
Received June 20, 2019, accepted August 19, 2019, date of publication August 30, 2019, date of current version September 23, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2938682

An Efficient Signature Scheme From
Supersingular Elliptic Curve Isogenies
YAN HUANG1, FANGGUO ZHANG 2,3, ZHIJIE LIU2, AND HUANG ZHANG2
1School of Electronic and Information Engineering, Sun Yat-sen University, Guangzhou 510006, China
2School of Data and Computer Science, Sun Yat-sen University, Guangzhou 510006, China
3Guangdong Key Laboratory of Information Security, Guangzhou 510006, China

Corresponding author: Fangguo Zhang (isszhfg@mail.sysu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61672550, and in part by the National
Key Research and Development Program of China under Grant 2017YFB0802503.

ABSTRACT Since supersingular elliptic curve isogenies are one of the several candidate sources of
hardness for building post-quantum cryptographic primitives, the research of efficient signature schemes
based on them is still a hot topic. In this paper, we present a many-time signature scheme based on the
hash function from supersingular elliptic curve isogenies over the finite field Fp2 where p = 2521 − 1.
Our signature scheme achieves smaller signature sizes relative to other post-quantum signature schemes
based on supersingular elliptic curve isogenies, such as Galbraith’s signature schemes (AsiaCrypt 2017)
and Yoo’s scheme (FC 2017). The structure of our scheme follows that of the hash-based signature scheme
submitted to National Institute of Standards and Technology for post-quantum cryptography in 2018 with
somemodifications. To complete the construction, we firstly apply the method ofWeil restriction to improve
the efficiency of hash function from supersingular elliptic curve isogenies by approximately 30%, then
propose a new Winternitz one-time signature scheme based on the hash function. Finally, we implement
the signature scheme.

INDEX TERMS Elliptic curve isogenies, post-quantum cryptography, signature scheme.

I. INTRODUCTION
A recent research area for post-quantum cryptography is from
supersingular elliptic curve isogenies [1]. These cryptosys-
tems [2]–[4] are based on the difficulty of finding a path in the
isogeny graphs of supersingular elliptic curves. Since the only
known quantum algorithm for the problem has exponential
complexity [5], it may be suitable for building post-quantum
cryptography.

For the study of signature schemes based on supersingu-
lar elliptic curve isogenies, building a secure and efficient
signature scheme is still a hot topic. Since Jao and De [2]
proposed a key exchange protocol based on supersingular
isogenies, some signature schemes based on it emerged one
after another. Jao and Soukharev [6] gave an undeniable sig-
nature, Sun et al. [7] presented a designated verifier signature,
Yoo et al. [4] designed a quantum-resistant signature and
Galbraith et al. [8] constructed two signatures DFJP+FS and
DFJP+U which were against classical and quantum adver-
saries, respectively. According to [8], it is shown that the
protocol [2] might be dangerous in certain contexts, since

The associate editor coordinating the review of this manuscript and
approving it for publication was Tony Thomas.

it used small isogeny degrees and revealed auxiliary points.
Hence, Galbraith et al. [8] provided another two schemes
Sec3+FS and Sec3+U which both relied on the difficulty of
computing the endomorphism ring of a supersingular elliptic
curve. This difficulty has heuristic classical complexity of
Õ(p1/2) bit operations, and quantum complexity Õ(p1/4) bit
operations.

Since Castryck et al. [8] proposed a commutative key
exchange protocol based on the class group from supersin-
gular isogenies, De Feo and Galbraith [10] provided a new
signature scheme based on the protocol. Deru et al. [11]
speeded up the signature scheme. By relying on the pro-
grammes proposed by Kleinjung [12] and working over the
maximal order, Beullens et al. [13] found the generator of
the class group and constructed a new signature scheme,
which was 300 times faster than the optimized version [11].
Note that Bonnetain and Schrottenloher [14] and Peikert [15]
reassessed the security of the key exchange based on the class
group and found that the CSIDH failed to achieve 64 bits of
quantum security.

Up to now, these signature schemes mentioned above
are constructed from identification protocols by using the

129834 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0002-0486-6413

Y. Huang et al.: Efficient Signature Scheme From Supersingular Elliptic Curve Isogenies

Fiat-Shamir transform [16] against classical adversaries,
or Unruh transform [17] against quantum adversaries, respec-
tively. In these identification protocols, the prover and verifier
need to interact at least λ times where λ is the security param-
eter. As the isogeny does not have rich algebraic structure and
the interactive process takes one bit at a time, the efficiency
of the corresponding signature schemes is relatively slow.

It is well known that one signature scheme can be con-
structed not only based on identification protocols, but also
based on cryptographic hash functions which combines with
tree structures.

For the hash-based digital signature schemes, there are
two schemes submitted to National Institute of Standards
and Technology [18], [19] in response to their call for post-
quantum cryptography standardization. These schemes are
based on hash functions such as SHA-2, SHA-3, etc. If these
hash functions can be replaced by ones which are provable
secure under the assumptions of computationally hard prob-
lems such as those from supersingular elliptic curve isoge-
nies, the security of these schemes would be increased.

