead to overfitting phenomenon, which means the trained
model would have a perfect performance for training data
but the performance is unreliable for unseen data. Therefore,
researchers in the image quality community pay more atten-
tion to explore the useful DNN-based methods to solve this
problem.

Previous surveys have also been summarized for BIQA
methods, including classical methods [22]–[24] and DNN
methods [25], [32]. However, the surveys of classical meth-
ods lack the analysis of the popular DNNmethods [22]–[24].
And although some DNNmethods are reviewed in [25], these
methods can only be applied to the case where DNN input
is the image patch. At present, there are still many novel
DNN methods that have not been summarized [26]–[31].
In addition, a simple comparison of different DNNmethods is
represented in our previous work [32], but we have not made
a comprehensive analysis and evaluation of various DNN
methods, including the design strategy, network architecture,
network complexity, advantages and disadvantages.

Therefore, in this paper, we intend to systematically ana-
lyze the various DNN methods, which aims to summarize
the intrinsic relationship among various DNNmethods. First,
according to the different role of DNN, we divide the DNN
methods into two categories, which could distinguish differ-
ent DNNmethods easily. One is the support vector regression
(SVR)-based BIQAmethods, which use DNN to extract deep
feaures and SVR methods to predict image quality. The other
is the DNN-based BIQAmethods, which takes full advantage
of back-propagated capability of DNN to optimize predic-
tion accuracy. Moreover, we analyze the first type of DNN
methods according to whether the input of DNN is low-level
features or image/image patch data. Similarly, we analyze
the second type of DNN methods according to the difference
of DNN output. Fig. 2 shows the classification of different
DNN methods, which aims to better understand different
DNN methods easily. Finally, we summarize useful find-
ings and discuss the challenges of DNN methods for BIQA.
We hope that this study will be beneficial for the researchers
to better understand this field.

Our contributions can be summarized as follows.
1)According to the different roles of DNN, we propose

a new classification method, which could distinguish and
improve understanding different DNN methods.
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FIGURE 2. The classification of DNN methods for BIQA.

2)We analyze the DNN methods proposed in recent
years, in terms of the contributions, the network architec-
ture, the complexity, and the advantages and disadvantages.
Especially, we also summarize many novel DNN methods
that have not been discussed in previous literature surveys.

3)We systematically evaluate the prediction performance
in difference DNN methods and obtain some interesting con-
clusions. Meanwhile, we also discuss some potential chal-
lenges and solutions for future research.

The rest of this paper is organized as follows. In Sec. II,
we reviews the methods of SVR-based image quality pre-
diction using deep features extracted by DNN. In Sec. III,
we reviews the methods of DNN-based image quality pre-
diction in detail and compare the implementations of these
methods. The prediction performance and complexity of dif-
ferent DNN methods are analyzed in Sec. IV. In Sec. V,
we provide some notable challenges of DNN-based BIQA
methods. Conclusions are given in Sec. VI.

II. SVR-BASED IMAGE QUALITY PREDICTION USING
DEEP FEATURES EXTRACTED BY DNN
Since the deep features from DNN can capture more useful
information related to image distortions and human percep-
tions [25], the straightforward approach to employing DNN
models is to extract discriminative deep features for various
distorted images, and then evaluate the image quality using
conventional SVR method. Recent work in the literature
using DNN to extract deep features can be classified into
two major schemes: 1) extracting from low-level features of
image and 2) extracting from data of image/image patch.
Figure 3 shows the flow diagram of these methods [33]–[35],
[37]–[39].

A. DEEP FEATURES EXTRACTED FROM
IMAGE LOW-LEVEL FEATURES
This kind of method aims to feed a large number of low-
level image features relevant to quality perception into
a DNN to evaluate image quality. Commonly, the low-level

features are based on the NSS and other complementary
features, which can accurately describe the structure features
of distorted images. Then, these low-level features can be
fed into the pre-trained DNN, including deep belief network
(DBN) or stacked auto-encoder (SAE) network [33]–[35],
to extract deep features. Especially, the unsupervised train-
ing method [36] is adopted to pre-train the DBN or SAE
network. The goal is to overcome small IQA database prob-
lem and initialize each layer parameters of the pre-trained
the DBN or SAE network. Afterwards, the parameters of
entire network are fine-tuned with the labeled image features.
Finally, the deep features extracted from the DBN or SAE
model, along with the corresponding subjective scores are
used to evaluate image quality by SVRmethod. Table 1 shows
the details of these methods.

Tang et al. [33] extract three types of low-level features,
including NSS, texture, and blur/noise features. The NSS
and texture features include the univariate and cross-scale
histograms and statistics of complex wavelet transform of
images (the real part, absolute value, and phase). These fea-
tures aim to describe image global and local distortions. The
blur/noise features include the patch PCA singularity [86],
the two color model coefficient histograms [87], and the step
edge based blur/noise estimation [88]. The blur/noise features
can be added because these distortions are fundamental to
various distortion types. Then, all of these low-level features
are used to pre-train each layer of the DBN. And, the low-
level features of IQA database with ground truth scores are
used to fine-tune the entire DBN. Finally, a Gaussian process
regression is used to obtain synthetic image quality score.

Ghadiyaram et al. further extend this work in [34] by
combining DBN with SVR to predict authentically distorted
images’ quality. They adopt FRIQUEE method to extract
low-level features of authentic images. FRIQUEE [77] first
constructs several feature maps in multiple color spaces
and transform domain, including luminance feature maps,
LAB feature maps, and LMS feature maps. Then, the GGD,
AGGD, and wrapped Cauchy models are used to fit feature
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TABLE 1. The details of these methods [33]–[35].

maps and extract statistical features. Finally, these low-level
features can be fed into a DBN model with extracted deep
features and image quality scores are predicted by using SVR
method.

In addition, Lv et al. [35] further improved the prediction
accuracy and generalization ability. The authors select the
multi-scale difference of Gaussian (DoG) features that are
highly correlation with perceptual quality. This is because
DoG is believed to simulate the neural processing procedure
of how eye extracts details from images and convey them
to the brain. Then, the SAE model is used to obtain deep
features. Finally, these deep features are used to train an SVM
regression model to predict image quality.

