
Received August 15, 2019, accepted August 27, 2019, date of publication September 2, 2019, date of current version
September 13, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2938835

Robust H∞ Interval Observer for Linear Systems
With a Controllable Convergence
Rate: A Parametric Method
LONG-WEN LIU AND DA-KE GU
School of Automation Engineering, Northeast Electric Power University, Jilin 132012, China

Corresponding author: Da-Ke Gu (gudake@163.com)

This work was supported in part by the National Natural Science Foundation of China (NSFC) under Grant 61690210 and Grant 61690212

ABSTRACT In this paper, the design method of a robust interval observer for linear systems with time-
varying disturbances is proposed. First, the H∞-gain performance is established by constructing the transfer
function from disturbances to error dynamic systems of the interval observers. Second, the design problem
about a robust interval observer, equivalent to the eigenstructure assignment of the observer error systems
under the above form and the idea of the eigenstructure decomposition, is solved. Finally, in view of this
situation where there does not exist an observation gain ensuring the cooperativity of the error systems,
a novel parametric approach to design an interval observer with a controlled convergence rate and the
robustness with respect to disturbances is proposed by a linear transformation and the solutions to a type of
generalized Sylvester equations. Besides, the correctness and efficiency of the obtained results are illustrated
by numerical examples and an actual physical system about the longitudinal motion of a Charlie Aircraft.

INDEX TERMS H∞-performance, interval observer, parametric method, time-varying disturbances.

I. INTRODUCTION
Aiming at this widespread problem where some physical
states are quite difficult to be directly measured in the actual
control engineering, the research on the state reconstruc-
tion problem has been intensively concerned by numerous
researchers. And there have been dozens of available and
effective results [1]–[3] since the concept of a Luenberger-
like observer was introduced by D. G. Luenberger
in 1966 [4]. Moreover, with continuous improvement of the
control quality requirements, the parts, which are initially
ignored by researchers for a simple design, are gradually
taken into consideration in the system design, such as non-
linear items [5], uncertainties [6], or delays [7], etc.

As the model-relied observer, its performance will
be inevitably challenged by uncertain factors. There-
fore, in order to achieve an accurate estimation of the
system states, necessary to make a deep study on the
observer design for the systems with disturbances. Imme-
diately, many control strategies are introduced, such as
Adaptive Control [8], [9], Sliding Mode Control [10],
Disturbance-Decoupled
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Method [11], [12] and Lyapunov Stability Analysis [13],
etc. And further, according to their ways to deal with the
model uncertainties, the above methods can come down to
a ‘‘Deterministic Method’’ – in other words, their main goals
are completely to eliminate the impact of uncertainties on
a system. However, as pointed out in [14] by M. Kline,
the uncertainty problem cannot be solved with the determin-
istic methods thoroughly.

Similar to the traditional observer design, the construction
of the interval observers contains the input and output of a
system. Interestingly, the partial information of the system
uncertainties is also involved in the design process as its
feature. Finally, the observation for the states of a system
is well achieved by a pair of dynamic systems, which sur-
round the estimated states tightly with the upper and lower
bounds. Therefore, because of its great breakthrough in struc-
ture and the unique treatment of uncertainties, the interval
observers become one of the research hotspots in observer
theory recently. After introduced by J. L. Gouzé in [15]
and wildly applied to the biological positive systems [16],
[17], the interval observers attract the considerable interest
of researchers.

In [18], M. Moisan et al. developed the relevant
design methods of the interval observers from the positive
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systems to the more general systems, which leads to a
wide discussion about the construction of system cooper-
ativity. Then, a time-invariant change of coordinates was
applied to design a full-order interval observer for non-
linear systems in [19]. Besides, the design thought of a
reduced-order interval observer was firstly proposed for the
time-delay systems by Efimov et al. [20]. Recently, the func-
tional observer was successfully pioneered into the inter-
val observer design theory in [21], where the definition,
the sufficient existence conditions and the effective design
method about the functional interval observers were succes-
sively proposed. Meanwhile, in view of the limitations of
the simple linear time-invariant model in describing dynam-
ics, the systems with the additional characteristics were
deeply considered in the development process of the interval
observers, such as time-delay [22], time-varying [23], [24],
switching [25]–[27] or fuzzy [28].

Regrettably, the current research results about the interval
observers mainly focus on the design problem, namely how
to construct a cooperative error system, and correspondingly,
the improvement of performance about the interval observer
itself is always ignored. Although there is better inclusive-
ness for the system uncertainties as to its feature and advan-
tage, the truth is, a more accurate estimation of the states
is the most fundamental requirement for an observer. And
the robustness of the observers was firstly proposed by
Doyle and Stein [30], that is the sensitivity of the observers
to uncertainties. Many useful methods are put forward on the
premise of fully considering the anti-interference ability in
observer design [31]–[35]. Applying an L1/L2 framework,
the robustness and estimation accuracy concerning the model
uncertainties were analyzed in [33]. Moreover, in terms of
the tractable finite-dimensional linear programs, an optimal
L∞-to-L∞ interval observer was designed in [34]. Recently,
the H∞ and D-stability performance were all considered in
the design process of an unknown input interval observer
in [35].

Comparing with the above methods, the contributions of
this paper is that

1. A simpler form of H∞-gain, is constructed in this paper,
avoiding to a calculation of the LMIs.

2. The design of the interval observers with the robustness
to the disturbances and the designed poles in a certain area is
equivalent to the solution to a type of Sylvester equations and
the simple selection of the given parameters.

