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ABSTRACT As video blogs become favorable to the commonage, egocentric videos generate tremendous
big video data, which capture a large number of interpersonal social events. There are significant challenges
on retrieving rich social information, such as human identities, emotions and other interaction information
from these massive video data. Limited methods have been proposed so far to address the issue of the
unlabeled data. In this paper, we present a fully-automatic system retrieving both sparse 3D facial shape and
dense 3D face, from which more face-related information can be predicted during social communication.
First, we localize facial landmarks from 2D videos and retrieve sparse 3D shape from motion. Second,
we apply the retrieved sparse 3D shape as a prior estimation of dense 3D face mesh. To deal with big social
videos in a scalable manner, we design the proposed system on aMap/Reduce framework. Tested on FEI and
BU-4DFE face datasets, we improve time efficiency by 92% and 73% respectively without accuracy loss.

INDEX TERMS Facial shape retrieval, 3D face reconstruction, cloud computing, map/reduce.

I. INTRODUCTION
People share their videos on the video sharing platforms, such
as YouTube or Vimeo, for public access [1]. These platforms
are foreseen to explode with egocentric videos, while mobile
and wearable devices are available for various scenarios.
Egocentric videos are generally recorded bywearable devices
(e.g., google glass), and typically contain faces of an individ-
ual or a group of people socially interacting with wearable
device users. These videos normally contain rich social infor-
mation, such as the identities of these people, emotions, and
social interaction content. Retrieving such semantic informa-
tion can be further employed in applications such as lifel-
ogging, social science, and behavioral research. Currently,
little information has been retrieved from these videos. After
a simple data filtering, these videos are stored in the cloud-
based platform for further viewing. The potential value of
this type of big data has been limited by a lack of proper
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cloud-based analytic tools to automatically explore the
semantic information of facial reactions appearing on others
in social interaction.

A critical topic of facial analysis is retrieving 3D face
from footage. Social information stored as big video data will
confront the problems of network traffic and storage space.
As a type of text file, retrieved 3D faces significantly reduces
above two problems. Meanwhile, the 3D face model contains
well-rounded facial information, which can be utilized to
pose estimation, facial expression, face identification, and
verification analysis. Furthermore, sparse facial geometry
information can be used as a prior estimation in reconstruct-
ing dense 3D face mesh, which has been widely analyzed and
is claimed to have the advantage of being robust for head pose
and illumination conditions.

However, there are several typical challenges when per-
forming video analytics on the cloud platform. First, most
cloud front-ends (e.g., Storm, Spark, and VoltDB) are built
on Hadoop which is mainly designed for processing text
data. Second, it is not straightforward to apply Map/Reduce
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FIGURE 1. The proposed 3D facial shape reconstruction framework.
Facial landmarks are first located on 2D facial image sequences
frame-wisely. Then sparse 3D facial shapes are retrieved from the batch
of images in a sequence. These shapes are then frame-wisely applied as
a priori in 3D face reconstruction.

framework for processing data other than text. The basic idea
of the Map/Reduce framework is to segment text files into
small sections and process them separately. However, it is not
always feasible to segment 2D data as images and texture
maps into small segments because essential features may
be disrupted after the segmentation. Third, it is challenging
to mitigate single machine based video analytic tools onto
a cloud platform to waive the human intervention on data
organization of inter-algorithm and scale out handling large
volumes of video data. To the best of our knowledge, we are
the first to overcome these challenges.

In this paper, we propose an automatic video analytic sys-
tem on a Map/Reduce framework which retrieves both sparse
3D facial shape and dense 3D face in a scalable manner,
as depicted in Fig. 1. The sparse shape is used as prior
knowledge to reconstruct dense 3D face meshes. We first
decompose the sparse 3D facial shape retrieval into 2D facial
landmark detection for mappers and sparse 3D shape retrieval
for reducers. Image sequences of video footage are sent to
mappers for landmark detection. A set of facial landmarks
that detected on each frame in the footage is computed
by the reducers to retrieve sparse 3D facial shapes using
a SFM(structure from motion) method. The output of the
reducers is a single text file including sparse 3D shapes in
frames. Then these 3D shapes are fed into another mapper for
reconstructing dense 3D face meshes frame-wisely. By reim-
plementing theMap/Reduce framework, the proposed system
can reconstruct 3D faces from big video data automatically.