Compared with traditional BIQA methods, the major
advantage is deep features extracted from low-level features
is highly related to quality degradation. But the limitation is
hand-crafted low-level features need to be carefully designed
as the input to DNN, which does not take full advantage
of DNN.

B. DEEP FEATURES EXTRACTED FROM
IMAGE/IMAGE PATCHES
It is also observed that the deep features can be effectively
mined by feeding data of image or image patches into the
pre-trained DNN [37]–[39] for classification or recognition
task, such as AlexNet [17], GoogleNet [18], RestNet [19],
VGGNet [20]. Since the IQA is the human visual per-
ception of the high-level semantics [40], the methods of
image or image patches as DNN input can avoid the limitation
of selecting low-level features to represent image high-level
semantics accurately.

More specifically, some methods use image patches to
extract deep features and these deep features derived from
image patches are aggregated or pooled. Then, the predicted
quality of images is obtained by SVR method. In [37],
the authors use multiple overlapping image patches as input
to represent the whole image. They select the optimal layer of
the pre-trained DNN model to extract deep features of each
patch. Then, three kinds of statistical methods can be adopted
to aggregate high-level semantic features of different patches.
These aggregated features related to the whole image are fed
into a linear regression model to predict image quality.

In addition, the deep features involving high-level seman-
tic information of images are often used to evaluate image
quality [38], [39], which is more consistent with human
perception of images [41]. Sun et al. [38] proposed a BIQA
framework, which is inspired by the human visual perception

of image quality that involves the integrated analysis of
global high-level semantics and local low-level characteris-
tics. They use the first fully-connected (FC) layer of pre-
trained AlexNet architecture to extract deep features, which
aim to represent high-level semantic features associated with
global image content. In addition to considering the high-
level semantics, they also utilize the saliency detection and
Gabor filters to perform local low-level features relevant to
local image content. These features are combined to evalu-
ate overall image quality by using SVR method. Similarly,
Wu et al. [83] hypothesize that different levels of distor-
tion generate individual degradations on hierarchical fea-
tures. Therefore, they propose a BIQA framework based
on hierarchical feature degradation. They first extract the
low-level image features based on the orientation selectivity
mechanism in the primary visual cortex, and then they use
the last layer of the residual network (ResNet50) to extract
deep features of visual content. Combining with the low-
level image features and deep features, the image quality
score is predicted by SVR methods. To further improve the
prediction accuracy, Gao et al. [39] exploit multi-level deep
feature fusionmethod to evaluate image quality. They assume
that using only the last few layers’ deep features may unduly
generalize over local artifacts. Therefore, multi-level features
representation compensates for local degradations. A DNN
model formed by the pre-trained VGGNet is used to extracted
image deep features over each layer. Afterwards, they utilize
the SVR method to estimate the quality score from each
layer’s feature vector. The image quality is estimated by
averaging layer-wise predicted score.

Considering that training a deep network is typically dif-
ficult for the small IQA database, these methods tackle the
insufficient IQA database by extracting deep features from
the pre-trained DNN model. Meanwhile, instead of selected
low-level features as network input, the mehtods of deep
features extracted from image or image patch data directly
are more accurate. However, since the deep features extracted
from the pre-trained DNN aims to deal with classifica-
tion or recognition tasks, applying these features directly to
our IQA task may not all be useful.

III. DNN-BASED BIQA USING DEEP FEATURES AND
QUALITY PREDICTION TOGETHER
Instead of using DNN models to extract deep features related
to quality degradation, this method directly uses the DNN
model to predict image quality. According to different eval-
uation metrics for quality prediction, there are two kinds of
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FIGURE 3. The flowchart of extracting deep features methods from DNN in [33]–[35], [37]–[39].

FIGURE 4. The flowchart of predicting image quality categories’ methods in [43]–[46].

popular evaluation methods in recent years: predicting image
quality categories and predicting image quality scores.

A. PREDICTING IMAGE QUALITY CATEGORIES
The DNN methods of predicting image quality catagories
can be used to predict image quality categories, such as
excellent, good, fair, poor or bad [42]. These labels have
explicit semantic meanings in different quality ranges, so the
category results can be directly used to describe the image
quality. Meanwhile, the categorical quality assessment is a
natural and viable way for human perception and can poten-
tially reduce the randomness of the quality scores. Therefore,
this kind of method treats BIQA as a classification problem
to satisfy human visual behaviors. [43]–[47]. The general
flowchart of these methods is shown in Figure 4.

Hou et al. [43] design deep network to classify images to
five grades-excellent, good, fair, poor, or bad corresponding
to the five point quality scale recommend by the Interna-
tional Telecommunication Union. The low-level features of
NSS relevant to gray images can be extracted in the wavelet
domain and fed into the DBN for layer-by-layer pre-training.
Then, they recast image quality into five grades by using
subjective method. Finally, they fine-tune the DBN to classify
image grades by maximizing the probabilistic distribution.
Further, considering not every region contributes to image
quality perception, Hou and Gao [44] also propose saliency-
guided deep framework to improve prediction performance.
First, they extract salient patches of natural image and adopt

independent component analysis (ICA) method to learn basic
filters. The same procedure can be applied to encoder salient
patches of distortion image. The image-level features are
a histogram that represents the frequency of learned ICA
filters. Second, the DBN is pre-trained by layer-wise learning
method and is fine-tuned by discriminative learning method,
which makes the deep network can classify image grades.

The previous works pay attention to describe how to con-
struct deep network but ignore to provide a clear under-
standing of why their framework performs so well. In [45],
the authors not only propose a SAE method to classify image
grades but also try to give a visualization explanation of how
it works and why it works well. This is the first time to
analyze and visualize deep network framework. Similar to the
methods in [43], [44], they derive NSS-based features from
shearlet-transformed RGB images and use the SAE model to
classify seven quality grades that the train process is similar
to DBN. In addition, they visualize the progression of training
features to understand the DNN framework in the fine tuning
stage.