3. The existence of an observer gain, namely error system
cooperativity, is guaranteed in the design process of a robust
interval observer.

The paper is organized as follows. The preliminaries and
problem statement are given in Section II. And Section III
presents the main results about parametric design methods
of the robust interval observers. Finally, numerical examples
and an actual physical system are provided to verify the
correctness of the proposed results in Section IV.

The corresponding notations are introduced as a clearer
explanation for the derivation and proof in this paper.

1. The Rn,Rn×m,R+,Rn×m[s],C− and Cn×m define the
set of all real vectors of dimension n, the set of all real vectors
of dimension n × m, the set of all positive real numbers,
the set of all polynomial matrices of dimension n × m with
real coefficients, the left-half complex plane and the set of
all complex matrices of dimension n × m respectively. The
In denotes the identity matrix of order n, and the �− is an
area in the left-hand of s-plane.

2. The λi(A), eig(A), Re(A) and |A| represent the ith eigen-
value of matrix A, the set of all eigenvalues of matrix A,
the real part of matrix A, and the matrix of the absolute values
of all elements of matrix A respectively. The deg(·) denotes
the degree n of a polynomial matrix P0 + P1s + · · · + Pnsn.
The diag(d1, d2, · · · , dn) represents the diagonal matrix with
diagonal elements di, i = 1, 2, · · · , n. Also, the max(A, 0)
means that each element of the matrix A compares with zero
and take a larger value.

3. The relations of vectors or matrices mean element-wise,
i.e. if x1 = [a11, a12] ≤ x2 = [a21, a22], it represents
a11 ≤ a21 and a12 ≤ a22.

II. PRELIMINARIES AND PROBLEM STATEMENT
Let us consider the following system with disturbances as{

ẋ(t) = Ax(t)+ Bu(t)+ Ff (t),
y(t) = Cx(t),

(1)

where the state x(t) is a n-dimensional vector, the system
input u(t) is a p-dimensional vector, and the system output
y(t) is am-dimensional vector with the known constant matri-
ces A,B,C and F of appropriate dimensions. Meanwhile,
the time-varying disturbances f (t) are bounded by the known
upper and lower bounds f (t), f (t).
Definition 1: A matrix A ∈ Rn×m can be represented as

A = A+ − A−, (2)

where A+ = max(A, 0) and A− = max(−A, 0), and then
there exists x(t) with x(t) ≤ x(t) ≤ x(t), satisfying the
following equation

A+x(t)− A−x(t) ≤ Ax(t) ≤ A+x(t)− A−x(t).

Definition 2: A square matrix A ∈ Rn×n is a Metzler and
Hurwitz matrix if and only if its all non-diagonal elements
are non-negative and its eigenvalues lie in the left-hand of
s-plane, namely for any Metzler and Hurwitz matrix
A =

(
aij
)
, there exists

aij ≥ 0, λi(A) ∈ C−, (1 ≤ i 6= j ≤ n).

Lemma 1 [21]: The following system is structured by a
Metzler and Hurwitz matrix A ∈ Rn×n and an uniformly
bounded vector f+(t)

ẋ(t) = Ax(t)+ f+(t), f+(t) : R+→ Rn
+. (3)

where the initial state is non-negative, namely x(t0) ≥ 0,
then all the solutions of (3) are non-negative and uniformly
bounded.
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From [15], we give the following lemma for the interval
observers of the system (1).
Lemma 2: The observation of the system (1) can be car-

ried out with the design of a Luenberger-like interval observer
satisfying x(t) ≤ x(t) ≤ x(t) as{

ẋ(t) = Ax(t)+ Bu(t)+ L(y(t)− Cx(t))+ φ(t),
ẋ(t) = Ax(t)+ Bu(t)+ L(y(t)− Cx(t))+ φ(t),

(4)

where {
φ(t) = F+f (t)− F−f (t),
φ(t) = F+f (t)− F−f (t).

if all the following conditions are established
1. There exists the observer gain matrix L ∈ Rn×m making

the matrix A− LC be a Metzler and Hurwitz matrix;
2. The initial condition of the system (1) satisfies

x(t0) ≤ x(t0) ≤ x(t0).

The proof of Lemma 2 is given in [15].
Lemma 3: Given the observable system (1) and the pro-

posed interval observer (4), the transfer function of the error
observation systems from x(t) − x(t) to f (t) − f (t) can be
obtained as

Teφ(s) = (λIn − (A− LC))−1|F |. (5)

Proof: Denote e(t) = x(t)− x(t), then we have

ė(t) = ẋ(t)− ẋ(t)

= Ax(t)+ Bu(t)+ L(y(t)− Cx(t))+ φ(t)

−Ax(t)− Bu(t)− L(y(t)− Cx(t))− φ(t)

= (A− LC)e(t)+ F+f (t)− F−f (t)

−F+f (t)+ F−f (t)

= (A− LC)e(t)+ |F |(f (t)− f (t)). (6)

The transfer function from disturbances φ(t) = f (t)− f (t) to
states e(t) in the error dynamic system (6) is deduced as

Teφ(s) = (λIn − (A− LC))−1|F |.