In 2009, Charles et al. [20] proposed an expander hash
(CGL), which is based on the isogeny graphs of super-
singular elliptic curves over finite fields. According to
[21, Proposition 15], the CGL hash suffered from a collision
attack when the initial curve is special. Namely, its endomor-
phism ring is known [21, Proposition 15]. Doliskani et al. [20]
proposed a variant of the expander hash (JGP) that was more
efficient than the original CGL algorithm. Besides, in order
to prevent this attack, the starting elliptic curve is chosen ran-
domly such that the endomorphism ring computation prob-
lem is hard [21].

A. OUR CONTRIBUTIONS
In this paper, we firstly optimize the hash function from
supersingular elliptic curve isogenies by taking advantage of
theWeil restriction. This trick can transform all the arithmetic
operations over Fp2 into those over Fp, which speeds up the
computation of hash function by about 30%. Thenwe propose
a Winternitz one-time signature scheme based on the hash
function and utilize the structure of hash-based signature to
change the one-time signature into many-time signature. The
scheme has shorter signature size than other post-quantum
signature schemes based on supersingular elliptic curve iso-
genies. Finally, we implement the signature scheme.

B. ORGANISATION
The rest of the paper is organized as follows. We shall briefly
introduce the preliminaries in Section II. In Section III,
we optimize the hash function based on supersingular elliptic
curve isogenies, propose a keyed one-way function based
on the hash function and construct a new Winternitz one-
time signature scheme based on the keyed one-way func-
tion. A many-time signature scheme based on hash functions
from the supersingular elliptic curve isogenies is presented in
Section IV. We give the efficiency analysis in Section V and
a brief conclusion in Section VI.

II. PRELIMINARIES
This section sets the stage by reviewing some background
about supersingular elliptic curve isogenies and Kummer
surfaces, keyed one-way function [23] and signature schemes
based on hash functions [19].

A. SUPERSINGULAR ELLIPTIC CURVE ISOGENIES
AND KUMMER SURFACES
We summarize the required background about isogenies
according to the theory in [24]. Let E , E ′ be two elliptic
curves over a finite field Fq. An isogeny ψ is a non-constant
morphism E → E ′ of elliptic curves that preserves the group
structure. The degree of an isogeny ψ is the degree of ψ as
a morphism. An isogeny of degree l is called an l-isogeny.
If ψ is separable, then degψ =]kerψ . If there is a separable
isogeny between two curves, we say that they are isogenous.
Tate’s theorem is that two curves E , E ′ over Fq are isogenious
if and only if]E(Fq) =]E ′(Fq). A separable isogeny can
be identified with its kernel [25]. Given a subgroup G of
E , we can use Vélu’s formulae [26] to explicitly obtain an
isogeny ψ : E → E ′ with kernel G such that E ′ ∼= E/G.
Given a prime l, the torsion group E[l] contains exactly l+ 1
cyclic subgroups of order l, each of which corresponds to a
different isogeny.

An isogeny ψ : E → E ′ such that E = E ′ is called
an endomorphism. The set of endomorphisms of an elliptic
curve, denoted by End(E), has a ring structure which is either
an order in a quadratic imaginary field or a maximal order in
a quaternion algebra. In the first case, we say that the curve
is ordinary, whereas in the second case we say that the curve
is supersingular.

It can be shown that every supersingular elliptic curve can
be defined over Fp2 , thus its j-invariant is over Fp2 . Although
there are Np := b

p
12c + εp supersingular j-invariants, with

εp = 0, 1, 1, 2 when p = 1, 5, 7, 11 mod 12 respectively,
we are not aware of an efficient method to encode each of
these j-invariants into log2 p bits, so we represent a super-
singular j-invariant with 2 log2 p bits. For any prime l 6= p,
one can construct a so-called isogeny graph, where each
vertex is associated to a supersingular j-invariant, and an edge
between two vertices is associated to an l-isogeny between
the corresponding vertices. Isogeny graphs are regular with
degree l+1; they are undirected since any isogeny from j1 to
j2 corresponds to a dual isogeny from j2 to j1. Isogeny graphs
are also very good expander graphs Gl [27]. Next, we give
three hard problems in Gl according to [22]. Let n = log2 p.
For a prime l 6= p, denote by Gl the graph of supersingular
elliptic curves over Fp2 .
Problem 1: Find curves E1,E2 ∈ Gl and two distinct

isogenies φ1, φ2 : E1 → E2 of degrees lrn and lsn for some
integers r, s > 0.
Problem 2: Given a curve E ∈ Gl , find an endomorphism

‘‘φ ∈ End(E)/Z’’ of degree lrn for some even r > 0.
Problem 3: Given curves E1,E2 ∈ Gl , find an isogeny φ :

E1→ E2 of degree lrn for some integer r > 0.

VOLUME 7, 2019 129835

Y. Huang et al.: Efficient Signature Scheme From Supersingular Elliptic Curve Isogenies

In [22], it had been shown that Problem 1 is equivalent
to Problem 2 in Gl , while finding a solution to Problem 3
implies a solution to Problem 1. Due to Biasse et al. [5],
Problem 3 has heuristic classical complexity of Õ(p

1
2) bit

operations, and quantum complexity Õ(p
1
4).