The disadvantage of these methods is that the handcrafted
features as network input cannot completely represent image
distortions and contents. In order to overcome this problem,
Bianco et al. [46] propose the end-to-end DNN framework
to improve the prediction performance. They first pre-train
AlexNet for classification task, which use 3.5 million images
to pre-training from the ImageNet and Places databases. Then
the pre-trained AlexNet is fine-tuned to classify the five

123792 VOLUME 7, 2019



X. Yang et al.: Survey of DNN Methods for Blind Image Quality Assessment

image quality grades. Further, the prediction performance is
better than the previous methods [43], [44].

In [47] a vector regression DNN model is proposed to
obtain image quality grades. They divide image scores into
five ordered intervals in response to five different grades.
A belief score vector is computed by (1) to describe the
probabilities of an image being assigned to different quality
grades.

ES = {s1, s2, s3, s4, s5} sk = y− uk k = 1, 2 . . . , 5 (1)

where ES is a belief score vector, which collects five quality
grade; sk is the defined belief score to describe quality grade;
y is the mean opinion score (MOS) of an image.

The DNN is trained to capture the associated belief score
vector. It suggests that the smaller the value of |sk | is,
the image quality is closer to the k-th grade. Finally, they
propose an object pooling strategy to convert image quality
grade into score, which fully takes into account the influence
of the salient objects on image quality.

Although prediction grade methods are much more nat-
ural to evaluate image quality, the drawback is that dif-
ferent definitions of grades of subjective opinions can sig-
nificantly impact the prediction performance of algorithms.
Meanwhile, in order to make a fair comparison with other
algorithms, the qualitative evaluations are converted into
numerical scores by using different methods. Different
conversion methods will also affect the final evaluation
performance.

B. PREDICTING IMAGE QUALITY SCORES
The methods of predicting image quality scores are the most
popular for BIQA. The characteristic of this method is purely
data-driven and allows for end-to-end optimization of feature
extraction and regression. It means that these DNN meth-
ods can be used to predict image quality scores, such as
DMOS=72.34, DMOS=25.2. This gives a specific scalar as
a score to measure image quality. Especially, most of DNN
methods adopt this approach to predict image quality, because
many of IQA databases use scalar scores to describe image
quality. Therefore, in order to keep the predicted results in
consistent with the IQA databases, this kind of method can
be treated as a regression problem. Although previous work
has summarized this method [25], it only introduce the meth-
ods using image patch as DNN input and some novel DNN
methods that have been appeared recently are not analyzed
[26]–[31], [53], [54], [57]. Thus, we will systematically sum-
marize and analyze the existing methods. According to dif-
ferent input in DNN, we propose a classification method: the
patch-input methods and the image-input methods.

1) THE PATCH-INPUT METHODS
The performance of DNN heavily depends on the number of
training data. However, the currently available IQA databases
are much smaller compared to the classification or recog-
nition tasks [17], [18]. Moreover, obtaining large-scale reli-
able human subjective labels is very difficult. To expand

the training database, the patch-input method aims to divide
image into multiple patches as DNN input to increase training
samples.

There are many methods based on image patches as DNN
input. According to the different labels of training patches,
we discuss thesemethods in twoways. One is to use the image
subjective score (SS) as image patch label [30], [48]–[53].
The other is to use FR as image patch label [54]–[57].

a: SS AS IMAGE PATCH LABEL METHODS
In [48], this is the earliest method that integrates feature
learning and patch quality prediction into an end-to-end
network. They divide gray images into 32 × 32 patches.
Each image patch with image subjective score as input is
used to train DNN, which consists of 1 convolutional (C),
2 pooling (P) and 3 full-connected (FC) layers. The image
quality is estimated by the average score of all image patches.
Nevertheless, the problem is that they ignore that the visual
quality of different local regions is often different and humans
tend to concentrate on the regions of saliency when eval-
uating an image. Therefore, the salient patches of images
can be considered to predict image quality in the following
methods [49]–[51].

In [49], the authors design a seven-layer DNN architec-
ture to capture patch-level quality prediction focusing on
color images. They then perform the saliency detection with
free energy based neural theory to obtain image saliency
map [58]. After that, they define the weights of image
patches by the corresponding saliency map. The final image
quality score is yielded with the weighted average of each
image patch. To further improve prediction performance,
in [50], [51], they consider only the salient patches to eval-
uate image quality score. First, they also split the image
into patches and use typical saliency detection methods to
obtain image saliency map. Further, they assign a threshold
to remove non-salient patches. The remaining salient patches
are reweighted into the range of [0, 1]. The whole image
quality score is calculated by the weighted average over
salient patches. The general flowchart is shown in Figure 5.

However, the previous weights of saliency maps are set
artificially, which is inaccurate to image quality. Some
methods study the use of end-to-end DNN to simultane-
ously obtain patches’ scores and corresponding weights. The
weights obtained by DNN learning method more accurately
respond to the image perception. In [52], the distorted image
patches can be fed into DNN, which consists of 9 C layers, 5 P
layers for feature extraction and 2 FC layers for regression.
The role of first FC layer of DNN architecture is used to learn
patches’ weights and the second FC layer is used to learning
patches’ scores. The image quality score is calculated by
weighting average of all patches’ scores. Compared with the
models employing simple average pooling or artificial setting
weight pooling, this method improves prediction accuracy
and has well generalization ability. Similarly, in [53], they
also divide image into 100 image patches and fed them into
the DNN to obtain patch score and weight. Considering the
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FIGURE 5. The general flowchart of SS as image patch label methods in [49]–[51].

FIGURE 6. The overall framework in [30].

relationship between image contents and patches’ weights,
the global regression layer is used to optimize image predic-
tion score.

In addition, in order to learn the complicated relation-
ship between visual appearance and the perceived quality,
Yan et al. propose a novel two-stream DNN architecture,
which takes the raw image and the gradient image as input
visa two sub-networks [30]. The motivation of this design is
to integrate input information from different domains to rep-
resent the quality of distorted images. Each image is divided
into different patches as the inputs of the image stream sub-
network. Each of the sub-network consists of ten layers to
extract image features. Especially, the region-based full con-
volutional layer is used to handle the locally non-uniform
distortions of images. The gradient stream sub-network is
similar to image stream and the input is gradient patches.
Then, a concatenate layer is used to fuse features from the two
streams and the followed three FC layers are used to predict
patch quality. Finally, the quality score of the whole image
is calculated by averaging all patches’ scores. The overall
framework of the algorithm is presented in Figure 6.