�
Consider the following type of generalized Sylvester equa-

tions in [37]
ϕ∑
i=0

AiVF i
=

ϕ∑
i=0

BiWF i, (7)

where
1. Ai ∈ Rn×q, Bi ∈ Rn×r and F ∈ Rp×p are the parameter

matrices;
2. V ∈ Cq×p,W ∈ Cr×p are the matrices to be determined.
and the polynomial matrices associated with the generalized
Sylvester equation (7) are

A(s) =
ϕ∑
i=0

Aisi,

B(s) =
ϕ∑
i=0

Bisi.
(8)

Definition 3 F-Left Coprime [37]: Let A(s) ∈ Rn×q[s]
and B(s) ∈ Rn×r [s], q + r > n be given as in (8), and
F ∈ Cp×p be an arbitrary matrix. Then A(s) and B(s) are
said to be F-left coprime if

rank
[
A(s) B(s)

]
= n, s ∈ eig(F). (9)

Lemma 4 [38]: Consider the given transfer function

G(λ) = C(λIn − A)−1B ∈ H∞,

then ‖G(λ)‖∞ < γ , if and only if all eigenvalues of following
Hamilton matrix

H =
[

A BBT/γ 2

−CTC −AT

]
,

are not on the imaginary axis.
With all these elements in mind, we can state the consid-

ered observation problem:
Problem 1: For the system (1), design a robust interval

observer as the form of (4), namely find the observation
gain L to make the following conditions hold on

1. The matrix A− LC is a Metzler and Hurwitz matrix;
2. The pre-designated H∞ is bounded, namely ‖Teφ‖∞ < γ ;
3. The eigenvalues of error system are constrained to lie in a

prescribed region.

III. MAIN RESULTS
A. ROBUST INTERVAL OBSERVER DESIGN
According to Definition 3, there exists the following right
coprime factorization (RCF)

A(s)N (s)− B(s)D(s) = 0, (10)

where N (s) ∈ Rq×β0 [s] andD(s) ∈ Rr×β0 [s], β0 = q+ r−n,
are a pair of polynomial matrices.

Denote D(s) = [dij(s)]r×β0 , N (s) = [nij(s)]q×β0 and

ω1 = max{deg(dij(s)), i = 1, 2, . . . , r, j = 1, 2, . . . , β0},

ω2 = max{deg(nij(s)), i = 1, 2, . . . , q, j = 1, 2, . . . , β0},

ω = max{ω1, ω2},

then the N (s) and D(s) can be represented in the following
forms: 

N (s) =
ω∑
k=0

Nksk , Nk ∈ Rq×β0 ,

D(s) =
ω∑
k=0

Dksk , Dk ∈ Rr×β0 .

(11)

Assumption 1: The matrix A−LC is considered as a non-
defective matrix because of the robustness with respect to
the parameter perturbations, which means its Jordan normal
form can be represented as

3(λl) = diag(λ1, λ2, · · · , λn), (12)

where λl, l = 1, 2, · · · , n, is the eigenvalues of A− LC.
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Assumption 2: The N (s) and D(s), in the forms of (11),
are right coprime factorization satisfying (10), namely poly-
nomial matrices A(s) and B(s) are F-left coprime, where{

A(s) = sIn − AT

B(s) = −CT

Theorem 1: Under Assumption 1 and 2, suppose the
λl, l = 1, 2, · · · , n, as a set of the self-conjugated com-
plex values with the negative real part, if there exist the
optional matrix Z = {zij}i=1,2,··· ,β0,j=1,2,··· ,n, and the λl,
l = 1, 2, · · · , n, satisfying the following conditions
1. The matrix V−13V is a Metzler matrix;
2. All eigenvalues of the following Hamilton matrix

H (λl, zij) =
[

3 V−1|F ||F |T(V−1)T/γ 2

−V TV −3T

]
,

l = 1, 2, · · · , n, i = 1, 2, · · · , β0,

j = 1, 2, · · · , n, (13)

are not on the imaginary axis;
3. λl, l = 1, 2, · · · , n, lie in a prescribed region,
where V (λl, zij) =

∑ω
k=03

kZTNT
k is the right eigenvec-

tors matrix, 3(λl) is in the form of (12) and W (λl, zij) =∑ω
k=03

kZTDT
k is an equivalent matrix, then a robust interval

observer is designed as the dynamic system (4) with the
observation gain L = V−1W.

Proof: Under a assumption of non-existing disturbance,
the error dynamic system is obtained as

ė(t) = (A− LC)e(t).

According to Assumption 1, there must exist the nonsingular
matrix V ∈ Cn×n such that

V (A− LC) = 3V .

Let

W = VL,

we have

VA−WC = 3V . (14)

Further, from (7), (8), and (14), we have{
A(s) = sIn − AT,
B(s) = −CT.

Next, utilizing Assumption 2 and results in [36], the paramet-
ric forms of the observation gain L and the right eigenvectors
matrix V are obtained asV =

ω∑
k=0

3kZTNT
k ,W =

ω∑
k=0

3kZTDT
k ,

L = V−1W ,

(15)

where Z = {zij}i=1,2,··· ,β0,j=1,2,··· ,n, is an arbitrary parameter
matrix, and the error system matrix A − LC will be re-
expressed as V−13V .