The initial design of the Map/Reduce framework is to
process segmented text data on a distributed data storage
cloud. The proposed system provides a novel method for
reconstructing 3D faces from videos on a cloud platform.
Different from a typical SFM method or shape-from-shading
3D reconstruction method, it decouples the 3D face recon-
struction into three components, namely 2D facial landmark
localization, sparse 3D shape retrieval, and dense 3D mesh
reconstruction. Moreover, in order to perform video analysis,
the proposed pipeline adapts the Hadoop file access which
avoids its original ’split’ action on an input file.

The contributions of this paper are:
1) we propose an automated video analytics pipeline

which reconstructs dense 3D face meshes from 2D
videos.

2) we improve the 3D face reconstruction by using sparse
3D shapes as a prior estimation to reconstruct the dense
face mesh and register its corresponding facial texture.

3) we improve the Hadoop file I/O, which enables pro-
cessing video data in a scalable manner.

4) we evaluate the proposed pipeline on two publicly
accessible databases and demonstrate its efficiency and
scalability on the cloud platform.

The rest of the paper is organized as follows: Section II dis-
cusses related works. The proposed approach to reconstruct
3D faces is presented in Section III. The system implemen-
tation on the cloud is detailed in Section IV. We present the
experimental results in Section V and conclude the paper in
Section VI.

II. RELATED WORKS
Many research problems related to human face analysis have
been extensively studied (e.g., human detection [2], [3], iden-
tity verification and recognition [4] and emotion analysis [5]).
Driven by the recent public availability of unconstrained
facial data [6], facial analysis has become more robust when
applied in natural environments.

Several studies reconstructed a 3D face from 2D images
or videos via SFM [7], shape from shading [8] and
3D model fitting [9] based approaches. Dovgard and
Basri [10] introduced a SFS(shape from shading)-based
method by taking into account not only statistical constraints
but also a geometric constraint of facial symmetry. By assum-
ing the orthographic projection and Lambertian reflectance
model, brightness constraints that incorporate unknown sur-
face albedos and surface depths could be derived. Smith and
Hancock [11] proposed to embed a statistical model of sur-
face normals instead of surface depths into the SFS frame-
work. Their approach recovers a field of surface normals
from a single intensity image by exploiting the direct rela-
tionship between surface orientations and image intensities.
Rara et al. [12] proposed another SFS-based approach. By
employing spherical harmonics (SH), the proposed method
achieves the capability of dealing with arbitrary illumination.
Jiang et al. [13] have studied the complete 3D face recon-
struction by fitting a 3D morphable face model to 2D images.
Kemelmacher-Shlizerman and Basri [14] proposed to use the
input image as a guide to "mold" a single reference model
to recover the corresponding 3D shape of either a different
individual or a generic face. Lei et al. [15] recover face
meshes from a single image using CCA mapping between
tensor spaces.

According to state-of-the-art evaluation [16], most 3D face
mesh recovery approaches have a heavy computational bur-
den, which prevents applying them to video data that have
large volume [17]–[19]. Since the optimization tools widely
used in these methods are designed for single-threaded
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computation on local machines, it is also challenging to
reinvent these methods into the Map/Reduce framework and
deploy them on a cloud platform. In contrast to thesemethods,
our method decomposes the reconstruction process into three
steps, frame-wise landmark localization, batch-wise sparse
3D shape reconstruction, and frame-wise 3D face recon-
struction. This decomposition makes the method possible
to fit into the Map/Reduce framework. Also, the pipeline
is flexible to fulfill different requirements. In some scenar-
ios where only the critical information of faces is needed
(i.e., the motion of key feature points in 3D space),
the pipeline on the cloud can skip the 3D face reconstruction
process to save the computational time and resources.

Several video analytic tools have been migrated to
the cloud platform (e.g., motion detection [20], video
tagging [21], and face recognition [22]). However, there is
no cloud-based video analytic system to recover 3D facial
information from videos. To our best knowledge, our system
is the first cloud-based system to address this challenge.

III. 3D FACIAL SHAPE RECONSTRUCTION METHOD
In this section, we present our approach to retrieve sparse 3D
facial shapes and reconstruct 3D faces. To achieve this objec-
tive, we decompose our approach to three algorithms, namely
facial landmark localization, sparse 3D shape retrieval and 3D
face reconstruction.