Table 2 compares the implementation of reported patch-
input algorithms, which the path label is the ground truth
score. It is worth nothing that C, P and F mean convolutional
layer, pooling layer and full-connected layer, respectively. wi
means the weight of the i-th patch. M means the number
of all patches of an image. K means the number of salient
patches of an image. qi is the prediction patch score from

DNN model. In table 2, we find that because of the increase
of training samples, the patch-input algorithms can design a
deeper network to evaluate image quality score. Meanwhile,
these methods mainly pay attention to the effect of salient
patches on image quality. However, the labeling of image
patches with the whole image subjective score is problematic,
because the ground truth score for each patch does not exist.
In addition, the whole image quality score is calculated by the
sample mathematical method, which may affect the accuracy
of image quality prediction.

b: FR AS IMAGE PATCH LABEL METHODS
To overcome the problem of inaccurate patch label, the strat-
egy that FR methods are used to calculated proxy score of
image patch has been studied [54]–[57]. Figure 7 shows the
flowchart of these methods.

In [54], it is a novel completely blind DNN methods.
By taking the large scale of image patches as the training set,
the authors design a feature fusion DNN in different layers
and use FSIM as the label to train DNN architecture. The
DNN consists of 6 C layers, 1 P layer, 2 sum (SU) layers
and 2 FC layers. The role of the sum layer is to fuse different
layer features to prevent gradient vanishing [19]. Especially,
the training patch label is calculated by using the FR method,
which is an accurate method to calculate patch label without
subjective scores.

In [55], J. Kim et al. propose a two-stage DNN-based to
evaluate image quality. The patch quality score generated by
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TABLE 2. The comparison of DNN methods by using SS as patch label in [30], [48]–[52].

FIGURE 7. The flowchart of FR as image patch label methods in [54]–[57].

TABLE 3. The comparison of DNN methods by using FR as patch label.

FSIM method are used as proxy patch label in the first stage
of training. In the second stage, the feature vectors obtained
from image patches are aggregated using statistical moments
and then a global regression layer is used to predict image
quality score. Rather than using complex DNN to produce
proxy scores, the same authors develop a novel DNN, which
aims to regress into objective error maps [56]. In the first
stage, the objective error maps are used as proxy regression
targets to train DNN, which is calculated by the absolute
difference between the reference image patch and distortion
image patch. In the second stage, the extracted feature maps
from DNN are fed into the global average pooling layer, then
regress onto ground-truth scores by using two fully connected
layers. The prediction accuracy is competitive with the state-
of-the-art methods.

To further improve prediction performance, Pan et al.
propose a novel framework for BIQA, which consists of
a generative quality map network and a quality pooling

network [57]. They employ MDSI [59] to generate patches’
quality maps as labels and select U-Net [60] as a base of
generative network to train image patch quality map. The
output quality maps are fed directly into the pooling network
to regress patches’ scores. Finally, the final score of the whole
image is obtained by using the average of all image patches’
scores.

Table 3 compares these algorithms to obtain patch label
by using the FR methods. Compared with the methods of
subjective score as patch label, the FR metrics are used as
intermediate local targets for each image patch, which reduce
the error of using the whole image subjective score as patch
label. In addition, instead of the simple mathematical calcu-
lation to obtain image quality score, the global optimization
method is more accurate for DNN.Whereas, the disadvantage
of using FR methods as patch label is that it is very hard to
obtain reference images in many practical applications for the
FR metrics.
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2) THE IMAGE-INPUT METHODS
Rather than using image patches as the input, the image-input
methods aim to train a prediction model by using the whole
image and its associated ground truth, which can effectively
overcome the difficulty of being able to obtain the ground
truth of image patches. However, there has been limited
effort towards end-to-end optimized BIQA using DNN, pri-
marily due to the lack of sufficient ground truth labels of
images.

Recently, the image-input methods are developed
[26]–[29], [31], [61]. The novelty is that, despite a lack of
image databases, the DNN based on image as input can
also evaluate image quality very well. This is because the
image expansion techniques are used to solve insufficient
IQA database. According to the different extended objects,
we classify these methods into two sub-categories: expanding
distorted images and expanding reference images.

a: EXPANDING DISTORTED IMAGES’ METHODS
For expanding distorted images’ methods, two expanded
ways are shown: large databases, such as the ImageNet [21],
Places2 [62], and the artificial generation images [26]–[29].
The DNN then is trained by the transfer learningmethod [63].
This is a common way to overcome the small database
task.

When the distorted images come from the large database,
these distorted images can be used to pre-train a DNN. Then,
the small IQA database is used to fine-tune the pre-trained
DNN to evaluate image quality score. In [61], Li et al. uti-
lize Network in Network (NIN) [64] and transfer learning
technique to deal with BIQA problem. The first step is that
the NIN is pre-trained for the classification task on the large-
scale ImageNet database. Through this pre-training process,
the good initial weights can be obtained, which is much
better than randomly initialized weights. In the second step,
they modify the pre-trained NIN architecture, which the final
layer is replaced by regression layers. In the third step, only
the small IQA images with ground truth scores are used to
fine-tune the pre-trained NIN. However, for synthetic IQA
database, such as LIVE [65], TID2013 [66], CSIQ [67], LIVE
multiply distorted (MD) [68], the prediction performance is
not accurate. This is because the pre-trained NIN learns the
features of authentic distortions of the ImageNet database,
which is different from synthetic distortions.

In [31], they assume that various kinds of distortions exist
in different IQA databases, which requires different level
features to predict visual quality. Therefore, they propose
a DNN model using multiple levels of features simultane-
ously to achieve a consistent performance over different IQA
databases. The ResNet-50 [19] model which is pre-trained
on the ImageNet database is adopted as baseline. In the
fine-tuning stage, they divided all ResNet blocks into four
groups and extract each group’s features. Then, they define
an encoder layer to unify the feature size from different
levels. Finally, these multiple levels of features are combined
and fed into the FC layer to evaluate image quality score.

This method shows the state-of-the-art accuracy on different
IQA databases.