Next, deduced from Lemma 3, the transfer function (5) is
transformed into

Teφ(s) = (λIn − (A− LC))−1(F+ + F−)

= V−1(λIn −3)−1V |F |. (16)

According to Lemma 4 and equation (16), the pre-designated
H∞ bounded, namely

‖Teφ(s)‖∞ = ‖(λIn − (A− LC))−1|F |‖∞ < γ,

is equivalent to that all eigenvalues of the Hamilton matrix

H (λl, zij) =
[

3 V |F ||F |T(V )T/γ 2

−(V−1)TV−1 −3T

]
,

l = 1, 2, · · · , n, i = 1, 2, · · · , β0,

j = 1, 2, · · · , n,

are not on the imaginary axis.
FromHamiltonmatrixH (λl, zij),3(λl) andV (λl, zij), easy

to find all abovematrices are thematrix functionswith respect
to parameters λl and zij. Therefore, the conditions can be
satisfied by choosing the parameters λl and zij appropriately.
Finally, the observation gain L can be calculated by (15)
under the selected parameters λl and zij. And the proof is
completed. �
Remark 1: From Theorem 1, under the eigenstructure

decomposition, the design problem about a robust inter-
val observer is equivalent to the problem of eigenstruc-
ture assignment. Further, based on the solution to a type
of the Sylvester equations, the conditions of designing a
robust interval observer are transformed into the paramet-
ric forms, related to eigenvalues 3(λl) and eigenvectors
matrix V (λl, zij), l = 1, 2, · · · , n, i = 1, 2, · · · , β0, j =
1, 2, · · · , n. Thereby, the robustness to model uncertainties
and the convergence rate of an interval observer can be
controlled under the selected parameters, which simplifies
the design difficulties and makes a clear process of design.

However, the robust interval observers, designed
by Theorem 1, are obtained under the strong assumption,
of which there exists the observation gain L ensuring the
cooperativity and stability of the error systems simultane-
ously. But cooperativity, as a rather specific feature, is dif-
ficult to be satisfied in practice, then under some changes
of coordinates, a robust interval observer is developed to
overcome the difficulties as follows.

Firstly, using a non-singular matrix transformation
z(t) = Tx(t), the system (1) is transformed into{

ż(t) = Āz(t)+ B̄u(t)+ TFf (t),
y(t) = C̄(t)z(t),

(17)

where T ∈ Rn×n, Ā = TAT−1, B̄ = TB and C̄ = CT−1.
And after the cooperative condition, namely Ā− LC̄ being a
Metzler, is satisfied, the corresponding interval observer with
z(t0) ≤ z(t0) ≤ z(t0) is designed as{

ż(t) = Āz(t)+ B̄u(t)+ L(y(t)− C̄z(t))+ φ(t),
ż(t) = Āz(t)+ B̄u(t)+ L(y(t)− C̄z(t))+ φ(t),

(18)
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where {
φ(t) = (TF)+f (t)− (TF)−f (t),
φ(t) = (TF)+f (t)− (TF)−f (t).

(19)

Theorem 2: Under Assumption 2, if there exist the Metzler
and Hurwitz matrix M = {mlj}l=1,2,··· ,n,j=1,2,··· ,n, and an
arbitrary parameter matrix Z = {zij}i=1,2,··· ,β0,j=1,2,··· ,n,
making all eigenvalues of the Hamilton matrix

H (mlj, zij) =
[
M |TF ||TF |T/γ 2

−In −MT

]
,

l = 1, 2, · · · , n, i = 1, 2, · · · , β0,

j = 1, 2, · · · , n,

are not on the imaginary axis, then a robust interval observer
is designed as{

x(t) = (T−1)+z(t)− (T−1)−z(t),
x(t) = (T−1)+z(t)− (T−1)−z(t),

(20)

where z(t) and z(t) are the states of the systems as (18)
with the transformation matrix T (mlj, zij) =

∑ω
k=0M

kZTNT
k

and the observation gain L(mlj, zij) =
∑ω

k=0M
kZTDT

k
respectively.

Proof: Denote M = {mlj}l=1,2,··· ,n,j=1,2,··· ,n, as a Met-
zler and Hurwitz matrix, then the design issue of ensuring the
Ā− LC̄ be a Metzler and Hurwitz matrix is transformed into
the solution to the following Sylvester equation:

TAT−1 − LCT−1 = M . (21)

After the simple matrix transformation and transposition,
we obtain the standard form of the Sylvester matrix equation
as

ATT T
− CTLT = T TMT. (22)

Further, from (7), (8), and (22), we obtain{
A(s) = sIn − AT,
B(s) = −CT.

Based on Assumption 2, where the A(s) and B(s) satisfying
the F-left coprime, therefore, the parametric forms of trans-
formation matrix T and observation matrix L are necessarily
obtained according to the solution to a type of generalized
Sylvester equations in [36] as

T =
ω∑
k=0

M kZTNT
k ,

L =
ω∑
k=0

M kZTDT
k ,

(23)

where Z = {zij}i=1,2,··· ,β0,j=1,2,··· ,n, is an arbitrary parameter
matrix. By Definition 3 and the systems (18), the transfer
function of the error dynamic systems is obtained as

Tēφ(s) = (λIn −M )−1|TF |.

