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ABSTRACT The haze removal technique refers to the process of reconstructing haze-free images from
scenes of inclement weather conditions. This task has an extensive demand in practical applications.
At present, models based on deep convolution neural networks have made significant progress in the haze
removal field, greatly outperforming the traditional prior and constraint methods. However, the current CNNs
methods, which involve only a single input image, do not provide sufficient features to determine the optimal
transmission maps for haze removal; therefore, we propose and design an aggregated resolution convolution
network (ARCN) that uses multiple inputs and aggregates features from a CNN model and the adversarial
loss algorithm. Experiments comparing the visual results of our network with those of several previous
methods reveal substantial improvements.

INDEX TERMS Haze removal, single image dehazing, deep convolutional neural network.

I. INTRODUCTION
Due to scattering by suspended particles and atmospheric
light from the scene, captured images are often accompanied
by low contrast and shifted luminance characteristics, which
seriously affects subsequent tasks such as automatic driving,
smart cities and other technologies [1], [2]. Dehazing is a type
of image processing technique for restoring haze-free scenes
as much as possible.

At present, most approaches have been developed around
the atmospheric scattering model, which is described as:

I c(x) = J c(x)t(x)+ Ac (1− t(x)) (1)

where Ac is the atmospheric light, c ∈ {r, g, b}, I c(x) ∈
RC is the degraded hazy image, J c(x) indicates the under-
lying haze free image and t(x) denotes the media transmis-
sion correlated with the scene depth t(x) = e−βd(x). Due
to the importance of t(x), an optimal transmission map is
considered the essential prerequisite to solve the dehazing
problem [3]–[6]. Currently, dehazing methods are mainly
divided into two categories: artificial calibration and database
learning methods. Artificial calibration methods use a large
number of statistical priors to construct a variety of filters
and models used to recover haze-free images. For exam-
ple, For example, Tan [7] maximized the neighbourhood
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contrast to compute the transmission of each pixel. Under
the Bayesian probability model, Nishino et al. [8] employed
statistical features to eliminate the influence of fog and
haze. Fattal [9] assumed that neighbourhood chromaticity
and transmission were uncorrelated and used the statistical
colour property for haze removal. In addition, colour line
prior [10] has also been utilized. This approach combined an
augmented Markov random field model to obtain the opti-
mal transmission map. More importantly, the dark channel
prior (DCP) [11] is assumed to be the most successful prior
statistical knowledge and it is widely used in various haze
removal algorithms. Additionally, Tarel and Hautière [12],
Yu et al. [13], and He et al. [14] employed a median filter,
a bilateral filter and a guided filter instead of soft matting.
Meanwhile, some statistical constraints still exist in other
approaches, such as the colour attenuation prior [15] and
non-local patch prior [16]. Clearly, artificial calibration has
received extensive attention and has achieved better results.
However, prior based methods are not suitable for all images;
consequently scholars have increasingly focused on to how
to improve the universality of dehazing approaches by learn-
ing from a database. For instance, Caraffa and Tarel [17]
trained a local dictionary from the FRIDA database and
used it to converge the final transmission map. By reveal-
ing that a synthetic database can be highly similar to real
scene features, Tang et al. [18] improved the accuracy of
the transmission map by combining multiple colour features
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FIGURE 1. The haze-free images and depth maps restored by aggregated resolution convolution network.

with random forests. Moreover, a new deep learning-based
method [19] via joint estimation clear image detail and
transmission map has been proposed, which could use a
global regularization method to eliminate the halos and arti-
facts. To sum up, applications of the above methods have
inspired researchers to explore database learning-based algo-
rithms. In particular, after compiling haze-free images into
a database, Cai et al. [20] proposed a specific CNN to
recover the transmission map. Based on the NYU database,
Ren et al. [21] trained a multi-scale CNN to reconstruct
the transmission that was able to approximate the ground
truth. Recently, Li et al. [22] and Zhang and Patel [23]
have also employed a K-estimation module and a densely
connected pyramid dehazing network to enable dehazing
between the transmission map and the atmospheric light. All
these works indicate that CNNs have gradually played an
increasingly important role in haze removal tasks. Neverthe-
less, the current dehazing networks consider only one input
image; consequently, they are unable to capture sufficient
features to indicate the optimal transmission map. In con-
trast, the traditional fusion methods [24] have demonstrated
that using multiple input images can provide more robust
feature representations. More importantly, the final feature
map in [20]–[22] was computed by a series of multi-scale
convolution layers. This approach can neglect the opportunity
to acquire edge and circle information, which is indispensable
for transmission estimation. Motivated by these observations,
we argue that acquiring feature at different levels from multi-
ple input images and aggregating different features would be
more conductive for the dehazing task. Hence, the crux of the
matter becomes how to take advantage of feature extraction
and construct a dehazing network.