Besides, the artificial generation method [26], [27], [29]
can be used to construct the large-scale pre-training distor-
tion images, which is similar to the IQA database. It is far
from realistic to carry out a full subjective test to obtain a
MOS/Difference MOS (DMOS) for each image. Whereas,
the challenge of this method is how to obtain the ground truth
labels of generated images in the pre-training stage.

To overcome this problem, the motivation of Rank [26]
is to design a new strategy to generate the large-scale dis-
tortion images without laborious human labeling. According
to the rule that the image quality decreases with the increase
of the distortion levels, they synthetically generate the ranked
image pairs with five different distortion levels from Water-
loo Exploration database [69]. The Waterloo Exploration
database contains 4744 pristine images and covering var-
ious image contents. Especially, the generated distortion
image pairs are similar to the IQA database. In the LIVE
database, they exclude fast fading (FF) distortion type and
generate the remaining four distortion types: JPEG compres-
sion (JPEG), JPEG2000 compression (JPEG2000), additive
while Gaussian noise (WN), Gaussian blur (GB). In the
TID2013 database, they generate 17 out of a total of 24 dis-
tortion types. Moreover, we do know for any pair of images
which is of higher quality. Then, using the pairs of the
ranked images, we pre-train a Siamese network [70] to learn
image distortion levels by using the proposed Siamese back-
propagation technique. Finally, they fine-tune a branch of
Siamese network to predict image score, which aims to trans-
fer image distortion levels to quality scores. Figure 8 shows
the flowchart of Rankmethod. Compared with existing BIQA
methods, the prediction performance is the best in LIVE
database and even outperforms the state-of-the-art in FR
methods.

However, the limitation of the Rank method is that it
can only simulate distortion images in artificially synthetic
IQA database, but it is difficult to apply this method to
authentic IQA database. This is because we cannot know
the priori information of authentic distortion images. There-
fore, to improve performance of different IQA databases,
Zhang et al. design an end-to-end DB-CNN solution for
BIQA that works for both synthetically and authentically
distorted images [27]. First, they describe the generation
process of the large-scale database in the pre-training step.
They use two large-scale databases: Waterloo Exploration
database and PASCAL VOC 2012 [71] to generate distorted
images. Considering the distortion types of the synthetic IQA
databases, they produce nine distortion types related to the
LIVE, TID2013, CSIQ and LIVEMD databases, i.e., JPEG,
JPEG2000, WN, GB, pink noise, contrast stretching, image
quantization with color dithering (ICQD), over-exposure
and under-exposure. Especially, the first six distortion types
cover the entire CSIQ database. Meanwhile, they synthe-
size distorted images with five distortion levels except for
over-exposure and under-exposure, for which only two levels
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FIGURE 8. The flowchart of rank method in [26].

FIGURE 9. The flowchart of DB-CNN method in [27].

are generated. In summary, the pre-training database contains
852891 distorted images. The ground truth label is presented
as a 39-class indicator vector to encode underlying distortion
types at the specific distortion level. The dimension of ground
truth vector comes from the fact that there are seven distortion
types with five levels and two distortion types with two
levels.

Then, they design the architecture of the S-CNN for syn-
thetically distorted images, which consists of 9 C layers, 1 P,
3 FC layers and a softmax (S) layer. It aims to classify the
probability of each distortion type at the specific degrada-
tion level. Considering this DNN model is not beneficial for
authentic IQA databases, they select the pre-trained VGG-16
network for the classification task on ImageNet as another
branch to extract relevant features for authentically distorted
images. This is because the distortions in ImageNet occur as a
natural consequence of photography rather than simulations.
Finally, in the fine-tuning step, they tailor the pre-trained
S-CNN and VGG-16 and introduce bilinear pooling module
to combine the S-CNN for synthetic distortions and VGG-16
for authentic distortions into a single model, which aims to
discriminate synthetic or authentic distortions. The FC layer

follows the bilinear pooling layer to predict image quality
score. The flowchart of DB-CNN can be shown in Figure 9.

A closely related work to DB-CNN [27] is MEON [29],
a cascaded multi-task DNN framework for BIQA. This
method also pays attention to the influence of distortion
types and levels on quality degradation. Figure 10 shows the
flowchart of MEON method. The subtask I aims to pre-train
a distortion type identification network, for which large-scale
training samples are readily available. They select 840 high-
resolution natural images to generate C distortion types’
images and each distortion type images has five distortion
levels. The ground truth label is a C-dimensional vector to
encode distortion types. This network consists of 4 C layers,
4 P layers, 2 FC layers and 1 S layer. Especially, they
choose biologically inspired generalized divisive normaliza-
tion (GDN) instead of rectified linear unit as the activation
function of C layers and FC layers. The sub-task II network
appends two FC layers after the shared DNN architecture
from sub-task I. Then, they define a fusion layer (FS) that
combines the distortion types’ features from sub-task I and
the distortion levels’ features from sub-task II to yield an
overall quality score.
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FIGURE 10. The flowchart of MEON method in [29].

TABLE 4. The comparison of the image-input DNN methods.

FIGURE 11. The flowchart of the HIQA method in [28].

Table 4 summarizes the expanding distorted images’
methods. LM means the learn method, GT means the ground
truth of generation images and NGI means the number of
generation image. We clearly see that the transfer learning
method is used to overcome the small IQA databases. The
pre-training DNN aims to resolve the classification problem,
because the ground truth labels can be easily known instead
of humans’ subjective judgment. Especially, the depth of
network is proportional to the number of pre-trained samples.
Moreover, in order to deal with authentic images, they add
the sub-network to meet the prediction of authentic IQA
database.

b: EXPANDING REFERENCE IMAGES’ METHODS
This is a novel topic to use generative adversarial network
(GAN) to augment images. Since the distortion images and

corresponding non-distortion reference images are typically
absent in IQA databases, it leads to the prediction perfor-
mance of image quality being not accurate. Thus, the HIQA
method [28] aims to address this problem by combining the
GAN and the GAN-guided quality regression (R) networks.
The Fig.11 shows the flowchart of the GAN method. First,
the quality-aware generative (G) network can be used to over-
come the absence of reference image, which aims to generate
the hallucinated reference image Ih conditioned on the dis-
torted image Id . In order to reduce the difference between the
hallucinated image and the corresponding reference image,
the loss function of G network can be designed by using the
pixel-wise error and the perception-wise difference. Second,
they propose a IQA-Discriminator (D) network to adjust the
loss of G to produce high perceptual outputs, even when G
fails to generate hallucination images, the predicted scores
of R network should still be reasonable value. Finally, the
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distorted images and their discrepancy maps between halluci-
nated images and its corresponding distortion images are fed
into the R network and the high-level features fusion scheme
is adopted to optimize R network. Especially, the training
strategy is set. The GAN network is trained to generate a large
number of the hallucinated images, which is similar to the
reference images in IQA database. And then, the R network
is trained to predict image quality score. In GAN network,
the D network is first trained to distinguish the fake reference
images from the reference images of the IQA database. Then,
the G network is trained to generate images, which is similar
to the real reference images in the IQA database. Finally,
the image quality score can be predicted by optimizing the
loss of the R network.