For a genus-2 curve C over Fq, JC is its Jacobian group,
the quotient JC/{±1} is called Kummer surface. There exists
fast Kummer surface K Sqr , which has efficient arithmetic
operations and isogeny computations. By leveraging a linear
projective isomorphism between JC/{±1} and K Sqr accord-
ing to [28], all the arithmetic operations on JC/{±1} can
be transformed into those on K Sqr . For the evaluation of
isogenies, Costello [31] presents a fast method to optimize
the (2, 2)-isogenies over Fp and apply the Weil restriction to
transfer the evaluation of isogenies on Montgomery curves
over Fp2 into the evaluation on Kummer surfaces K Sqr over
Fp.

B. KEY ONE-WAYNESS
Keyed One-Way Function:A keyed one-way function fam-

ily Fn = {Fk : {0, 1}n → {0, 1}n|k ∈ {0, 1}n} are
parameterized by a key k ∈ {0, 1}n and the security parameter
n [35]. The key one-wayness of the function family can be
defined as follows:
Definition 1 (Key one-wayness(KOW) [23]): Let Fn be a

family of keyed one-way functions as above. We call Fn is
(t, ε) key one-wayness, if the success probability

AdvKOWA = Pr[(x, k)
$
←− {0, 1}n × {0, 1}n, y← fk (x),

k ′← A(x, y) : y = fk ′ (x)]

of any adversary A that runs in time t is at most ε.

C. SIGNATURES
A signature scheme is a tuple of probabilistic polynomial-
time algorithms (Gen, Sign, Verify) [35]. We use the standard
security notion of existentially unforgeable under adaptively
chosen messages attacks (EU-ACMA) [36], which is defined
using a game between a challenger and a forger. Namely,
a forger can ask a signing oracle Sign(sk, .) for polynomial
many signatures of messages of his choice. Then a success-
ful attack is considered if the forger is able to produce a
valid pair of message and signature for a message different
from those queried to the oracle. The specific process is as
follows:
Definition 2 (EU-ACMA): Setup: The challenger runs

Gen to output a pair of keys (pk, sk), and give the public key
pk to the forger.
Queries: The forgerA adaptively requests at most qs mes-

sages M1, ...,Mqs . The challenger responds to the ith query
with a valid signature σi where i ∈ {1, ..., qs}.
Output: Finally, the forger A outputs a valid message-

signature pair (M∗, σ ∗) and wins the game if M∗ /∈ Mi for
all i ∈ {1, ..., qs}.

The advantage of the forger A is defined as

AdvEU−ACMAA = Pr

 (sk, pk)← Gen(1n);
(M∗, σ ∗)← ASign(sk,.)(pk) :

M∗ /∈ M ∧ Verifypk (M∗, σ ∗) = True

.
The probability is taken over the coin tosses of the Gen,

Sign and A.
The signature is (t, ε, q)-EU-ACMA if there is no t-time

adversary that succeeds with probability ≥ ε after making
≤ q signature oracle queries.
A (t, ε, 1)-EU-ACMA secure signature scheme is called a

one-time signature scheme that is existentially unforgeable
under the 1-adaptively chosen message attack.

D. HASH-BASED SIGNATURE SCHEMES
In this subsection, wemainly review the hash-based signature
scheme submitted to NIST for post-quantum cryptography
in 2018 [19]. The scheme combines some basic blocks such
as a Winternitz one-time signature scheme, a subsets-based
scheme, secret key caching, as well as batch signing with a
hyper-tree construction, which achieves the goal of signing
many messages per key pair.

1) WINTERNITZ ONE-TIME SIGNATURE SCHEME (WOTS):
The WOTS uses one string of the signing key to sign several
bits of the message digest simultaneously. The key point
is to iteratively use a one-way function F : {0, 1}n →
{0, 1}n on a secret input. For a message digest M of n
bits, one firstly chooses parameters l1 and w such that l1 ·
log2 w = n, then decomposes M into l1 chunks of log2 w
bits (x1, ..., xl1). Secondly, he computes C =

∑l1
i=1(w − xi),

and decomposes C into l2 chunks (c1, ..., cl2), each of which
is of log2 w bits, and appends (c1, ..., cl2) to x to form b =
(x1, ..., xl1 , c1, ..., cl2) = (b1, ..., bl) where l = l1 + l2.
The secret key consists of l n-bits strings (s1, ..., sl) and the
public key is (Fw−1(si))1≤i≤l . The signer issues (yi)1≤i≤l =
(Fbi (si))1≤i≤l as the one-time signature of M . Verification
is done by computing Fw−1−bi (yi) and comparing the result
with the public key elementFw−1(si) for i from 1 to l. In order
to reduce the size of public key, the L-tree construction
is used. It uses these public keys as leaves, and generates
the internal nodes with a hash function. Nevertheless, if the
number of a level in this tree is an odd, the rightmost node
is lifted up one level. The root of the tree is then used as the
public key pk . We call the invariant WOTS+. The security
of the WOTS+ mainly relies on the one-wayness of F and
collision-resistance of hash functions.