In this article, we propose a new aggregated resolution con-
volution network (ARCN) that capitalizes on different levels
of input images to fuse and reconstruct transmission maps.
Different from the previous CNN based approaches, which
depend only on the multi-scale feature extraction output to
construct a featuremap, our network can efficiently search for
a more accurate final map by using a hierarchical progression
strategy and aggregated features. This model combines both
high- and low-level features to generate sharp, detailed depth
predictions.

1) Unlike previous dehazing networks, which concentrate
on extracting deep features from a single haze image,
we propose a novel input strategy that can aggregate
the feature maps from multi-scale input images into
a single input image. The advantage of this approach
is that it can highlight the features of the input image
without relying on an additional external reference
image.

2) Residual and dense blocks are typical techniques used
in deep networks. Here, we combine them effectively
according to the dehazing task. Depth estimation is
closely related to edge jumps; thus, we can use multiple
dense blocks to extract features at different deep levels.
To correlate these feature maps, local residuals are
used to connect adjacent dense blocks to effectively
aggregate features.

3) In view of the importance of edges in haze removal,
we not only add TV regularization terms to estimate
transmission but also apply style loss to constrain the
entire image restoration. The experiments show that
this approach is superior to traditional methods for
restoring images.
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The rest of paper is arranged as that: the typical CNN based
dehazing approaches are carried out in Section II. In addition,
ba The rest of paper is arranged as follows. The typical CNN
based dehazing approaches are described in Section II. Then,
based on the analyses of the traditional methods, we use the
properties of multiple inputs to fuse more features in our
network. Moreover, we construct a residual unit to extract
depth-dependent features. Finally, we achieve better results
using the edge preservation loss function. The experiments
presented in Section IV shows that the proposed method per-
forms equivalently or better than do other advanced dehazing
methods. Finally, we provide conclusions and suggest future
research in Section V.

II. RELATED WORKS
Numerous CNN based dehazing approaches have been
proposed in recent years. First, we analyse several represen-
tative methods and then concentrate on their network struc-
tures, which can help us to determine the advantages of the
underlying architectures.

After CNN were successfully applied in the object recog-
nition field [25]–[27], scholars began to research CNN-based
approaches for the underlying vision tasks [28]–[31]. In con-
trast to artificial calibration methods that use different sta-
tistical assumptions and models to estimate the transmission
map, an end-to-end CNN can obtain the optimal transmission
map through its cascading convolutional layers. For example,
DehazeNet [20] was the first CNN based dehazing network.
It includes four main operations: feature extraction, multi-
scale mapping, finding the local extremum and non-linear
regression. Each layer was carefully designed to reflect and
represent the previously successful assumptions and priors.
In other words, DehazeNet succeeded in reproducing the
artificial calibration method and demonstrated the feasibility
of using a network approach. The multi-scale neural net-
work [21] is composed of two main modules: a coarse-scale
network and a fine-scale network. Note that both networks
employed a single hazy image as input. Moreover, the output
of the course-scale network can be considered as a useful
supplement to the fine-scale network. The resulting predicted
transmission map include more depth jumps. AOD-Net [22]
proposed a new architecture under a rewritten physicalmodel.
For estimation, it employed a combined K-module combine
that could combine the transmission map and atmospheric
light through a linear transformation. This approached proved
beneficial by transforming the problem of two variables into
one variable through a single convolutional network. Fur-
thermore, the image dehazing approach using a deep fully
convolutional network in [33] proposed a deep lightweight
residual model that employed residual learning to directly
project the given hazy image onto both a hazy image and the
corresponding haze-free image.