IV. THE PERFORMANCE OF DIFFERENT DNN METHODS
A. DESCRIPTION OF PUBLIC DATABASES
AND EVALUATION METRICS
The choice of a database for training is important for
deep-learning-based models, since their performance highly
depends on the size of the training set. We briefly describe
several popular public databases for BIQA, including
LIVE [65], TID2013 [66], CSIQ [67], LIVE MD [68], LIVE
In theWild Image Quality Challenge Database (LIVEC) [72].

1) The LIVE database [65] includes 29 reference images
and 779 distorted images degraded by five types of distor-
tions (JPEG, JP2K, WN, GB, Rayleigh fast-fading channel
distortion (FF)). Subjective quality scores are provided in
the form of difference mean opinion score (DMOS) ranging
from 0 to 100, where a lower score indicates better image
quality.

2) The TID2013 database [66] contains the largest number
of distorted images. It consists of 25 reference images and
3000 distorted images with 24 different distortion types at
five levels of degradation. The database also provides the
MOS, ranging from 0 to 9. A higher value of MOS indicates
higher quality. The distortion types include a range of noise,
compression, and transmission artifacts.

3) The CSIQ database [67] consists of 30 reference images
and 866 distorted images corrupted by six types of distor-
tions: JPEG, JP2K, WN, GB, pink Gaussian noise and global
contrast decrements. Each image is distorted by five different
distortion levels. Subjective quality scores are provided in the
form of DMOS ranging from 0 to 1.

4) The LIVE MD database [68] was the first to include
multiple distorted images. Images are distorted by two types
of distortions in two combinations: simulated GB followed by
JPEG and GB followed by additive WN. It contains 15 ref-
erences and 450 distorted images, and the DMOS of each
distorted image is provided, ranging from 0 to 100.

5) The LIVE In the Wild Image Quality Challenge
Database (LIVEC) [72] comprises 1162 images, which are
captured using modern mobile devices and contain diverse
authentic image distortions. In addition, no undistorted ref-
erence images are available in LIVEC. Subjective scores are

obtained in the form ofMOS in an online crowdsourcing plat-
form. MOS values lie in the range [0, 100]. The summary of
the above databases is shown in Table 5. Note that Ref means
the number of reference images. Dist means the number of
distorted images. DT means the number of distortion types.
SST and SR mean subjective score’s type and range.

TABLE 5. Comparison of different IQA databases.

Two commonly used metrics [73], Spearman Rank-Order
Correlation Coefficient (SROCC) and Pearson Linear Corre-
lation Coefficient (PLCC) are used for performance evalua-
tion. These metrics are to measure the correlation between a
set of estimated visual quality scores Qest and a set of human
subjective quality scores Qsub, as:

SROCC(Qest ,Qsub) = 1−
6

∑
di

m(m2 − 1)
(2)

PLCC(Qest ,Qsub) =
cov(Qsub,Qest )
σ (Qsub)σ (Qest )

(3)

where m is the number of images in the evaluation database;
di is the rank difference of i th evaluation sample in Qest and
Qsub; cov(.) represents the covariance betweenQest andQsub;
σ (.) represents the standard deviation. The PLCC measures
the prediction accuracy and the SROCCmeasures the predic-
tion monotonicity. For both correlation metrics a value close
to 1 indicates high performance of a specific quality measure.

B. PERFORMANCE COMPARISON
ON INDIVIDUAL DATABASE
We compare the performance of a number of state-of-the-
art BIQA and FR-IQA methods, including: FR-IQA meth-
ods (PSNR, SSIM [3], FSIMc [74], DeepQA [76]) and
classic BIQA methods (BRISQUE [75], BWS [16], COR-
NIA [12], GMLOG [13] and IL-NIQE [14]), current lead-
ing various BIQA methods based on DNN (MGDNN [35],
FRIQUEE [34], GLCP [38], BLNDER [39], DLIQA [43],
SESANIN [45], VPOR [47], CNN [48], Pre-SM [50],
VIDGIQA [53], DIQaM [52], TSCN [30], BIECON [55],
DIQA [56], BPSQM [57], MFIQA [31], RANK [26],
DB-CNN [27], MEON [29], HIQA [28] ).

For the classic BIQA methods and FR-IQA methods,
we conducted experiments by utilizing the respective codes
released by the authors. It is, however, difficult to reproduce
the BIQAmethods based on DNN.We therefore first adopted
the results reported in the respective literature. Especially, for
the cases where experimental results are not given, we use the
released codes to conduct experiments and generate results,
such as CNN, DIQaM, BIECON, RANK.
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TABLE 6. The SROCC and PLCC comparison on the five databases.

As shown in table 6, the SROCC and PLCC values are
reported to various methods. The best three performances
among the BIQA methods are shown in bold. The weighted
average of the SROCC and PLCC over the five databases
is shown in the last column of table 6. The weight of each
database is proportional to the number of distorted images in
the database. Especially, in table 6, NR1 means the classic
BIQA methods. NR2 and NR3 mean the extracting deep fea-
tures from low-level features and image/image patch meth-
ods, respectively. NR4means the prediction grades’ methods.
NR5 means the SS as patch label’s methods and NR6 means
the FR as patch label’s methods. NR7 and NR8 mean the
expanding distorted images’ methods and the expanding ref-
erence images’ method, respectively.