2) PRNG TO OBTAIN A RANDOM SUBSET
FROM A TREE (PORST)
The signature constructed by the PORST is a few-time sig-
nature scheme, it uses a pseudo-random function to obtain
a random subset from a key set which acts as the leaves of
a tree. The secret key is n-bits strings (s1, ..., st). The public
key pk is the root of aMerkle tree which uses these t values as
leaves and uses one hash function to compute internal nodes.

129836 VOLUME 7, 2019

Y. Huang et al.: Efficient Signature Scheme From Supersingular Elliptic Curve Isogenies

FIGURE 1. The structure of hash-based signature scheme.

For a message digest m of n bits, using a pseudo-random
function G, the signer takes m and an address parameter A
as input, outputs k elements from (s1, ..., st) as a part of
the signature. Meanwhile, the signer computes an optimal
authentication path for the k elements in theMerkle tree as the
other part of the signature. Verification is done by computing
the root of the Merkle tree and comparing the result with
the public key. The security of the PORST signature scheme
mainly relies on the hardness of the subset-resilience problem
and the collision resistance of the hash function.

3) GRAVITY-SPHINCS
Gravity-SPHINCS [19] is a many-time signature based on
hash functions. It includes four parts: key caching of height c;
d layers of WOTS+ instances (each of which includes a
Merkle tree of height h and a WOTS+); PORST signature
and batch messages of height b at the bottom of the hyper-
tree. This structure is shown in FIGURE.1

The process is taken as follows. Firstly, the secret keys
are two n-bits values seed and salt , the seed is used for

pseudorandom key generation and the salt is used to generate
an unpredictable index and pseudo-random values to random-
ize themessage hash. The public key pk is the root of aMerkle
tree of height h + c whose leaves are WOTS+ public keys.
The first step of the signature is to gather all the messages
and to compute a Merkle tree from their respective hashes by
applying the batch signing, then the root m of the Merkle tree
is the message signed by PORST signature. The authentica-
tion path Abatch of the corresponding message Me, as well as
its index e (i.e. the index of the message required signed) are
as part of the Gravity-SPHINCS signature. The second step is
the PORST signature, which uses the secret key seed and an
addressA to generate t values as the secret keys of the PORST
signature, and the signature of m is (σd , oct). The public
key of PORST signature is regarded as the messages for the
next signature. The third step repeats WOTS+ and constructs
Merkle trees for d times, the secret keys for WOTS+ are
generated by the secret key seed and an address A. Then the
d time signatures are (σd−1,Authd−1, ..., σ0,Auth0). At the
last step, we need to compute 2c+h WOTS+ public keys

VOLUME 7, 2019 129837

Y. Huang et al.: Efficient Signature Scheme From Supersingular Elliptic Curve Isogenies

and the authentication path Authh+c until we reach the root
of the hyper-tree. The Authc is to remove the first h nodes of
the authentication path Authh+c. Then the signature is σ =
(s, i, bi, σd , oct, σd−1,Authd−1, ..., σ0,Auth0,Authc). Given
a signature σ ′ and the public key pk , the verification process
consists of recomputing the root of the Merkle tree for batch
messages, the root of the Merkle tree for PORST signature,
the roots of the Merkle trees for WOTS+ for d times until
reaching the root of the hyper-tree. If all verifications succeed
and the root of the top tree equals pk , then the signature is
accepted. The security of Gravity-SPHINCS can be proved
by using the product composition [37] which combines the
security of each part together.

III. HASH FUNCTION AND KEYED ONE-WAY FUNCTION
FROM SUPERSINGULAR ELLIPTIC CURVE ISOGENIES
AND WINTERNITZ ONE-TIME SIGNATURE
In this section, we optimize the hash function and present a
keyed one-way function based on hash function from super-
singular isogenies. Basing on these two function, we propose
a Winternitz one-time signature and prove its security.

A. HASH FUNCTION AND KEYED ONE-WAY FUNCTION
FROM SUPERSINGULAR ISOGENIES
Doliskani et al. [22] proposed a hash function H (E0,m)
in Algorithm 2 from supersingular elliptic curve isogenies.
The function takes an initial curve E0 and arbitrary length
message m as input and is constructed by leveraging the
Merkle-Damg

◦

ard structure [29]. The compression function
h(E,m, c) in Algorithm 2 is called by taking a supersingular
elliptic curve E , an n−bit messagem and an index c as inputs,
computing 2n-isogenies and outputing a supersingular elliptic
curve E ′.

We utilize the trick of the Weil restriction [31] to opti-
mize the compression function. Specifically, in Algorithm 1,
Step 1 obtains two independent points of E[2n] as generators
canonically according to the input index c and a fixed table
T1 (or T2). Step 2 computes the kernel generator point R of
an isogeny. These two steps are the same as those in [22].
Step 3 and Step 4 convert the supersingular elliptic curve E
and the kernel point R on E over Fp2 into the Kummer surface
K Sqr and the corresponding point RKSqr on K Sqr over Fp.
They make use of Scholten’s construction [30] to change the
Montgomery curve E into the general Kummer surface JC ,
and then leverage the isomorphism map mentioned in [32]
to convert the general Kummer surface JC into fast Kummer
surface K Sqr . Thus an isogeny φ can be evaluated over a
prime field Fp at Step 5, which is similar to the approach
in [33]. Then Step 6 converts the Kummer surface K Sqr back
to the Montgomery curve E ′. These operations enhance the
efficiency of the compression function. The details of Step 3,
4 and 5 are presented in Appendix A. Now we analyze the
efficiency. Let m, s denote the multiplication and squaring
operations over Fp and M , S, I denote the multiplication,
squaring and inversion operations over Fp2 . According to the