Under Lemma 4, the parametric form of transformation
matrix T as (23) and the equation (21), the following state-
ments are equivalent:
1. the dynamic systems as (18) is an interval observer with

a robustness to uncertainties f (t);
2. The pre-designated H∞ is bounded, namely

‖Tēφ(s)‖∞ = ‖(λIn −M )−1|TF |‖∞ < γ ;

3. All eigenvalues of the Hamilton matrix

H (mlj, zij) =
[
M |TF ||TF |T/γ 2

−In −MT

]
, (24)

are not on the imaginary axis.
Similar to find that the Hamilton matrix H (mlj, zij)

as (24) is the matrix function with respect to mlj and zij, l =
1, 2, · · · , n, i = 1, 2, · · · , β0, j = 1, 2, · · · , n. Therefore,
the conditions can be satisfied by choosing the parameters
mlj and zij appropriately. Finally, the transformation matrix T
and the observation gain L can be calculated by (23) under
the selected parameters mlj and zij.
Furthermore, applying the inverse transformation

x(t) = T−1z(t), we have

x(t) ≤ x(t) = T−1z(t) ≤ x(t).

By Definition 1, the robust interval observer is given as{
x(t) = (T−1)+z(t)− (T−1)−z(t),
x(t) = (T−1)+z(t)− (T−1)−z(t).

where z(t) and z(t) are the states of the dynamic systems
as (18) with the transformation matrix and the observation
gain as (23). The proof is completed. �
Remark 2: Form Theorem 2, the error dynamic system

of (18) is obtained as

ėz(t) = (Ā− LC̄)ez(t)+ φ(t)− φ(t)
= Mez(t)+8(t).

It is obvious that the convergence rate is decided by M and
because of the selected M under the satisfied condition (24),
we learn that the output interval of the interval observer
for (20) can converge to a constant with a controllable rate.
Denote M as a following special diagonal form

M = diag(ζ1, ζ2, · · · , ζn), (25)

easy to find that ζl, l = 1, 2, · · · , n, are eigenvalues of M ,
namely, the eigenvalues of the error systems. Then, according
to Theorem 2, the corollary about the design method of the
interval observer with designed eigenvalues and robust to the
disturbance is obtained as
Corollary 1: Under Assumption 2, if there exist the matrix

M in the form of (25) and an arbitrary parameter matrix
Z = {zij}i=1,2,··· ,β0,j=1,2,··· ,n, making all eigenvalues of the
Hamilton matrix

H (ζl, zij) =
[
M |TF ||TF |T/γ 2

−In −MT

]
,

l = 1, 2, · · · , n, i = 1, 2, · · · , β0,
j = 1, 2, · · · , n
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are not on the imaginary axis, then the robust interval
observer is designed with ζl ∈ �−, l = 1, 2, · · · , n as{

x(t) = (T−1)+z(t)− (T−1)−z(t),
x(t) = (T−1)+z(t)− (T−1)−z(t),

where z(t) and z(t) are the states of the systems as (18) with
the transformation matrix T (ζl, zij) =

∑ω
k=0M

kZTNT
k and

the observation gain L(ζl, zij) =
∑ω

k=0M
kZTDT

k .
Proof: Because the special form of M itself is the

Metzler and Hurwitz matrix with ζl < 0, l = 1, 2, · · · , n,
according to Theorem 2, the results can be verified by direct
deduction. The proof is completed. �
Remark 3: In Theorem 1, 2 and Corollary 1, the transfer

functions are constructed in terms of the difference between
upper and lower bounds. Therefore, the robustness focuses
on the effect of the interval between upper and lower bounds
from the disturbances in the system, namely the thickness of
the interval. So the robust interval observers own the better
performance of encircling the observed state and further,
achieves the better estimation.

B. GENERAL ALGORITHM
Based on Theorem 1,2 and Corollary 1, a general algorithm
is proposed to design the robust interval observers for linear
systems with bounded disturbances, namely the prescribed
region.
Step 1:According to the stability and performance require-

ments of the closed-loop systems, determine the configura-
tion area of the desired closed-loop eigenvalues, namely the
constrains about 3 (or M ). Go to Step 2.
Step 2: For the specific systems, obtain its Sylvester matrix

equation as (14), and the polynomial matrices associated with
the generalized Sylvester equation are{

A(s) = sIn − AT

B(s) = −CT

Then check if A(s),B(s) satisfies the F-left coprime, if yes,
go to Step 3, if not, the Assumption 2 is not satisfied, then the
proposed methods are all not valid. Stop (No solution).
Step 3:According to the generalized RCF as (10), we have

a pair of polynomial matrices (N (s),D(s)). Thereby, the Ni
and Di, i = 0, 1, · · ·ω, are obtained. Check if there exists L
making the A − LC be a non-defective matrix (Assumption
1) or not, if yes, go to Step 4, if not, go to Step 5.
Step 4: By (15), we obtain the parametric right eigenvector

matrix V and the observation matrix L with free parameters Z
and constrained matrix 3. Further to check if we can assign
matrices Z and 3 to ensure the following conditions hold:
B1. The matrix V−13V is a Metzler matrix;
B2. All eigenvalues of the Hamilton matrix (13) are not on

the imaginary axis;
B3. λl, l = 1, 2, · · · , n, lie in a prescribed region (constrains

in Step 1).
If yes, the robust interval observer is designed by Theorem 1,
if not, the Theorem 1 is not valid, and go to Step 5.

Step 5: Denote a Metzler and Hurwitz matrix M and a
non-singular matrix T , then a transformed system is obtained
as (17). Go to Step 6.
Step 6: The parametric transformation matrix T and the

observation matrix L is calculate as (23) with free parame-
ters Z and constrained matrixM . Then check if we can assign
matrices Z and M to ensure the following conditions hold:

C1. All eigenvalues of the Hamilton matrix (24) are not on
the imaginary axis;

C2. The matrix M satisfy the constrains in Step 1.