To sum up, the current CNN-based dehazing methods
have informally shown great promise. Their primary goal
is to learn diverse characteristics from a convolutional

network, and the models include the following similar
behaviours:

1) All the networks take a single image as input data
to estimate the transmission map. Although multi-
scale convolutional layers are used to extract more
details, because the input feature dimension has not
changed, the recovered depth information is not suffi-
ciently obvious. In contrast, traditional multiple-input
fusion strategies [24], [31] provide more information
for restoring depthmaps, whichmotivated us to address
the input feature dimension problem by increasing the
amount of input data.

2) In CNN based dehazing methods, the input image
needs to pass through all the network layers to achieve
the final output prediction. With deep network designs,
a long-range memory is required to avoid the gradient
explosion problem. To effectively train our network, we
employ residual learning to produce skip connections.
We found that our network architecture directly prop-
agates the gradient information, which is conducive to
constructing a better depth map.

3) At present, the use of Euclidean loss is the stan-
dard configuration in most CNN methods. However,
this loss type does not apply to depth maps due to
the relationship between depth and edge information.
Although adversarial and Euclidean loss was employed
in the jointly learned network in [22], all the atten-
tion was still concentrated on global differences. Based
on this observation, we need a gradient regularization
term to compensate for outliers or errors. Therefore,
we employ a gradient constraint to reduce the error
probability.

III. AGGREGATED RESOLUTION
CONVOLUTION NETWORK
In this section, we elaborate and explain the proposed struc-
ture. As illustrated in Fig. 2, our architecture includes mul-
tiple inputs and a connected generator and discriminator.
The task of the generator is to generate a transmission
map through the aggregated networks using multiple input
scales such that that the discriminator considers the generated
t-map to be the indistinguishable from the distribution of
the ground truth. This process makes it possible to generate
visually complete and statistically consistent transmission
maps from given hazy images. The task of the discriminator is
to determine the authenticity of estimated t-maps and dehazed
images.

Unlike most of the current CNNs dehazing approaches,
in which the output depend on only a single input image that
does not provide adequate feature dimensions, our framework
is built on a strategy of fusing multi-resolution inputs. This
approach enables us to identify abundant details that they can
be mapped and used to reconstruct the depth map. Moreover,
to extract more edge jumps and better reflect the transmission
features, we adopt feature aggregation and an edge preserving
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FIGURE 2. The individual components of our aggregated resolution convolution network.

loss function. These two features are described in detail
in Sec. C.

A. THE GENERATOR FOR ESTIMATED
TRANSMISSION MAP
Unlike the multiple-input approach used in the gated fusion
network, we do not add additional input images. Instead,
while guaranteeing the input of the original information,
we increase the information dimensions by sampling the orig-
inal image to form multiple inputs. Although this approach
increases the model’s memory consumption, it also enables
the network to find the optimal feature set without requiring
additional information to successfully aggregate the trans-
mission map. Moreover, compared with other image dehaz-
ing methods based on convolutional networks, our generator
achieves better performance and requires fewer layers by
aggregating features at the level of each layer. This architec-
ture both makes training more fluent and reduces the testing
time. Our generator model consists of three parts: an input
unit, a feature mapping unit and a reconstruction unit.

1) FUSION OF LAYERED PYRAMID INPUTS
As noted previously, when using a single input image, insuf-
ficient features may be extracted to generate the depth map.
In contrast, multiple inputs can transmit more features simul-
taneously and merge them to produce the final prediction.
However, the pooling operation requires output size reduc-
tion and is the biggest disadvantage of using multi-CNNs
directly to solve the haze problem, because the reduction
causes the loss of a great many details and produces inac-
curate results. Considering the above aspects, our method
employs a combination of multi-resolution and multi-stage

accumulation strategies. First, the multi-resolution approach
helps the model extract more distinct features. Second,
multi-stage accumulation allows the model to focus on the
most important details so that they are not discarded dur-
ing the pooling operation. Finally, our model fuses multi-
resolution features at different scales to generate an abundant
feature map.

As illustrated in Fig. 2, we decompose a single image
into multi-resolution images using a down-sampling strat-
egy. The images we used for training come from the NYU
data set, and they become 40 × 30 pixels in size after four
down-samplings—too small to accurately reflect the char-
acteristics of the entire image. Therefore, we employ three
down-sampling results and fuse thosewith the original image.
Moreover, to simplify the calculations, we use one collec-
tive residual unit (CRU) in each layer that extracts image
features and fuses them internally to maximize the image
feature aggregation, which is consistent with the conception
of Ancuti [23]. Although all four components have the same
internal structure, their parameters are not exactly the same
due to the details of their respective resolutions.