Algorithm 1 h(E,m, c)
Input : A supersingular curve E , an n−bit message m,
An integer c.
Output : A curve E ′

1: Obtain generators P,Q of E[2n] deterministically
from T1[c] (or T2[c])
2: Compute R = P+ mQ
3: Convert E over Fp2 into Kummer surface K Sqr over
Fp
4: Map the point R on E into the point RKSqr on K Sqr

5: Compute an isogeny φ : K Sqr
→ K̂ Sqr with kernel

〈RKSqr 〉

6: Convert K̂ Sqr over Fp into E ′ over Fp2
7: Return E ′

implementation results, m = 155 cycles, and s = 105 cycles.
In light of common approximations, M ≈ 3m, S ≈ 2s + m
and I ≈ 100M , a square root inFp2 requires (2 log2 p+1)M+
1S + 1I .
TABLE 1 presents the efficiency analyses of the compres-

sion functions in Algorithm 1 and in [22]. By comparison, our
function has been speeded up by 30%, thus the hash function
in Algorithm 2 can be further improved by 30% on average.

Algorithm 2 H (E0,m)
Input : A supersingular curve E0, a message m
Output : A curve E2
1: Pad the message m to get m = m0||m1||...||mk , where
each block mi is n bits
2: c = 0
3: E1 := E0,E2 := E0,E3 := E0
4: for i = 0 to k
5: do {
6: Compute the isogeny E3 := h(E2,mi, c)

7: c := c+ 1
8: while (E3 = E1)

9: E1 := E2,E2 := E3
10: c := c+ 1 }
11: return E2

The hash functionH (E0,m) is also proved to be preimage-
resistant and collision-resistant when the initial curve E0 is
chosen randomly.
Theorem 1 (Preimage Resistance (PR) [22]): If there is

an efficient algorithm for finding preimages in the hash fam-
ily, then there is an efficient algorithm for Problem 3.
Theorem 2 (Collision Resistance (CR) [22]): If there is an

efficient algorithm for finding collisions in the hash fam-
ily, then there is an efficient algorithm for Problem 1 and
Problem 2.

129838 VOLUME 7, 2019

Y. Huang et al.: Efficient Signature Scheme From Supersingular Elliptic Curve Isogenies

TABLE 1. The efficiency comparison of computing the compression function by utilizing chained 2-isogenies on Montgomery curves over Fp2 [22] with
chained (2,2)-isogenies on Kummer surfaces over Fp [31].

Keyed One-Way Function Based on the Hash Function:
The keyed one-way function is a keyed hash function in
essence. If there exists a hash function, it is easy to construct
a keyed hash function [35]. Therefore, our keyed one-way
function Hkow can be defined as Hk (E0, x) = H (E0, k||x),
i.e., computing a hash function based on supersingular
isogeny with the secret key k as part of the input. The key
one-wayness can be reduced to the preimage resistance of the
hash function based on supersingular isogeny.

B. WINTERNITZ ONE-TIME SIGNATURE (WOTS)
The Winternitz one-time signature based on the keyed one-
way function is a variant of WOTS [23]. Now, we use a
keyed hash function from supersingular elliptic curve isoge-
nies Hkow to specify it with some modifications.

1) KEY GENERATION
Firstly, we choose the Winternitz parameter w = 2r ∈ N,
t ≥ 1, to define the compression level. Next we choose a

random x
$
←− {0, 1}n and a random supersingular elliptic

curve E0 ∈ {0, 1}2n. The signature secret key consists of
l bit strings of length n chosen uniformly at random sk =

(sk1, ..., skl)
$
←− {0, 1}{n·l}, where l = l1 + l2, l1 = dn/re and

l2 = d(dlog2 n− log2 re + r)/re.
Every element of the public key is computed by iteratively

using the keyed hash function from supersingular elliptic
curve isogeniesH (E0, k||x) for w−1 times, where the output
of the i iteration is the key of the i + 1 iteration, i.e., ki+1 =
H (E0, ki||x). Therefore, the public key can be computed by

pk = (pk0, pk1, ..., pkl)

= (x,Hw−1(E0, sk1||x), ...,Hw−1(E0, skl ||x)).

When constructing an L−tree as in Section II.D, the leaves
are pk1, ..., pkl . Let the root node of this L−tree be E ′0, the
public key could be redefined as pk = (E0,E ′0, x).

2) SIGN
We describe how to sign an m−bit message M =

(M1, ...,Ml1) given in base-w representation, i.e., Mi ∈

{0, ...,w − 1} for i = 1, ..., l1. We begin by computing

the checksum C =
l1∑
i=0

(w − 1 − Mi) and representing it

to base w as C = (C1, ...,Cl2). The length of the base-w
representation of C is at most l2 since C ≤ l1(w − 1). Then
we set B = (b1, b2, ..., bl) = M ||C (we can use the function
checksumed(M) to describe the process later). The signature
of message M is computed as

σ = (σ1, ..., σl) = (Hb1 (E0, sk1||x), ...,Hbl (E0, skl ||x)).