A. EFFICIENT FACIAL LANDMARK LOCALIZATION
To initialize the facial landmarking algorithm, we detect
faces in every frame using a face detector, which searches
regions of interest (ROI) covering faces and predicts four
vertexes of their bounding boxes. The face detector, which
is adapted from [23], uses a multi-scale sliding window to
detect potential faces and employs the Histogram of Ori-
ented Gradients (HOG) feature to classify the possibility
of potential faces linearly. It performs well on faces with
expressions [24].

Then, a cascade of tree-based regressors is applied to local-
ize vital facial points. Let xi ∈ R2 be the x, y-coordinates
of the ith facial landmark in an image I . The facial shape is
denoted as a vector S = (xT1 , x

T
2 , ..., x

T
p , )

T
∈ R2p, where

p equals 68 in our tests. The localization method can be
initialized using a mean shape centered and scaled according
to ROIs. The regressor in each cascade t , denoted asRt , takes
the image I and a shape St−1 as input. It predicts an updated
vector 1St that is added to the current shape S:

1St = Rt (I ,St−1)

St+1 = St +1St . (1)

For each regressor Rt , a constant vector 1Stl is fit to each
leaf node. The St starts at the root node of tree Rt and
traverses a sequence of internal nodes until it hits one leaf
node. These nodes are labeled with functions, and the edges
or branches below them labeled by the function outputs.
Features and thresholds have been assigned to each interior

node during the training process. A feature pool is created
hosting a large set of relative point coordinate pairs and
thresholds for their intensity difference values. Each regressor
is trained using the gradient boosting tree algorithm.

B. SPARSE 3D FACIAL SHAPE RETRIEVAL
Sparse 3D facial shapes are retrieved from an image sequence
with shape and motion estimated. However, facial shape
and motion are ambiguous while the videos are generally
recorded by only one camera. To resolve this ambiguity,
we assume that the 3D shape follows a Gaussian Probability
Density Function (PDF). Therefore, we only need to extract
a set of labeled landmark tracks from an image sequence
without additional parameters known in advance.

The 2D facial landmark vector St is orthographically pro-
jected from 3D facial point Xt, St = Rt(Xt+Dt)+N , where
Rt is the projection matrix, Dt is the translation vector, N is
zero-mean Gaussian noise with variance σ , t is the frame
index. The shape is factorized by shape basis vector X̄, V
and weights Z as Xt = X̄ + VZ. Shape Xt is assumed
to follow a probability distribution p(Xt|θ ) with a known
parameter θ which followsN (S̄; σ 2I ). The shape and motion
are estimated by maximizing

p(R,D, θ, σ 2
|S) ∝

∫ ∏
t

p(St |Xt,Rt,Dt, σ
2)p(Xt|D)dX

(2)

To estimate shape and motion while learning the param-
eters of the PDF p(S|θ), a generalized EM algorithm is
adopted. In the E-step, we estimate the distribution over shape
weights Z given the current motion and shape estimates for
each frame. Then we estimate shape basis X̄,V, noise vari-
ance σ 2, projection parameters R,T in M-step. The number
of EM iterations is normally set to 100with a balance between
convergence and performance.

C. 3D FACE RECONSTRUCTION
After we obtain the sparse 3D facial shapes, we aim to
reconstruct corresponding dense 3D facial meshes. Due to
the intrinsic correlation between sparse 3D facial shape,
which is represented as a collection of facial landmarks, and
dense 3D face mesh, we could assume that each sparse 3D
facial shape is a sub-sampled version of the dense 3D face
mesh. To recover the 3D face model from sparse observation,
we adopt a coupled subspace model, which encodes their
underlying relationship by forcing them to share the same
coefficients in a coupled subspace. Specifically, from a set
of N 3D faces γ d3D = (Y 1

3D, · · · ,Y
N
3D) with their correspond-

ing 3D facial landmarks X = (X1
3D, · · · ,X

N
3D), we build a

coupled dictionary model (Eq. 3).

argmin
α,3d

3D,3
s
3D

∥∥∥∥[β0γ d3DX

]
−

[
β03

d
3D

3s
3D

]
α

∥∥∥∥2
2

s.t. ‖α‖1≤β1. (3)

Eq. 3 can be solved off-line using the K-SVD [25]
algorithm, where 3d

3D is the dictionary of 3D facial
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FIGURE 2. The proposed pipeline design using the Map/Reduce framework.

landmarks, 3s
3D is the dictionary of 3D facial shape, and

β1 and β0 are two parameters that control the sparsity of the
coefficient and restrict the dimensionality imbalance between
two types of training data. All parameters including dictio-
nary size T are tuned empirically during experiments.