Constrained by the need to guarantee an invariant size for
the input images, we fuse input images of different resolu-
tions with the original image through a relevant up-sampling
strategy. As described in Fig. 2, we first extract the features
of each resolution using the CRU units. In addition, similar
to the last layer of SRCNN, we employ a convolution layer to
aggregate the three channels of features. As a result, we obtain
abundant feature sets after the up-sampling operation. Here,
we set the channel numbers to d = 64 and adopt 3× 3 filters
to maintain performance in our approach, which convolves
over the input (3 × 64 = 192) and outputs 1 × 64 = 64 on
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both sides of the convolution layer. Finally, there are 4 dif-
ferent resolutions (4 × 64 = 256) in the feature activations.
This provides sufficient elementary features to trigger the
activation maps.

2) FEATURE MAPPING AND RECONSTRUCTION
According to the theory of CNN-based dehazing methods,
algorithms are typically designed to find a mapping func-
tion F(Ĩ ) = t to predict the transmission map and the
latent dehazed image. However, deep network architectures
require a long-range memory to avoid the gradient explosion
problem. Therefore, we adopt a dense block for mapping
and reconstruction. Unlike the typical meaning, in this case,
dense refers to the dense module, which greatly reduces
the amount of computation, not to dense connections [23].
More importantly, because edge jumps are the main features
that represent depth information, mapping high-frequency
information is critical to successful haze removal. There-
fore, the principle of residual learning has been globally
accepted for training a residual mapping. In Fig. 2 we
have: (a) Conv+Pooling: there is one module that consist
of groups of convolution and pooling layers. This architec-
ture captures the stable features used in depth mapping at
different scales, which helps us in searching for edge jump
information. (b) Conv+Deconv+Conv: In order to obtain
consistent feature mapping with input image, we need to
up-sample the pooled images to restore the sizes of fea-
ture maps. Following the suggestion of Wang et al. [34],
we adopt a 16 × 16 de-convolution kernel to enhance the
quality of the results according to the transmission map.
Moreover, two convolutional layers are deployed, one on each
side of the de-convolutional layer; these effectively reduce
the computational complexity. c) Relu+Conv+BN: In this
module, three layers are composed for mapping. The most
different is that we have adjusted the order of Relu and
Conv. First, a non-linear function is used to adapt to the edge
jumps of depth transmission. In addition, a convolution is
employed to acquire the relevant features. The BN makes the
feature distribution consistent with the statistical distribution
of the transmission map. Finally, we need to reduce the
(256+ N) feature dimensions to 256 dimensions through the
convolutional layer to cooperate with the global residual for
reconstruction.

The reconstruction unit contains two convolutional layers.
One has a non-linear stretching function. The main purpose
of this first convolution is to convert the 256 dimension
parameters to a 1-dimensional vector matching that of the
original image, and the last convolution is used to acquire a
robust transmission map.

B. THE DISCRIMINATOR FOR HAZE-FREE IMAGE
Because there are two ground truths in the haze removal
task, the discriminator consists of two steps. First, we need
to distinguish the quality of the generated transmission map.
If the quality is high, we can then judge whether the esti-
mated image is a dehazed image. In this way, we can better

estimate the two variables in the physical model. Because the
discriminator is a classification network, we adopt the same
discriminator network as was used in [37] to simplify the
classification task. We deduce the second step as follows:

For the classical model in Eq. (1), we know that A is also
an important variable; thus µ, we need to estimate its value to
restore a haze-free image in the testing step. Typically, A is
considered to be the pixel with the highest intensity in the
haze image; therefore, many methods employ the brightest
pixel in the corresponding degraded image as A. We follow
this strategy when searching for atmospheric light. However,
unlike thesemethods, which directly determine themaximum
value in all three channels, we first apply a white balance and
then look only for the brightest pixel and adopt that asA. This
practice transforms atmospheric light into pure white light,
which avoids the problem of colour perturbations.