3) VERIFY
Given a message M and signature σ = (σ1, ..., σl), the ver-
ifier first computes the base-w string B = (b1, b2, ..., bl) as
described above. Then he
1. computes

(pk1, pk2, ..., pkl) = (Hw−1−b1 (E0, σ1||pk0), ...,

Hw−1−bl (E0, σl ||pk0)),

2. recomputes the root pk ′ of the L − tree and checks
pk ′ ?
= E ′.

Now, we give the security analyses of the WOTS, as well as
the WOTS+ which uses a so-called L−tree to compress the
l values of the WOTS public key into a single 2n−bit string.
Theorem 3: If Hkow is a (tKOW , InsecKOW (Hkow)) keyed

one-way function, then WOTS is existentially unforgeable
with

InsecEU−ACMA(WOTS(Hkow)) ≤ l2w2kw−1InsecKOW (Hkow)

where l and w are defined above and the upper bound k is
denoted as follows: for each pair (E0, x), there exist at most
k− 1 different curves k1, ..., kk−1 such that H (E0, ki||x) =
H (E0, k||x) for i = 1, ..., k− 1.
Proof 1: Suppose there exits an adversary A attacking the

WOTS, thenwe can use the adversaryA to construct an adver-
sary B against the key one-wayness of Hkow. The signing
oracle Sign is simulated by the adversary

The adversary B aims at producing a key k ′ such that
H (E0, k ′||x) = y for x, y provided as input. The adversary B
first generates a regularWOTS signature key pair and chooses
random positions α and β (Line 1, 2). Then he computes
the WOTS public key using value x. The public key pkα

VOLUME 7, 2019 129839

Y. Huang et al.: Efficient Signature Scheme From Supersingular Elliptic Curve Isogenies

Algorithm B
Input : Security parameters n, Winternitz parameter w,
initial curve E0, description of Hkow, key one-wayness
challenge (x, y) as in Definition 2.1,
Output : k ′, such that H (E0, k ′||x) = y
1: Generate a WOTS signature key sk
2: Choose indices α ∈ {1, ..., l},β ∈ {1, ...,w− 1}
uniformly at random
3: Compute the public key pk0 = x,
pki = Hw−1(E0, ski||x)
for i = 1, ..., l, i 6= α and pkα = Hw−1−β (E0, y||x)
4: Run the adversary A
5: When A queires Sign with message M , compute
(b1, ..., bl)← checksumed(M)
6: If bα < β return fail
7: Generate signature σ and respond to the adversary A
8: When the adversary A returns valid (σ ′,M ′) then
compute (b′1, ..., b

′
l)← checksumed(M)

9: If b′α ≥ β return fail
10: Compute k ′← Hβ−1−b′α (E0, σ ′α||x)
11: If H (E0, k ′||x) 6= y return fail
12: Return k ′

is computed by inserting y at position β in the hash chain
(Line 3). Next, the adversary B calls the forger and waits for it
to ask an oracle query (Line 4, 5). The forger’s query can only
be answered if bα ≥ β holds, because B doesn’t know the
first β entries in the corresponding hash chain (Line 6). The
forgery produced by the forged signature is only meaningful
to B if b′α < β holds (Line 9). Only then the σ ′α in the forged
signature might yield a key k ′ such that H (E0, k ′||x) = y
holds.

We now compute the success probability of B. Assume the
forger queries the signing oracle. The probability of bα ≥ β
in Line 6 is at least (lw)−1. This is due to the checksum
which guarantees that not all of the bi are zero simultaneously.
The probability in Line 8 that the forger succeeds is at least
InsecEU−CMA by definition. The probability holds under the
condition that the public key computed in Line 3 resembles
a regular public key which is the case if there exists a key k
such that Hβ (E0, k||x) = y. This happens with probability
at least 1/kβ . The probability of b′α < β in Line 9 is at least
(lw)−1. The probability that y = H (E0, k ′||x) holds in Line 11
is at least 1/kw−1−β . This is because there exists kw−1 keys
mapping x to pkα after w− 1 iterations and only kβ of these
keys map x to y after β iterations. Therefore, we have

InsecKOW (Hkow) ≥ InsecEU−CMA/(l2w2kβkw−1−β)

= InsecEU−CMA/(l2w2kw−1)

(1)

Theorem 4 [19]: Let Hkow and Hcr be depicted as above.
We consider the following resources ξ : the time τ , the
number of queries to the signature scheme q and the num-
ber of queries to Hkow and Hcr respectively qHkow and qHcr .

The unforgeability of theWOTS+ based onHkow andHcr can
be bounded by the unforgeability of WOTS and the collision
resistance of Hcr , i.e.,

InsecEU−ACMA(WOTS + (Hkow,Hcr); τ, ε, q, qHkow , qHcr)

≤ l2w2kw−1InsecKOW (Hkow; τ, q, qHkow)

+ InsecCR(Hcr ; τ ′, q′′Hcr)

where l, w and k are defined above, q = 1, q′′Hcr = qHkow +
2(l − 1), τ = τ + c(l − 1) and τ ′ = τ + c(w− 1)l for some
constant c.