For each video frame, we first recover the coefficient α∗

by solving Eq. 4:

argmin
α∗

∥∥Xt −3
s
3Dα
∗
∥∥2
2 + β2

∥∥α∗∥∥1 + β3 ∥∥α∗∥∥2 . (4)

We force α∗ to have similar sparsity as in Eq. 3 by automati-
cally tuning β2 and adopt the LASSO algorithm [26] to obtain
the solution. We also apply L2 regularization on the solution
α∗. When we get the coefficient α∗, the corresponding dense

3D facial mesh YR
3D is reconstructed via YR

3D =
3d

3Dα
∗

β0
.

IV. SYSTEM IMPLEMENTATION USING THE
MAP/REDUCE FRAMEWORK
A. SYSTEM OVERVIEW
The Map/Reduce framework manages and processes big data
on multi-nodes in parallel. It is an implementation of cloud
computing, inheriting its two critical concepts, integration
and distribution. To initialize a Map/Reduce job, the job
tracker slices the source data into small batches and assigns
them to mappers. Mappers compute batches in parallel, and
yield 〈key, value〉 pairs as a result. Then, the job tracker
convenes and conveys entire values tagged the same key to a
reducer, which enumerates all intermediate values from map-
pers and outputs the ultimate result. In our case, we employ
two types of mappers and one type of reducers. Landmarking
mappers output 〈key, value〉 pairs. In each pair, the ‘‘key’’ is
a unique number for identifying image sequences, and the
‘‘value’’ is a pack of facial landmarks extracted from a frame.
The reducers retrieve sparse 3D shapemotion from landmark-
ing packs with the same key. With the corresponding sparse

3D shape, reconstruction mappers reconstruct a dense
3D facial mesh from every frame. We depict the whole pro-
cedure in Fig. 2.

Our system comprises of three executable binaries. One
is a C++ executable binary which extracts landmarks to
CSV files. Others are Matlab programs compiled by Matlab
Compiler Runtime (MCR), which output sparse 3D facial
shapes in CSV files, or 3D face meshes in wrl files. During
the Map/Reduce process, we apply these executable bina-
ries to two types of mappers and one type of reducers
respectively. Typically, Hadoop supports mappers or reducers
running executable binaries but requires to implement the
Map/Reduce API. However, our pre-compiled programs only
accept string data types as the initial parameters. As a com-
promise, we utilize Hadoop Java API which invokes the pre-
compiled programs by system calls. The details are explained
as follows.

B. 2D LANDMARKING MAPPER IMPLEMENTATION
In Hadoop, each mapper copes with an independent task.
It output an intermediate record as an input of the following
reducer. The types of input records of mappers and interme-
diate records may be very different. Therefore, to define a
‘‘Map’’ class, we need to declare both types of input and
intermediate records. In this paper, each landmarking mapper
invokes a core C++ program and preserves the result of facial
landmarks. The input parameters of the C++ program are
paths of files in three types, which are feature file, facial
image, and CSV file. The system produces the feature file
with identical and unchangeable local location and replicates
it to different nodes before running the program. Besides,
the system shares the same folder for input and output files.
Consequently, the landmarking mapper feeds one path to the
core C++ program. Meanwhile, the system would not split a
file into pieces, which is different for Hadoop when shedding
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FIGURE 3. Results of sparse 3D facial shape retrieval on a female subject. Plots in the two rows depict the facial landmark localization result on image
sequences conducted in the map phase. These frames contain faces from the same video with pose variations.

an input file to mappers. In consequence, we implement two
InputFormat and RecordReader classes in Java.