After estimating A and t, using the atmospheric scattering
model, the dehazed image J can be restored. Consequently,
the final result J (x) is restored as follows:

J =
I-A
t
+ A (2)

C. COST FUNCTION
Currently, the goal of the output of the existing CNN based
methods is to approach the real transmission map as closely
as possible; therefore, they apply the Euclidean loss to deduce
the final result. The inference is performed for macroscopic
perspective, such as recognition and tracking tasks. How-
ever, it is not appropriate for a transmission map, in which
local smoothness and piecewise discontinuity appear in most
regions. In contrast, traditional variation methods have been
demonstrated to recover these characteristics, which rely
on an additional gradient regularization term. Therefore,
we designed a restricted loss function for the dehazing task
that considers the perceptual loss as weighted TV and style
losses.

1) GRADIENT LOSS
Given one output transmission map t and a ground truth t,
we minimize a loss function defined with the TV constraint
as follows:

Lt =
(
1
2

∥∥∥t̂− t
∥∥∥2
2
+ λ

∥∥∥∇ t̂∥∥∥
1

)
(3)

Nevertheless, our experiments clearly showed that the edge
jumps cannot be preserved well under the TV regularization.
Unlike the previous locally based regularization methods,
TV regularization performs on a global level and is thus less
sensitive to local textures. To solve this problem, we propose
the following new regularization constraint for transmission
map restoration:

E(t̂) = µ
(∥∥∥∇ t̂−∇t∥∥∥2

2

)
(4)

where µ is an experimental regulation parameter. When t̂
approaches the ground truth, the estimated t̂ will include the
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FIGURE 3. Estimated results of our method under different constraints.
Figures (a) and (b) are the results by Formula 3, Figures (c) and (d) are the
results by Formula 5.

correct and sharpened edges,making the value of Formula 4 is
small. In contrast, a fuzzy or defective t̂ produces incorrect
edges, which lead to larger values of Formula 5. There-
fore, minimizing the above formula yields the correct sharp
images. Based on the above considerations, we combined
Formula 3 and 4 to construct the final loss function:

Lt =
(
1
2

∥∥∥t̂− t
∥∥∥2
2
+ λ

∥∥∥∇ t̂∥∥∥
1
+ µ

(∥∥∥∇ t̂−∇t∥∥∥2
2

))
(5)

Compared with the conventional total variation, which
encourages piecewise constant images and often suffers
from undesirable artefacts, Eq. (5) prefers piecewise smooth
images. This smoothness is a desirable property in depth
estimation because an image may have a slanted plane whose
transmission varies smoothly along with the change of depth.

2) STYLE LOSS
The task of haze removal consists of two important steps.
After refining the transmission map, the next task is to
recovery the scene radiance J. One observed phenomenon is
that artefacts appear in certain areas of the restored images.
However, these visual artefacts are usually invisible in the
input image. It is precisely the newly restored edges that cause
the artefact effect. Based on this idea, we propose a novel loss
function to constrain the edges in the dehazed image.Wewere
motivated to minimize the residual of the gradients between
the input and output images under the sparse-inducing norm.
Thus, our optimization problem becomes

LJ =
(
1
2

∥∥∥Ĵ− J
∥∥∥2
2
+ 0.1

(∥∥∥∇Ĵ−∇I∥∥∥2
2

))
(6)

Fig. 3 shows the estimated results of our method under the
constraints in Formulas 3 and 5, respectively. Under the
Formula 3 constraint, we can clearly see that a more accurate
transmission map is obtained within a certain gradient scope.
However, when the same object has too many details, this
piecewise smoothing strategy causes the transmission map to
be too slight. It leads to dark colours in the restored image.
In contrast, Formula 5 makes the transmission map smoother,

FIGURE 4. Estimated results of our method under different constraints.
Figures (a) and (c) are the results by Formula 5, Figures (b) and (d) are the
results by Formulas 5 and 6.

and the estimation is more consistent with the image depth.
Therefore, the restored image looks more natural than when
using Formula 3. Fig. 4 shows the results of gradient loss
achieved when using only Formula 5 and when integrating
gradient loss and style loss with both Formulas 5 and 6. It can
be seen that ensuring only the correctness of the transmis-
sion map, the restored image presents colour disturbances,
block effects and some colour-darkened areas (e.g., the sky,
the clock tower and others) in figures (a) and (c). In contrast,
the dehazing results appear more natural when multiple loss
functions are fused, such as figures (b) and (d).