We can see that the DNN methods generally perform bet-
ter than the classic BIQA methods. The fundamental dif-
ference between DNN methods and classic BIQA methods
is that, rather than using hand-crafted features and shallow
regression for classic BIQA, DNN methods search for highly
optimized features automatically and can significantly reduce
prediction errors by the deep network. Meanwhile, we also

show the RMSE performance in table 7. It can be clearly
seen the RMSE performance of the DNN methods is better
than the classical methods in LIVE database. In other IQA
databases, the DNN methods are better than the classical
BWS method. This is because the DNN methods can learn
image deep features related to perception and use the back
propagation method to train the deep network. Therefore,
it is why the DNN methods have been developed rapidly
to improve IQA performance in recent years. In addition,
DNN methods are highly competitive with the FR methods.
However, DNN methods do not use any prior information of
reference for image quality assessment.

We compare the extracting deep features methods from
DNN models [34], [35], [38], [39]. Although some methods
do not give all the experimental results in the five databases,
we clearly see that the methods of directly extracting from
data of image/image patch [38], [39] are better than the
methods of extracting image low-level features [34], [35].
The main reason is that the selected low-features are limited
and cannot adequately describe the image distortions and
contents. However, compared with other end-to-end DNN
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TABLE 7. The RMSE comparison on the five databases.

models, thesemethods are simple by using shallow regression
method.

Compared with the methods of predicting quality
grades [43], [45], [47]. The VPOR method significantly
outperforms the DLIQ and the SESANIN methods in LIVE
database. First, the image grade labels, which are defined
in a belief score vector method, are more accurate than
the subjective grades in DLIQ and the SESANIN methods.
Second, when converting the image quality grade to the image
score, the VPOR method take into account the influence of
object saliency on image quality. It makes the prediction
performance is better than the DLIQ and SESANIN meth-
ods. Therefore, we find that although qualitative classifica-
tion methods are much natural to human visual behaviors,
the classification of grades and the strategy of converting
image score will affect the final prediction performance.

For the patch-input methods, there is a competition
between SS as image patch label methods [30], [48], [50],
[52], [53] and FR as image patch label methods [55]–[57].
When only the image subjective score is used to obtain image
patch label, the prediction accuracy is inferior to the methods
of using FR as patch label. It is clearly see that the BIECON,
DIQA and BPSQM are all better than CNN. This is because
FR method considers the visual sensitivity of the different
image patch, so that the obtained patch label is more accurate
than the whole image subjective score as label. However,
after adding the saliency of the image patch, the subjective
score methods is highly competitive with the FR methods to
obtain image patch label. This is easy to understand because
the differences can be highlighted after considering salient
image patches. Whereas, although the FR methods and the
image patches’ saliency methods can approximately obtain
the quality of different image patches, the obtain labels are
not the real ground truth of image patches, because the ground
truth quality of each patch does not exist.

For image-input methods, we clearly see that in the syn-
thetic IQA databases, the methods of expanding distorted
images [26]–[28] are more benefit than that of directly
using large database methods [31]. In the LIVE database,
the RANK, DB-CNN methods perform superior to the
MFIQA, because artificial generation method can simulate

images with similar distortion types and levels in synthetic
IQA database. Hence, the DNN can roughly learn the fea-
tures of similar distortion images with IQA database in the
pre-training stage. On the contrary, in the LIVEC database,
MFIQAmethod is better than RANK, because the pre-trained
DNN in the large database learn the real distortion features.
However, due to the limitation of synthetic distortion images,
it cannot meet the needs of various databases, which leads
to poor generalization ability in different databases. In order
to overcome this problem, the DB-CNN method design two
sub-networks that can satisfy both synthetic and authentic dis-
tortion, thus improving the prediction accuracy. In addition,
the expanding distorted images’ methods compete with the
expanding reference images. However, it is worth noting that
the popular GAN method is first used to solve insufficient
IQA database problem.

C. PERFORMANCE ON CROSS-DATABASE
It is expected that a robust BIQA model that has learned
on one image quality database should be able to accurately
assess the quality of images in other databases. Therefore,
in table 8, we compare the results of generalizability of
the classic BIQA methods and DNN methods only in the
synthetic distortion databases. But we do not consider train
the DNN model on the authentic image distortion database
(LIVEC). On the one hand, this is because some DNN meth-
ods need to use the reference images or simulated distortions
method to train DNNmodel, such as DIQA [56], RANK [26],
while the LIVEC is the authentic image distortions without
the reference images or prior distortion types. On the other
hand, because of the largely difference between synthetic
and authentic images, many DNN methods do not discuss
cross dataset test between synthetic and authentic datasets.
Therefore, the compared BIQA methods are trained using
all the images from one synthetic database, and then tested
on another database. In the CSIQ and TID2013 databases,
four overlapping distortion types (WN, GB, JPEG, JP2K) are
used.

In table 8, it can be seen that the DNN method is the
best performance when LIVE database is trained and other
subset databases are tested. TheMFIQA andDIQA obtain the
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TABLE 8. The SROCC comparison of the cross dataset test.

better performance than other methods when CSIQ subset
and TID2013 subset are trained, respectively. Therefore,
the generalization ability of the end-to-end DNN methods
is generally better than the classic BIQA methods and the
extracted deep features’ BIQA methods. This is because the
end-to-end methods can use images/image patches data to
learn deep features and reduce the prediction errors by back
propagation method. However, the classic BIQA methods
are limited in extracting hand-crafted features, which cannot
completely represent the image structures and distortions.
Meanwhile, the prediction performance of shallow regres-
sion, such as SVR, is not as good as that of deep regres-
sion network. Similarly, although the extracted deep features
methods can further extract the deep features from the limited
low-level features, the shallow regression restricts the gener-
alization ability.

Furthermore, in DNN methods, the generalizability of the
patch-input methods [48],[52],[56] is better than the image-
input methods [26], [31]. The main reason is the patch-input
methods use the images of IQA database to expand training
samples to train DNN network, but the image-input methods
expand the IQA database by using exterior images. These
exterior images can be fitted as IQA images to expand IQA
database. Because the difference between the fitted images
and IQA images, it reduce the generalization ability of the
DNN model.