The RecordReader of Hadoop is a function to generate
〈key, value〉 pairs for mappers and created by the job tracker.
To implement this function, the input format of the job tracker
has to be pre-defined. To prevent the job tracker from splitting
a whole file into pieces, two classes ‘‘ImageLocationInput-
Format’’ and ‘‘ ImageLocationRecordReader’’ are defined.
The class ‘‘ImageLocationInputFormat’’ extends the Hadoop

class ‘‘InputFormat’’, and returns false directly by overriding
the function isSplitable(). Furthermore, the class ‘‘ImageLo-
cationRecordReader’’ modifies the type of 〈key, value〉 pairs
for the mapper. So the system would ignore keys, which are
the indexes of split pieces by default. We declare the type of
〈key, value〉 pairs as 〈NullWritable,Text〉, which represent a
skipped key and the location of the input image respectively.
We also implement the function nextKeyValue() to grab the
new 〈key, value〉 pair, which is transmitted to an allocated

VOLUME 7, 2019 165563



W. Gao et al.: 3D Face Reconstruction From Volumes of Videos

mapper by a job tracker. The following codes indicate the
modification of this function.

@Override
public boolean nextKeyValue()

throws IOException, InterruptedException {
if(value==null) {

Path path = fileSplit.getPath();
String pathstr = path.toString();
value = new Text(pathstr);
return true;

}
return false;

}

The system distinguishes image sequences with unique
tags, and names input files for mappers and reducers in
‘‘tag-index’’ format.When a landmarkingmapper is allocated
by the job tracker, it fetches the location of an input image and
invokes the landmarking program with three parameters. The
output CSV file shares the same name with the input image
except for the extension. After all, the output 〈key, value〉 pair
to the reducer is 〈tag, csv_location〉 and we define the ‘‘Map’’
class as follows:

public static class Map extends
Mapper<NullWritable, Text, Text, Text> {
@Override
protected void map(NullWritable key,

Text value, Context context)
throws IOException,

InterruptedException {
//Initialization
//Call C++ ’Landmark Localization’

program
//Collect output
context.write(new Text(tag), new

Text(csv_location));
}

}

C. REDUCER IMPLEMENTATION
A reducer is to merge and process the intermediate val-
ues of pieces from mappers to a new file. Sorted interme-
diate values are transmitted by the HTTP protocol. When
a reducer is allocated, it calls the reduce() function to
enumerate and process all intermediate values with the same
key.

To retrieve sparse 3D facial shapes from an image
sequence, the reducer invokes a Matlab program, which can
only read a file from the local file system. However, the values
(csv_locations) are HDFS URLs and stored on the cloud.
Hence, the reducer enumerates all values and downloads CSV
files from HDFS to the local file system, before launching
the Matlab program. These downloaded files are cataloged
in temporary folders by tag. The reducer transmits three
parameters to the Matlab program, which are the paths of
Matlab runtime library, temporary folder, and output folder
respectively. The Matlab program loads all CSV files in the

temporary folder and saves the result of 3D face reconstruc-
tion to the target folder. The output of the reducer is also a
〈tag, csv_location〉 pair. The csv_location indicates the path
of retrieved facial shape motion in CSV files.

The Reduce class is defined as:

public static class Reduce extends
Reducer<Text, Text, Text, Text> {
@Override
protected void reduce(Text key,

Iterable<Text> values, Context
context)

throws IOException,
InterruptedException {

for (Text text: values) {
//Download files from HDFS

}
//Call Matlab ’Sparse SFM’ program

and process the temporary folder.
//Output result.

}
}

D. 3D FACE RECONSTRUCTION MAPPER
IMPLEMENTATION
We reuse the customized class ‘‘ImageLocationInputFormat’’
and ‘‘ImageLocationRecordReader’’ to retrieve the exact
location of the input data for the mapper. The input data are
the output of the reducer in the last step, which is in the
format of 〈video_tag, csv_location〉 according to Fig. 2. Thus,
we need to edit the nextKeyValue() function again and set the
key to video tag.

key = new Text(video_tag);
value = new Text(pathstr);

Because the external program in this round is also aMatlab
program, before executing it, we need to set up the right
environment by passing the location of MCR library as an
argument to the program.

public static class Map extends
Mapper<Text, Text, Text, Text> {
@Override
protected void map(Text key, Text

value, Context context)
throws IOException,

InterruptedException {
//Set environment for MatLab program.
String[] cmd = {program_location,

matlab_lib_location,
program_arguments...,
csv_location,

video_tag,
output_location};

//Call Matlab ’3D Face
Reconsturction’ program

//Collect output
context.write(new Text(tag), new

Text(wrl_location));
}

}
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Each mapper will generate a WRL file, representing a
reconstructed 3D face mesh. All files are uploaded and pre-
served in HDFS. We reserve the ‘‘Reduce’’ phase in this
Map/Reduce job for further application such as face recog-
nition. Intermediate information from the mapper including
time consumption will be saved in HDFS permanently.