IV. EXPERIMENTS
To verify the rationality and effectiveness of our architecture,
we performed comprehensive experiments on three synthetic
datasets and a large number of natural hazy images. There
are four main procedures. The first sub-section describes
the datasets used for training and testing in our experi-
ments. The second sub-section discusses experimental details
and reports the parameter settings. The third sub-section
discusses the a comparison results on some challenging
hazy images—both natural and synthetic scenes. The last
sub-section presents a quantitative evaluation of our results.

A. DATASETS
Because no public dataset exists that includes a full set of
hazy and clear images along with their transmission maps,
no ground truth is available to serve as a definitive refer-
ence value. Consequently, we synthesized training datasets
by following the process reported by [20]–[23]. First, we ran-
domly selected 1000 NYU images are as training samples
J c(x) and d(x). In addition, we adopted and applied ran-
dom atmospheric light Ac = [a, a, a] ∈ [0.5, 1.0] and
scattering coefficients β = [0.3, 1.8] to generate correlated
haze images I c(x) and transmission maps t(x). Moreover,
in order to weaken the influence of rotation on feature extrac-
tion, we applied four different rotations and flipping tech-
niques, which image employed from the dataset. As a result,
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we obtained 16,000 synthetic images to train the optimal
model parameters. To verify the rationality and validity of our
model, we also created a validation dataset which contains
50 real hazy images and 50 synthetic hazy images. The
proposed model was trained using the MatConvNet package
on a workstation equipped with an Intel i7 2.8 GHz CPU
and two GTX1080Ti GPUs. Training requires approximately
100 epochs to converge.

FIGURE 5. The PSNR values on the validation set during training with
different value of λ.

B. PARAMETER SETTINGS
We performed a series of special experiments on our test
dataset to investigate each parameter of the loss function.
In addition, we set the initial learning rate to 0.1 and reduced
it by a factor of 10 every 10 epochs. Updating stops after the
learning rate reaches 0.1 × 10−10. Moreover, we use batch
processing during train to speed up the training operation.
In these special experiments, we first fix µ = 0.1 to verify
the property of λ = 1, 0, 0.1, 0.01. The PSNR value of
λ = 0.1 is better than others, as illustrated in Fig. 5, and
the restored images also confirmed these results. When the
parameter λ = 1, 0, the dehazed images may still have large
or small amounts of remaining fog and haze. However, when
λ = 0.01, the process removes most of the fog, but part of
the texture also disappears. Compared with those two values,
λ = 0.1 produces better results, although it introduces some
noise in the restored image. Meanwhile, Fig. 6 also confirms
our inference, because a higher PSNR value can be obtained
by fixing λ = 0.1 and setting µ = 0.1. Therefore, in the
subsequent experiments, we set µ = 0.1 and λ1 = 0.1. This
approach not only increases the dehazing level but also makes
good use of the edge information. Moreover, as the most
important three aspects of our network—multiple inputs,
multi-scale residual units and regularization loss function—
affect the final estimation, we adopted typical error metrics

FIGURE 6. The PSNR values on the validation set during training with
different value of λ.

TABLE 1. Component evaluation with different.

for the quantitative evaluation. Therefore, we also selected
another 50 RGB-D image pairs and set β = 0.8 to establish
some test data as internal sets for testing each step in our
method. Examples of the results are shown in Fig. 7 and
the averaged objective indexes are listed in Table 1. Here,
we choose:

Threshold: max(
t̂
t
,
t

t̂
) = δ < thr

Mean relative error (Rel):
1
|�|

∑
t∈�

∣∣t̂ − t∣∣/t
Mean log10 error (log10) :

1
|�|

∑
t∈�

∣∣log10 t̂
− log10 t

∣∣
Root mean squared error (Rms):

√
1
|�|

∑
t∈�

∣∣t̂ − t∣∣2
where t̂ and t denote the estimated transmission map and the
ground truth, respectively, and � represents all the pixels in
the images. As shown in Table 1, using every contribution
provides better results than using none of them.
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FIGURE 7. Comparison classical approaches for synthetic NYU datasets.

FIGURE 8. Visual qualitative comparisons for synthetic road images dehazing.