IV. SIGNATURE SCHEMES
In this section, we exploit those constructions presented in
Section III to give a new signature based on hash func-
tions from supersingular elliptic curves isogenies. Firstly,
we give basic parameters and basic functions used in our
signature schemes. Secondly, exploiting these hash functions,
we define some internal algorithms that are the building
blocks of our signatures. Lastly, we propose a new signature
scheme.

A. PUBLIC PARAMETERS
The signature scheme from supersingular isogenies requires
some parameters which are also defined in the scheme [19].

• A prime p = 2n − 1,
• a supersingular elliptic curve E0 : y2 = x3 + A0x2 + x
where A0 ∈ Fp2 ,

• the message space M , which is a subset of bit string
{0, 1}∗,

• the batching height b, a non-negative integer,
• the PORS set size t , a positive power of two,
• the PORS subset size k , a positive integer such that
k ≤ t ,

• the Winternitz depth w, a power of two such that w ≥ 2,
• theWinternitz width l = µ+blog2 µ(w−1)/ log2 wc+1
where µ = dn/ log2 we,

• the Merkle height h in each WOTS+ instance (i.e.
WOTS+ with a Merkle tree), a non-negative integer,

• the layers d of WOTS+ instances, a non-negative
integer,

• the key caching height c, a non-negative integer.

B. PRIMITIVES
Our signature scheme mainly uses the following three
functions.

The collision-resistant hash function Hcr (E0,m) :

{0, 1}2n × {0, 1}∗ → {0, 1}2n takes as input a supersingular
curve and an arbitrary length message m, and outputs a
supersingular curve. This function is used for computing
L-trees and Merkle trees, so the length of the message m in
Hcr is always 4n bits.

A keyed one-wayness function Hkow(E0, s||x): {0, 1}2n ×
{0, 1}2n × {0, 1}n → {0, 1}2n, takes as input a supersingular
curve, a secret key s and a random value x, and then outputs

129840 VOLUME 7, 2019

Y. Huang et al.: Efficient Signature Scheme From Supersingular Elliptic Curve Isogenies

TABLE 2. The functionalities, inputs and outputs of functions.

a supersingular curve. This function is used for computing
WOTS+ signature.
A pseudorandom functionG(seed, ai): {0, 1}n×{0, 1}n→
{0, 1}n takes as input a seed and an address ai, outputs a
secret key. This function is used for generating secret keys
of WOTS+ and PORST signature. For example, we can take
a variant of AES [34] as the pseudorandom function.
Remark: It is worth nothing that is the computation of

hash functionH (E0, x1||x2) for the construction of tree which
takes an initial curve E0, two nodes x1 and x2 represented
hash values as input. Since x1 and x2 are also curves over
Fp2 = Fp/〈x2+1〉, and can be represented as x1 = a11+a12i
and x2 = a21 + a22i, we always regard x1||x2 as 4 message
blocks a11||a12||a21||a22, where each block is n bits.

C. INTERNAL ALGORITHMS
In this part, we describe some internal algorithms with the
same notation as in [19]. TABLE 2 presented some functions
similar to those in [19], we put the explicit definitions in
Appendix B. These functions described below are mainly
used for Winternitz signature.
Winternitz Public Key Generation (The Function WOTS
+Genpk): {0, 1}2n × {0, 1}n × {0, 1}n × {0, 1}n → {0, 1}2n

takes as input a supersingular curve E0, a secret value seed ,
an addressA and a random value x, and outputs the associated
Winternitz public key p as follows:

• Let address Ai = incr − addr(A, i − 1) for i = 1, .., l
and pad Ai to n bits.

• si = G(seed,Ai) and pad si to n bits for i = 1, ..., l.
• Compute the public values pki = Hw−1(E0, si||x) for
i = 1, ..., l.

• Compute p← L − tree(E0, pk1, ..., pkl).

Winternitz Signature: The function WOTS+: {0, 1}2n ×
{0, 1}n × {0, 1}n × {0, 1}n × {0, 1}n → {0, 1}2nl takes as
input a supersingular curve E0, a secret value seed , an address
A, a hash m and a random value x and outputs the asso-
ciated Winternitz signature σ ∈ {0, 1}2nl as described in
Section III. B:

• Exploit the function checksumed(m) to split the hash m
into l blocks b1||b2||...||bl .

• Let address Ai = incr − addr(A, i− 1) and pad Ai to n
bits for i = 1, .., l.

• si = G(seed,Ai) for i = 1, .., l.
• σ = (σ1, ..., σl) = (Hb1 (E0, s1||x), ...,Hbl (E0, sl ||x)).
Winternitz Public Key Extraction (The Function WOTS+

Extractpk):

{0, 1}2n × {0, 1}2n × {0, 1}2nl × {0, 1}n→ {0, 1}2n

takes as input an initial curve E0, a hash m, a signature σ =
(σ1, ..., σl) and a random value x, and outputs the associated
Winternitz public key p. The details is as follows:
• Exploit the function checksumed(m) to split the hash m
into l blocks b1||b2||...||bl .