V. EXPERIMENTAL RESULTS
A. EXPERIMENTAL SETUP
We test the proposed system on a private cloud with multiple
Virtual Machine (VM) instances running Ubuntu 14.04 OS,
physically hosted by four Xeon E5603 servers. The virtual
machine hypervisor allocates one virtual core, 1 GB memory
and 100 GB disk space for each instance. The maximum
number of VM instances was 29. Besides, the 3D face recon-
struction program runs on an MCR version of R2014b.

To evaluate the performance of the proposed system,
we have adopted two publicly accessible face databases,
the FEI face database [27], and the BU-4DFE database [28].
The FEI face database contains a set of face images taken
between June 2005 and March 2006. There is a total
of 2,800 images from 200 individuals, 14 images for each. All
color images are acquired against a homogenous white back-
ground in an upright frontal positionwith profile rotation. The
original size of each image is 640x480 pixels. We use eight
images from each subject captured as a sequence when the
subjects turn their heads from left to right.

BU4D-FE contains 606 dynamic 3D sequences from
101 subjects. Each subject performs six prototypical
expressions (i.e., anger, disgust, fear, happiness, sadness,
and surprise). Each sequence contains expressions performed
gradually from neutral appearance, low intensity, high inten-
sity, and back to low intensity and neutral. The frame number
of each sequence varies from 68 to 110, as pairs of colorful
images and their co-registered 3D face meshes from the
high-resolution 3D scanner.

B. RESULTS ON SPARSE 3D FACIAL SHAPE RETRIEVAL
Fig. 3 depicts the results of sparse 3D facial shape retrieval.
The facial landmark algorithm was revoked by mappers for
each frame and located 68 facial landmarks on the major
facial components, including the eyebrows, the eyes, the nose,
the mouth, and the cheek. It can be observed that the facial
landmarks have been located accurately across different
poses. After the landmarks have been located, the results are
collected by the reducer and used to reconstruct a sequence
of 3D facial shapes via the SFM algorithm. The recon-
structed shape coordinates were projected into a normalized
3D space. We have compared the outputs from these algo-
rithms obtained from both a local machine and the cloud
platform, and the results were identical. This verification
excluded unexpected computation errors introduced by dif-
ferent computing platform in our tests.

Fig. 4 depicts the completion profiles of mappers and
reducers throughout sparse 3D shape retrieval in four

FIGURE 4. Completion profiles for sparse 3D facial shape retrieval with
different numbers of mapper and reducer pairs in the configuration. The
completion profile using one mapper (a), five mappers (b), ten mappers
(c), and 15 mappers (d).

FIGURE 5. Completion profiles under different number of mappers. The
completion time decreased from 12747s to 1099s, as the number
increased from one to fifteen.

configurations. We have set the number of mappers to 1, 5,
10, and 15, while the Hadoop task manager automatically
sets the number of reducers. In general, we observed that the
completion rate of reducers boosted after mappers finished
their jobs. It is because reducers allocated more computing
cores which were released from mappers. As the number of
pairs increased, the time intervals were decreased between
the completion of mappers and reducers. It is because more
reducers had shared the tasks and improved time efficiency.

Fig. 5 depicts the comparison of completion time where
the number of mappers increased from one to fifteen.
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FIGURE 6. Results on 3D face reconstruction from original facial images and sparse 3D facial shapes. The top row depicts the original faces in a
sequence. The middle row depicts their corresponding reconstructed face meshes. The bottom row depicts their co-registered facial texture.

When one mapper is in Hadoop, the completion time was
more than 100,000 seconds.When 15mappers are in Hadoop,
the completion time was 1099 seconds. The completion time
is reduced by 92%, as the number of mappers increased.

C. RESULTS ON 3D FACE RECONSTRUCTION
Fig. 6 depicts the reconstructed 3D faces from the original
2D facial images as well as their co-registered facial textures.
Each image has been retrieved as a sparse 3D shape which
was used as a prior for dense 3D shape reconstruction. 3D
face reconstruction mappers have been assigned with a facial
image and its sparse shape and outputted the 3D facial mesh
as well as its registered facial texture.