C. EVALUATION ON BENCHMARK DATA
Because dehazing is very important for automated driving in
bad weather, we first present a group of synthetic dehazed
road images for illustrative purposes. These artificial images
are synthetically transformed into hazy images as shown
in Fig. 8(a). As one of the most popular haze removal
methods, He et al. [11] utilized the DCP to assume that
the minimum value of each patch approximates zero; thus,
the transmission map can easily be calculated. However,
this strategy leads to an over-estimated transmission map,
resulting in a darker restored image as shown in Fig. 8(b).
A convolutional network was used in DehazeNet [20], but
most of the layers are specially organized to accommo-
date prior constraints, such as DCP and colour attenuation.
In contrast, due to its end-to-end architecture, MSCNN [21]

achieves more natural results, but residual haze still exists
in the dehazed image. A similar situation prevails in the
results of AOD-Net [22]. The DCPD-Net model is superior
to the previous models due to its dense connections, which
result in more features for estimating the transmission map.
However, this connection is not guided by edge information;
consequently, distant haze is still not completely removed.
Compared with DCPD-Net, our results (Fig. 8(g)) not only
look more natural but also show richer edge features. This
result occurs because our ARCN architecture uses multiple
inputs and feature aggregation, allowing it to obtain more
robust features for estimating the optimal transmission map.

Furthermore, we synthetically transformed some stereo
images into hazy images to test the accuracy of colour
reduction. Fig. 9 shows the results of various conventional
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FIGURE 9. Visual qualitative comparisons for synthetic stereo images dehazing.

TABLE 2. Quantitative comparison shown in Fig. 8.

approaches for restoring the hazy images. Typically, these
methods rely on a certain type of scene or on statistical
features to determine the constraint limits. However, no prior
applies equally to all hazy images. This is the main reason
why using a single prior produces colour shifts or ambiguous
edges on different test images. Compared with prior results
in Fig. 9, our ARCN approach, which uses a GAN strategy, is
better than the traditional approaches at both colour restora-
tion and at maintaining authenticity. Most of the details and
edges are precisely captured and restored. The principal rea-
sons for these results are the style loss and edge loss functions
used in the training process. For example, the characters in
the newspaper and the edges of each doll are recovered more
accurately. Moreover, many of the other methods contrast do
not fully remove the haze.

Like most successful dehazing methods, we adopt mean
square error and structural similarity to evaluate the results
of our approach and those of some typical haze removal
approaches, especially CNN based approaches. To ensure a
more objective and impartial evaluation, we employed two
different objective evaluation methods. Because the purpose
of dehazing is to restore the original appearance of the test
image, following Hautière et al. [38], we use three metrics
to measure the changes in edges and contrast before and
after dehazing. In Table 2, the metric e represents the rate
of new visible edges in the dehazed image compared to the

TABLE 3. The average results of four evaluation index methods
SOTS HSTS.

hazy image, while the metric ϑ denotes the percentage of
pixels that become black or white following the dehazing
operation. Higher positive e values and values of ϑ closer
to zero imply better performance. In addition, the metric r
denotes the mean ratio of the gradient norms before and after
dehazing. High r values represent better restoration of the
local contrast, whereas low r values suggest fewer spurious
edges and artefacts.

Next, we present a quantitative evaluation of the dehazed
outputs in Fig. 8. One obvious conclusion is that themethod in
Cai et al. [20] producesmore black after restoration; therefore
is achieves the highest ϑ score. We sequenced the other five
algorithms in decreasing order with respect to the increase in
new visible edges; the resulting sequence was He et al. [11],
Ours, Ren et al. [21], Li et al. [22], and Zhang and Patel [23].
This result demonstrates that our method can generate more
edges. Due to the importance of contrast in dehazing task, the
index r is utilized to evaluate whether the new edges improve
visibility. Based on this metric, our approach is superior to all
the other methods. This implies that the gradient produced by
our method is more effective but that a further increase would
probably be too strong.

We also employed SOTS and HSTS test sets for assess-
ment. In Table 3, the comparative results confirm that in
most cases, our approach restores more accurate transmission
maps and vivid haze-free images than do the other algo-
rithms. Depending on the neural network and the availability
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FIGURE 10. Visual qualitative comparisons for real prospect images dehazing.

FIGURE 11. Visual qualitative comparisons for real close-range images dehazing.

of sufficient data, more details can usually be obtained
compared with the traditional methods, such as DCP, CAP
and NLP. For instance, prior-based methods always utilize
statistical features to directly minimize the energy. However,
in some areas of the dehazed images, this approach leads
to over-saturation. In contrast, we can attribute our high
scores to layer-by-layer feature extraction, which effectively
prevents blackening of the restored image.