D. THE COMPLEXITY OF DIFFERENT DNN METHODS
We calculate the complexity of different DNN methods as
shown in table 9, including CNN, DIQaM, BIECON, RANK,
DB-CNN. Especially, WPs and BPs mean the weight param-
eters and basis parameters, respectively. ATPs means the
total parameters of the DNN. CTs means the parameters of
all C layers and FTs means the parameters of all F layers.
Since C and F layers are used to update network parameters,
the complexity of algorithm is closely related to the C and
F layers’ parameters. In table 9, we clearly see that the
complexity of CNN is lower than the DIQaM, BIECON,
RANK, DB-CNN, because the number of layers of the DNN
is smaller than that of other methods. Further, the complexity
of F layers is higher than that of C layers expect for DIQaM.
Especially, in the DB-CNN, RANK, although the number of
F layer is much smaller than that of C layer, the complexity
of F layer is still higher than the C layer. This is because the

F layer optimizes all local features jointly, while the C layer
only optimizes local features. Compared with DIQaM and
BIECON, since the number FC layers of BIECONmethods is
much larger than the DIQaM, it is easy to understand that the
complexity of BIECON method is higher than the DIQaM.
Therefore, F layer has higher effect on DNN complexity than
C layer. It is worth noting that when designing the deep
network, we need to consider the number of layers and the
proportion of C and F layers.

E. DISCUSSION OF DIFFERENT DNN METHODS
As shown in table 10, we compare the implementations and
of different DNN methods. The first three DNN models are
based on the patch-input methods and the last two DNN
methods are based on the image-input methods. Note that SS
means image subjective score (SS). DL and DTmean the dis-
tortion level (DL) and type (DT), respectively. The compre-
hensive performance is presented in five different databases
(LIVE, TID2013, CSIQ, LIVEMD, LIVEC). In table 10,
we find that the prediction performance is not only related
to the complexity of DNN, but also to the strategy of the
design algorithm. Although the complexity of DB-CNN is
not the highest, the prediction performance is the best in
these methods. The reason is that DB-CNN jointly considers
three factors. First, they select the image-input method, which
can obtain rich distortion information. Second, they consider
the distortion types and levels as labels to describe synthetic
images in the first stage. Finally, in the second stage, they add
a sub-network to predict authentic images.

In addition, since the RANK and DB-CNN methods fix
input image size, images need to be cropped or resized as
input to meet requirement. It leads to input image is not
enough to cover the whole image information and easy to
introduce geometric deformation. Therefore, the intermediate
label and image size will also be considered to improve
prediction performance. Similarly, compared with the patch-
input methods, the DIQaM method is superior to others,
because the patch saliency is used to solve the inaccurate
patch label. Therefore, in order to improve the prediction
accuracy, patch size and proxy score will be considered.

In practical application, we need to find a balance
between the algorithm complexity and prediction accuracy.
For example, in the application of medical images, we pay
more attention to the prediction accuracy. On the contrary,
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TABLE 9. The complexity of different DNN methods.
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TABLE 10. The comparison of implementations of different DNN methods.

in real-time image evaluation system, we will give priority to
the algorithm complexity.

V. CHALLENGES OF DNN METHODS
In the previous sections, we present a comprehensive review
of the recent literature in DNN models for BIQA. Although
DNN-based BIQA methods can achieve outstanding perfor-
mance due to their strong representation capability, there are
several challenges at the same time. Meanwhile, we provide
some solutions to these challenges.

1) Creating the large-scale IQA database The number of
training samples is critical to the success of DNN models.
Currently, the lack of large training data sets is often men-
tioned as a challenge. Although both the image-inputmethods
and the patch-input methods overcome the problem of insuf-
ficient IQA database to some extent, these methods have their
own shortcomings to the label accuracy of generation images.
Therefore, understanding how to successfully create reliable,
very large-scale databases is still an open question.Therefore,
the online crowdsourcing system is one possible solution,
which aims to gather very rich human data in term of subjec-
tive testing. In addition, if a large social media company were
to engage their customers to provide image quality scores,
it would also ensure the aggregate quality of the collected
human data.

2) Exploring unsupervised DNN methods The current
DNNmodels mainly use the supervised end-to-end optimiza-
tion to evaluate image quality. However, the lack of sufficient
ground truth labels is a serious problem for BIQA. Therefore,
we expect that training an end-to-end DNN model in a com-
pletely unsupervised manner is worth further investigations
in the future. This is because obtaining large amounts of
unlabeled data is generally much easier than labeled data
and human learning is largely unsupervised: we discover
the structure of the word by observing it, not by being told
the specific labels. Thus,we could try to design two branch
networks to the unsupervisedmethod. The one is used to learn
the features of reference images and the other is used to learn
the distorted images’ features. Then, the most important is we
need to establish a loss mechanism to quantify the difference
between the two branch networks. In addition, the proxy
mechanism may be designed to replace the image subjective
scores.

3) Explaining the theoretical basis of DNN methods
Although DNN thoroughly understands the data distribution
and results, for human, there is no theoretical analysis

explaining why it works well to the designed DNN architec-
ture and how to further improve the prediction performance.
Therefore, it is meaningful to explore the theoretical guar-
antee of DNN model, in order to guide further researches in
this field. The two methods may be selected to explain DNN
algorithms. One approach could analyze DNN architecture
by using visual method [85]. The visualization of layer-by-
layer features helps understand how the DNN learns useful
features for IQA task. Another is to explain the functions of
DNN according to the algorithms’ requirements so that the
functions of DNN could deal with the IQA problems.

VI. CONCLUSION
This paper presents a systematic survey of various DNN-
based methods for BIQA. We discussed and analyzed the
state-of-the-art DNN methods according to different strate-
gies of DNN models. This classification strategy explicitly
shows the characteristics, advantages and disadvantages of
different DNN methods for BIQA. Especially, some novel
DNN methods, which are not present in previous study,
are also discussed. Then, we compare the performance and
complexity of various DNN models, yet the state of research
in this field is far from mature. Meanwhile, we summarize
the intrinsic relationship among different DNN methods and
obtain some interesting findings, which can help us design
DNN for BIQA. Furthermore, we provide several challenging
issues of using DNN methods for BIQA, which should be
noticed. We hope this survey of DNN methods can serve
as a useful reference towards a better understanding of this
research field.
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