Fig. 7 compares the 3D faces reconstructed directly from
the single image based method by [29] (column b) and
the proposed pipeline (column c). It can be observed that
the artifacts in the nasal region have been reduced sig-
nificantly. The reason behind is monocular facial shape
reconstruction like [29] has an inherent deficit of accu-
racy on estimating depth, especially when faces are frontal.
However, in the proposed system, sparse 3D facial shapes
were retrieved from a sequence of images with different head
poses. The SFM-based computation in Sec.III.B was con-
strained by a statistical shape model learned from its specific
image sequences.With this sparse shape as a prior estimation,
3D face reconstruction in our pipeline is more photo-realistic
and accurate in depth estimation.

BU-4DFE is widely used on emotion recognition [30] and
3D face alignment [31]. In the test on BU-4DFE, we first used
2,340 reconstructed 3D faces from 36 sequences of facial

FIGURE 7. Comparison on 3D face reconstruction. Column (a) depicts the
original images; column (b) depicts the 3D face reconstructed from single
images by [29]; column (c) depicts the 3D face reconstructed from our
pipeline.

expressions (six from each expression, randomly selected).
The reconstructed faces were compared to the original 3D
face meshes. The root-mean-square error was computed
for each 3D face. Fig. 8 depicts the statistics of 3D face
reconstruction errors w.r.t. each facial expression. The error

165566 VOLUME 7, 2019



W. Gao et al.: 3D Face Reconstruction From Volumes of Videos

FIGURE 8. Boxplot of reconstruction error on BU-4DFE dataset. The Y axis
is the root-mean-square error (RMSE) in mm, and the X axis is the facial
expression categories. The bottom and top of the box are the first and
third quartiles, the band inside the box is the median, and the circle is the
mean.

FIGURE 9. Reconstruction errors over the dynamics of facial expressions.
The Y axis is the root-mean-square error (RMSE) in mm, and the X axis is
the frame number of the facial expression sequence.

means for different expressions ranged from 3.61mm to
3.83mm. Even with exaggerated expressions (i.e., surprise
and happy) where large deformation occurs on faces, no sig-
nificant variance has been observed on the reconstruction
error mean. It demonstrated the robustness of our 3D recon-
struction method to the facial expression variation.

Fig. 9 depicts reconstruction errors over the dynamics of
facial expressions. The average RMSE for each expression
has been plotted as a line, which demonstrates the recon-
struction error through the evolution of facial expressions.
All the expression sequences evolved from neutral, onset,
peak and offset phases. It can be observed that in general
errors were relatively small in the neutral phase, and then
increased during the onset phase and decreased during the
offset phase. The maximum error was obtained frequently in
the peak phase. For some expressions (e.g., fear and surprise),
the errors during the onset phase are less than the errors

FIGURE 10. Cumulative distribution of reconstruction error on BU-4DFE
dataset. The Y axis is the proportion of testing frames, and the X axis is
the root-mean-square error (RMSE) in mm.

during the offset phase, while for some other expressions
(e.g., sad and disgust) higher errors are obtained during the
onset phase. It is probably because the reconstruction accu-
racy is influenced by the difference in triggered facial action
units [32] in expressions.

Fig. 10 depicts the cumulative distribution of the recon-
struction error over 2340 reconstructed 3D faces. It can be
observed that most of the reconstruction errors are distributed
around 3.5mm across the six universal expressions. Almost
all faces have been reconstructed with RMSE error less
than 5.5mm. The results demonstrated the accuracy of the
proposed 3D face reconstruction pipeline.

We then used the whole BU-4DFE dataset for cloud
computing evaluation, which contains 606 image sequences.
About 7.3G data has been digested, and about 106G data
has been generated in each test. Fig. 11 depicts the com-
pletion profiles of mappers and reducers throughout 3D face
reconstruction in four configurations.We have set the number
of mappers to 1, 10, 15, 20, and 29, while the number of
reducers is automatically set by the Hadoop task manager.
It is observed that, after reducers finish sparse 3D face shape
retrieval, the nodes have been assigned again as mappers to
continue 3D face reconstruction tasks.