If yes, the robust interval observer is designed by Theorem 2,
if not, the Theorem 2 is not valid. Stop (No solution).
Remark 4: From the design algorithm, find that the

premise of Theorem 1 is that there exists L making the
A − LC being a Metzler and non-defective matrix
(Assumption 1 in Step 3 and B1 in Step 4). And it means a
low method applicability. Therefore, under some changes of
coordinates, the parametric design method is advanced to
ensure the cooperativity of the error systems and to relax the
restrictions in Assumption 1. Moreover, comparing with their
proof procedures, easy to deduce that Theorem 2 has more
degrees of freedom than Theorem 1, which means that the
condition C2 is easier to be satisfied than the condition B2 by
selecting parameters. However, how to guarantee that the
condition B2 (or C2) holds is still an open problem. Currently,
there are some research results, for example, the sufficient
conditions that the eigenvalues of complex Hamiltonian
matrices are the real or the pure imaginary number are
proposed in [39]. Because of the rich degrees of freedom in
Theorem 2 and the limitations of the current methods about
the Hamiltonian matrices, the cut-and-try method is adopted
in this paper. Furthermore, the empirical requirements of this
method for designers makes the research on the eigenvalues
of Hamiltonian matrices be the key point in our further
work.

IV. NUMERICAL EXAMPLES
A. EIGENSTRUCTURE ASSIGNMENT BASED METHOD
Consider a linear system (1) with bounded disturbance−µ ≤
f (t) ≤ µ as

A =
[
−8 0
0 −9

]
, B =

[
1
1

]
, F =

[
1
2

]
,

C =
[
−1 −1

]
,

and u = sin(t). And because of

rank
[
A(s) B(s)

]
= rank

[
s+ 8 0 1
0 s+ 9 1

]
= 2,

Assumption 2 is satisfied, further, from the equation (10),
the RCF matrices N (s) and D(s) can be chosen as

N (s) =
[
s+ 9
s+ 8

]
, D(s) = s2 + 17s+ 72.
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The parametric matrices V and W are calculated with
Z =

[
z11 z12

]
and 3 = diag(s1, s2) as

V =
[
s1z11 + 9z11 s1z11 + 8z11
s2z12 + 9z12 s2z12 + 8z12

]
,

W =
[
z11s21 + 17z11s1 + 72z11
z12s22 + 17z12s2 + 72z12

]
.

Require γ = 0.6, namely ‖H∞‖ < 0.6 and by assigning
the variables as z11 = −5, z12 = −4, s1 = −8 and s2 = −7,
we haveV−13V =

[
−7 0
2 −8

]
,

Re(eig(H )) = {−5.5400, 5.5400,−8.2716, 8.2716}.

Accordingly, the conditions of Theorem 1 are all satisfied,
a robust interval observer under ‖H∞‖ < γ is designed with
L = V−1W =

[
0 2

]Tas

ẋ(t) =

[
−8 0
0 −9

]
x(t)+

[
1
1

]
u(t)

+

[
0
2

]
(y(t)−

[
−1 −1

]
x(t))+ φ(t),

ẋ(t) =

[
−8 0
0 −9

]
x(t)+

[
1
1

]
u(t)

+

[
0
2

]
(y(t)−

[
−1 −1

]
x(t))+ φ(t),

where φ(t) =
[
µ 2µ

]T
,

φ(t) =
[
−µ −2µ

]T
.

(26)

B. LINEAR TRANSFORMATION BASED METHOD
Let us consider the another system with bounded disturbance
−µ ≤ f (t) ≤ µ as

A =
[
−8 4
−4 −7

]
, B =

[
10
0

]
, F =

[
2
1

]
,

C =
[
0 1

]
,

and u = sin(t).

Suppose L =
[
l1
l2

]
and then, we have

A− LC =
[
−8 4
−4 −7

]
−

[
l1
l2

] [
0 1

]
=

[
−8 4− l1
−4 −l2 − 7

]
.

It is obvious that there does not exist the matrix L make the
A− LC be a Metzler matrix, namely the condition B2 is not
satisfied. Then Theorem 1 is invalid, and Theorem 2 is applied
to constructed a robust interval observer for the system.

Due to

rank
[
A(s) B(s)

]
= rank

[
s+ 8 4 0
−4 s+ 7 −1

]
= 2,

the RCF matrices N (s) and D(s) can be chosen as

N (s) =

[
1

−
s
4
− 2

]
, D(s) =

s2

4
+

15s
4
+ 18.

Denote

M =
[
m11 m12
m21 m22

]
, Z =

[
z11 z12

]
,

then we obtain
T =

[
z11 −2z11 −

m11z11
4 −

m12z12
4

z12 −2z12 −
m21z11

4 −
m22z12

4

]
,

L =

[
18z11 +

α1+α2
4

18z12 +
α3+α4

4

]
.

where

α1 = z11(m2
11 + m12m21)+ 15m11

α2 = 15m12 + z12(m11m12 + m12m22)

α3 = z12(m2
22 + m12m21)+ 15m22

α4 = 15m21 + z11(m11m21 + m21m22)

Firstly, not consider aH∞-performance and a general inter-
val observer is designed by assigning the variables

M =
[
−1 3
1
3 −2

]
, Z =

[
1 −1

]
,

as 
x(t) =

[
3.4 2.4
2.4 2.4

]
z(t)− 02×2z(t),

x(t) =

[
3.4 2.4
2.4 2.4

]
z(t)− 02×2z(t),

(27)

where

ż(t) =

[
12.8 16.8

−25.4667 −27.8

]
z(t)+

[
10
−10

]
u(t)

+

[
5.75
−10.75

]
(y(t)−

[
2.4 2.4

]
z(t))+ φ(t),

ż(t) =

[
12.8 16.8

−25.4667 −27.8

]
z(t)+

[
10
−10

]
u(t)

+

[
5.75
−10.75

]
(y(t)−

[
2.4 2.4

]
z(t))+ φ(t),

and φ(t) =
[
µ 7

12µ

]T
,

φ(t) =
[
−µ −

7
12µ

]T
.