The next comparison concentrates on data-driven
approaches. Edges are a key variable in haze removal; con-
sequently, many other CNN-based methods pay attention to
learning the edges. Nevertheless, they obtain roughmisplaced
edges in the transmission map, which subsequently results in
inaccurate dehazed images. In contrast, our method achieved
the highest performance through feature aggregation and the
specific edge loss function.

D. EVALUATION ON REAL-WORLD HAZE IMAGES
In the comparison and analysis of the synthetic image results,
our ARCN architecture resulted in better representations than
those of previous approaches. To further illustrate the expres-
siveness of our model on real-world images, we conducted

a further comparison and evaluation with the typical meth-
ods. Because of the diversity of real scenes, we divide the
dataset scenes into three types: prospect images, close-up
images and challenging images. Notably, regardless of the
natural scene type, our method results in clear and natural
restored images, which benefits from its ability to combine
different features as well as the ability to highlight the edge
information. In contrast, the results of the other methods are
not as good as those of our method. For instance, GRM [18]
causes artefacts in the sky region and black areas appear
in the building. In addition, colour distortions and shadows
are present in the dehazed images. Similar phenomena also
exist in DehazeNet [20], which also adopts multiple prior
conditions. Although MSCNN [21] employed multi-scale
information to correct the above mistakes, some areas still
include residual haze and fog, such as the restored image in
Fig. 10(c). By adopting the K modules of transmission for
hazy scenes, AOD-Net [22] effectively improved the dehaz-
ing results. Nevertheless, the colours of the restored image
appear gloomy due to several pattern modules. Fig. 10(e)
and Fig. 11(e) show that the restored images appear hazy
in distant areas. DCPD-Net [22] performed better than did
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FIGURE 12. Visual qualitative comparison for real challenged images dehazing.

FIGURE 13. MOS for different approaches.

the other models, but compared to our model, a residual haze
always exists in the restored images, as illustrated in Fig. 10(f)
and Fig. 11(f).

Finally, we also compared our method with some methods
commonly used in practice to verify our results, as shown
in Fig. 12. Obviously, the traditional methods tend to produce
artefacts in sky areas, but our method seems to recover the
natural images. These results also demonstrate the impor-
tance of reconstructing edges in line with the input edges.

Because challenging hazy images do not have a relevant
ground truth, we cannot use SSIM or MSE as indicators to
evaluate the dehazing quality. Therefore, we employ themean
opinion score (MOS) [36] to compare the mean and standard
deviation of each approach, as illustrated in Fig. 13. Although
MOS is only a rough subjective criterion, it still reveals some
clues and observations. First, we note that each algorithm has
a certain error bar, which implies that no approach is com-
petent at all dehazing tasks. Compared with other methods,
the error bar of the proposed method is smaller, as shown
in Fig. 13. Moreover, our average score is the highest, which
indicates that a larger percentage of our method’s dehazed
images performed well than did those of the other methods.

More importantly, the MOS indicators are largely consistent
with the objective comparison in Table 2, which further con-
firms the correctness of the proposed method when training
the transmission map reconstruction using an indoor image
library (NYU).

E. FAILURE CASES
As described above, we rely on training synthetic indoor
dataset to obtain a transmission map and our method achieves
better results than those of other methods. However, indoor
depth is not truly equivalent to the depth of outdoor scenes.
Consequently, our method does not restore some of the fore-
ground images very well, as shown in Fig. 8. In addition,
because we considered only the depth information factors and
ignored the characteristics of real scenes, the restored images
include some artefacts in the sky region, as illustrated in
Fig. 12. In future work, we will continue to strive to improve
and perfect our network model to address these problems.

V. CONCLUSION
In this paper, we provide an Aggregated Resolution Convolu-
tionNetwork to address the image dehazing problem. In order
to achieve enough features from one single haze image,
we design a novel multi inputs frame to extract different
level features according to the previous successful method.
Moreover, for improving accuracy and reducing disturbance,
we propose to train and verify our ARCN network with a rela-
tive edge and style Loss function that its main reasonability is
to ensure the accuracy of the gradient while our network can
better achieve the feature extraction. Extensive experiments
have been demonstrated that our algorithm restores better
than many other classical methods on a massive number of
synthetic and real-world scenes.
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