Fig. 12 depicts the completion time comparison where
the number of mappers increased from one to 29 in 3D
face reconstruction. When we set one mapper in Hadoop,
the completion timewas around 504,720 s.Whenwe assigned
29 mappers, the completion time was around 140,090 s.
As the number of mappers increased, the completion time
reduced by 72.3%. It can be observed that the completion
time achieved by 25 nodes is quite close to the completion
time achieved by 29 nodes. The reason is probably that the
computation time for file copying has a significant portion in
the overall computation, and this time cannot be reduced by
increasing the number of nodes.
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FIGURE 11. Completion profiles for 3D face reconstruction with different
numbers of mappers in Hadoop configuration. The purple, green and blue
lines represent 2D facial landmarking mapper, reducer and 3D facial
reconstruction mapper respectively. (a) the completion profile using ten
mappers, (b) the completion profile using 15 mappers, (c) the profile
using 25 mappers, and (d) the profile using 29 mappers.

FIGURE 12. Results on completion times under different numbers of
mappers. As the number increased from one to 29, the completion time
gradually decreased from 504,720 sec to 140,090 sec.

Table 1 depicts the mean, min, and max time for each task
in a job. The tasks in our system include copying files from
local to HDFS, copying files from HDFS to local, mapper
1 task, reducer task, and mapper 2 task. Copying files from
the local to HDFS file system consumes a significant amount
of time (17.041s on average). It is because HDFS needs
to back up several copies of the image data to ensure data
redundancy. However, it is quite efficient to copy files from

TABLE 1. Job time calculation.

TABLE 2. Time consumption per frame and RMSE.

TABLE 3. Time consumption - a comparison with Open MPI (Time is in
103 seconds).

the HDFS to local (0.398s on average), where the system
does not need to copy several duplications in the local file
system. Among mapper and reducer tasks, the mapper 2 task
consumed the longest time, 10.901s on average. It is because
of the complexity of the 3D face reconstruction algorithm.
The time variations on mapper and reducer tasks were mainly
caused by system computation overhead.

D. COMPARED TO STATE-OF-THE-ART
To evaluate the performance of the proposed method, we use
the whole BU4DFE dataset for computing the time consump-
tion and RMSE per frame (time is in seconds). Compared
to other novel methods, Table 2 indicates that the proposed
method performs the best performance on both of time con-
sumption and RMSE when we set one mapper in Hadoop.
Further, we significantly reduce the time consumption per
frame from 12.24s to 3.40s by setting 29 mappers in Hadoop.

E. DISCUSSION
In order to compare cloud-based computation with cluster-
based computation, we conducted the proposed sparse 3D
facial shape retrieval algorithms using both Map/Reduce and
Open MPI. Tested with the whole BU-4DFE dataset, Table 3
indicates that Open MPI spends less time than Map/Reduce
does. However, referring to big data processing, time con-
sumption is not the only criteria for evaluation. We opt to use
the Map/Reduce framework due to the following reasons:

1) We can implement a similar Map step followed by
a Reduce step in Open MPI. But it has a strict
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synchronization rule [36] where mappers and reducers
can only be called exclusively.

2) Map/Reduce had a better fault tolerance [37], [38]. The
task will be terminated if a process fails in Open MPI,
while failure can easily be recovered in Map/Reduce.

3) Without HDFS, we need to distribute and label the
input data for Open MPI manually.

4) Map/Reduce program is scalable and is reusable.

VI. CONCLUSION AND FUTURE WORK
We have proposed sparse 3D face shape retrieval and 3D
face reconstruction system accelerated by the Map/Reduce
framework on Hadoop. The system reconstructs 3D facial
shape from 2D videos using a three-step scheme, where
the first two steps are a facial landmarking algorithm and
a sparse 3D shape reconstruction algorithm. Then sparse
3D facial shapes have been applied as a prior estimation
for 3D face reconstruction. To process big video data in a
scalable manner, we have incorporated a Map/Reduce frame-
work and implemented the algorithms as mapper and reducer
appropriately. To overcome the limitation of revoking binary
executables without Map/Reduce API supporting, we have
reimplemented an appropriate input format and a record
reader class in Java. Tested on the cloud platform consisting
of 29 VMs, the system has retrieved 3D facial shapes which
were consistent with the results obtained on a single machine.
The scalability of the system has reduced the computation
time by 92% and 73% respectively. The experimental results
have also demonstrated the accuracy and scalability of the
system. In future work, we will add more jobs following the
current one to develop scalable facial expression recognition
or face recognition using the reconstructed 3D face on big
video data.
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