(28)

Secondly, the H∞-performance is involved under γ = 1
by choosing

M =
[
−3 0
0 −4

]
, Z =

[
2 −3

]
,
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FIGURE 1. Interval observation of the state x(t) in system with
uncertainties under µ = 0.2 without considering the H∞-gain. x(t) and
x(t) represent the upper and lower bounds in (27) respectively.

FIGURE 2. Interval observation of the state x(t) in system with
uncertainties under µ = 0.2 under considering the H∞-gain, namely
γ = 1. x(t) and x(t) represent the upper and lower bounds in (29)
respectively.

FIGURE 3. Interval observation of the state x(t) in system with
uncertainties under µ = 0.2 under considering the H∞-gain, namely
γ = 0.4. x(t) and x(t) represent the upper and lower bounds in (31)
respectively.

then according to Theorem 2, the eigenvalues are obtained as

Re(eig(H )) = {1.5405,−1.5405, 3.3729,−3.3729}.

and a robust interval observer is constructed as
x(t) = 02×2z(t)−

[
2 5

3
2 4

3

]
z(t),

x(t) = 02×2z(t)−

[
2 5

3
2 4

3

]
z(t),

(29)

FIGURE 4. Interval error e(t), eγ=1(t) and eγ=0.4(t) of interval observer in
(27), (29) and (31) under the time-varying disturbance f (t).

FIGURE 5. Interval observation of the state x(t) in the longitudinal motion
of a Charlie Aircraft with uncertainties f (t) as (33). x(t) and x(t) represent
the upper and lower bounds in (34). xr (t) and xr (t) represent the upper
and lower bounds in (35) under considering the H∞-gain, namely γ = 0.6.

where

ż(t) =

[
−39 −24
42 24

]
z(t)+

[
20
−30

]
u(t)

+

[
18
−21

]
(y(t)−

[
−2 −

4
3

]
z(t))+ φ(t),

ż(t) =

[
−39 −24
42 24

]
z(t)+

[
20
−30

]
u(t)

+

[
18
−21

]
(y(t)−

[
−2 −

4
3

]
z(t))+ φ(t),

and φ(t) =
[
3
2µ 3µ

]T
,

φ(t) =
[
−

3
2µ −3µ

]T
.

(30)
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Comparing with the observer (29), a better robust interval
observer with γ = 0.4 is constructed under the following
selected parameters

M =
[
−5 0
0 −10

]
, Z =

[
1 −1

]
,

then according to Theorem 2, we have

Re(eig(H )) = {2.8328, 8.2551,−2.8328,−8.2551}.

Then the robust interval observer is constructed as

x(t) =

 2
5 0

0 0

 z(t)−
 0 3

5
4
5

4
5

 z(t),
x(t) =

 2
5 0

0 0

 z(t)− [ [3pt]0 3
5

4
5

4
5

]
z(t),

(31)

1. General interval observer:

x(t) =


0 0 0 0

0 0 0 0

3.5 0 2.5 0

0 0 0 0

 z(t)−

4.905 0 4.905 0

0 0.1 0 0.1

0 0.1 0 0.1

0 1.901 0 0.901

 z(t),

x(t) =


0 0 0 0

0 0 0 0

3.5 0 2.5 0

0 0 0 0

 z(t)−

4.905 0 4.905 0

0 0.1 0 0.1

0 0.1 0 0.1

0 1.901 0 0.901

 z(t),
(34)

where 

ż(t) =


−18.1103 0.4454 −13.1103 0.4454

5.9757 −18.4275 5.9757 −8.4275

25.1033 −0.6451 18.1033 −0.6451

−12.2541 36.8975 −12.2541 16.8975

 z(t)+


0.04

12.1396

−0.04

−11.7396

 u(t)

+


2.6729 −4.4539
−1.2183 84.2746
−5.1179 6.4514
2.4983 −368.9746

 (y(t)−

[
−4.905 0 −4.905 0

0 −0.1 0 −0.1

]
z(t))+


0.008
2.4279
0.008
2.3479

 ,

ż(t) =


−18.1103 0.4454 −13.1103 0.4454
5.9757 −18.4275 5.9757 −8.4275
25.1033 −0.6451 18.1033 −0.6451
−12.2541 36.8975 −12.2541 16.8975

 z(t)+


0.04
12.1396
−0.04
−11.7396

 u(t)

+


2.6729 −4.4539
−1.2183 84.2746
−5.1179 6.4514
2.4983 −368.9746

 (y(t)−

[
−4.905 0 −4.905 0

0 −0.1 0 −0.1

]
z(t))+


−0.008
−2.4279
−0.008
−2.3479

 .
2. Robust interval observer:

xr (t) =


0 0 0 0
0 0 0 0
3 0 2 0
0 0 0 0

 z(t)−

1.962 0 1.9620 0
0 0.0303 0 0.0303
0 0.0303 0 0.0303
0 1.6064 0 0.6064

 z(t),

xr (t) =


0 0 0 0
0 0 0 0
3 0 2 0
0 0 0 0

 z(t)−

1.962 0 1.9620 0
0 0.0303 0 0.0303
0 0.0303 0 0.0303
0 1.6064 0 0.6064

 z(t),
(35)
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FIGURE 6. Interval error e(t), er (t) of interval observer in (34), (35) under
the time-varying disturbance f (t).

where

ż(t) =

[
−9.4 −4.4
4.4 −5.6

]
z(t)+

[
10
−10

]
u(t)

+

[
11
2
−

11
2

]
(y(t)−

[
−0.8 −0.8

]
z(t))+ φ(t),

ż(t) =

[
−9.4 −4.4
4.4 −5.6

]
z(t)+

[
10
−10

]
u(t)

+

[
11
2
−

11
2

]
(y(t)−

[
−0.8 −0.8

]
z(t))+ φ(t),

and φ(t) =
[
5
4µ

5
2µ

]T
,

φ(t) =
[
−

5
4µ −

5
2µ

]T
.

(32)

Based on the above calculations, the simulation results
are shown in Figure 1-4. The interval observers based

on a parametric design method can achieve the interval obser-
vation of the states in Figures 1-3, besides, the robust interval
observers (29) and (31) possess a thinner thickness of the
interval length in Figure 2-3, and meanwhile, because of
the different matrix M , the convergence rate of the robust
interval observers is faster. Therefore, the simulations explain
the advantages of a parametric method to design a H∞
performance-based the robust interval observer than general
interval observer.

C. LONGITUDINAL MOTION OF A CHARLIE AIRCRAFT
Consider the dynamic system (1) with bounded disturbances
−0.2 ≤ f (t) ≤ 0.2, associated to the longitudinal motion of
a Charlie Aircraft in [40] as

x =
[
1u 1α 1θ 1q

]T
, u = δe

A =


−0.007 0.012 −9.81 0
−0.128 −0.54 0 1

0 0 0 1
0.065 0.96 0 −0.99

 ,

B = F =


0
−0.04

0
−12.5

 , C =
[
1 0 0 0
0 1 0 0

]
, (33)

where u,α, θ and q represent the aircraft longitudinal velocity,
the aircraft attack angle, the aircraft pitch angle and the
aircraft pitch angular rate respectively. And δe is the eleva-
tor deflection, and 1 is associated with the perturbation of
the variables from the nominal values. The input signal of
the system can be chosen as any random signal. In simu-
lation, we considered that the input vector of the system is
u(t) = −0.2 sin(t) cos(t). Then according to Corollary 1,
we design two interval observers, one of which is a robust

where 

ż(t) =


−30.2371 0.2863 −20.2371 0.2863
5.1528 −33.3771 5.1528 −12.3771
45.2301 −0.4376 30.2301 −0.4376
−13.4402 85.8471 −13.4402 31.8471

 z(t)+


0.04
11.6996
−0.04
−10.3796

 u(t)

+


10.3 −9.4
−2.6 408.4
−23.1 14.4
6.9 −2833

 (y(t)−

[
−1.962 0 −1.962 0

0 −0.0303 0 −0.0303

]
z(t))+


0.008
2.3399
0.008
2.0759



ż(t) =


−30.2371 0.2863 −20.2371 0.2863
5.1528 −33.3771 5.1528 −12.3771
45.2301 −0.4376 30.2301 −0.4376
−13.4402 85.8471 −13.4402 31.8471

 z(t)+


0.04
11.6996
−0.04
−10.3796

 u(t)

+


10.3 −9.4
−2.6 408.4
−23.1 14.4
6.9 −2833

 (y(t)−

[
−1.962 0 −1.962 0

0 −0.0303 0 −0.0303

]
z(t))+


−0.008
−2.3399
−0.008
−2.0759


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H∞ interval observer. The specific forms are represented as
the dynamics (34) and (35), as shown at the bottom of the
9th page, and the simulation results are shown in Figure 5-6.
As shown in Figure 6, the robust H∞ interval observer (35)
has a narrower interval and faster convergence rate than (34).
The applicability and effectiveness of the design method are
further explained in this paper.

V. CONCLUSION
In this paper, the design problem of an interval observer
with the robustness to the bounded disturbances for a linear
system is discussed. Utilizing the eigenstructure decompo-
sition, the change of coordinates and the solution to a type
of Sylvester equations, the parametric forms of closed-loop
system, transformation matrix T and observation gain L are
all obtained, and further, the upper bound constraint for the
H∞-gain of the transfer function from the disturbances to the
states of the error dynamic system is transformed into the
conditions decided by the designed parameters (13) or (24),
needing not LMIs. By the parametric H∞-gain performance,
two effective methods to design a robust interval observer is
proposed, one of which is to solve the construction problem
about the error system cooperativity, and has a controllable
convergence rate.

Note that the parametric conditions of the robust inter-
val observers are built as (13) or (24), but how to select
the parameters effectively is still a problem worthy of dis-
cussion. Fortunately, the rich degree of freedom greatly
improves the possibility of the robust interval observers
existence.
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