• Compute the public value pi ← Hw−bi−1(E0, σi||x) for
i ∈ {1, ..., l}.

• Compute p← L − tree(E0, p1, ..., pl).

D. THE SIGNATURE BASED ON SUPERSINGULAR
ELLIPTIC CURVE ISOGENIES
We adopt the optimal Gravity-SPHINCS scheme proposed
by Aumasson et al [19], and replace the hash functions,
keyed one-way function, batch signature, PORST signature,
WOTS+ instances with those from supersingular elliptic
curve isogenies and make some changes.
Key Generation: To generate keys, we first choose a ran-

dom value x
$
←− {0, 1}n for the computation of keyed one-way

functions, and select a secret value seed to deduce the secret
keys of WOTS+ and PORST signature. To generate the
public key, we compute a Merkle tree of high c+ h and take
the root node as part of public key. The process is as follows:
• For i ∈ {1, ..., 2c+h}, generate Winternitz public keys

Ai = make− addr(0, i),

xi ← WOTS + genpk(E0, seed,Ai, x).

• Compute the root of a Merkle tree with 2c+h leaves and
take it as part of a public key,

E ′0← Merkle− rootc+h(E0, (x0, ..., x2c+h−1)).

The private key is seed ∈ {0, 1}n and the public key is

(E0,E ′0, x) ∈ {0, 1}
2n
× {0, 1}2n × {0, 1}n.

VOLUME 7, 2019 129841

Y. Huang et al.: Efficient Signature Scheme From Supersingular Elliptic Curve Isogenies

Signing: Given a message Me ∈ {M1, ...,Mi}, we need
four steps to sign it. They are batch signing, PORST signing,
WOTS+ instances and key caching.
For a sequence of messages (M1, ...,Mi) with 0 < i ≤ 2b,

the batch signing is as follows.
• For j ∈ {1, ..., i}, compute the message hash

mj← H (E0,Mj),

• For j ∈ {i+ 1, ..., 2b}, set mj← m1,

• Compute a root m← Merkle− root(E0,m1, ...,m2b),
• For the message Me, find the authentication path

Abatch← Merkle− authb(m1, ...,m2b , e).

Sign the rootm and take Abatch and e as a part of our signature.
At the d th layer, we generate a Merkle tree of height
dlog2 te and target at k leaves chosen from t leaves for the
PORST signing.
• Compute a hyper-tree index λ ∈ N and k distinct indices
xi

λ, (x1, ..., xk)← PORS(E0,m).

• For i = 1 to t , set a = make− addr(d, 0),
- compute Ai = incr − addr(a, i) and pad Ai to n bits,
- compute si = G(seed,Ai).
For j = 1 to k ,
- set the signature value σj = sxj ,
- compute the authentication octopus and root as
(oct, p)← Octopus−authlog2t (E0, s1, ..., st , x1, ..., xk).
Then the signature is σd,w = (σ1, ..., σk , oct, p).

For i ∈ {d−1, ..., 0}, we do theWOTS+ instances as follows.
• Set the address Ai = make− address(i, λ).
• Sign the message p.
σi,w← WOTS + (E0, seed,Ai, p, x),
p← WOTS + extractpk(E0,Ai, σi,w, x),

• λ′← bλ/2hc.
• For u ∈ {0, ..., 2h−1}, compute theWOTS+ public key.
- let address Aiu = make− addr(i, (2hλ′ + u)),
- compute pu← WOTS + genpk(E0, seed,Aiu, x).

• Compute the Merkle authentication

Ai← Merkle− authh(p0, ..., p2h−1, λ− 2hλ′).

• Set λ← λ′.
The key caching is performed as follows.

• For 0 ≤ u < 2c+h, compute the WOTS+ public key,
- let the address be Au = make− addr(0, u),
- compute pu← WOTS + genpk(E0, seed,Au, x).

• Compute the Merkle authentication

(a1, ..., ah+c)← Merkle− authh+c
(E0, p0, ..., p2c+h−1, 2

hλ)

• Set Acache← (ah+1, ..., ah+c).
The signature is

(e,Abatch, σd,w, oct, σd−1,w,Ad−1, ..., σ0,w,A0,Acache).

Verification: V takes as input a hashMe, public keys E ′0
and a signature

(e,Abatch, σd,w, oct, σd−1,w,Ad−1, ..., σ0,w,A0,Acache)

and verifies it as follows:
• Compute the root of batched messages

m← Merkle− extractb(Me,E0, e,Abatch).

• Compute the PORST public key p,
- compute the hyper-tree index and random subset,

λ, (x1, ..., xk)← PORS(m,E0),

- compute the PORST public key, given the oct, σd,w,
(x1, ..., xk) and E0, compute

p← Octopus− authlog2t,k (E0, oct, σd,w, (x1, ..., xk)).

• If p =⊥, then abort and return 0.
• Verify the WOTS+ instances, for i ∈ {d − 1, ..., 0} do
the following,
- compute the WOTS+ public key

p← WOTS + extractpk(E0, p, σi,w, x),

- set λ′← bλ/2hc,
- compute the Merkle root

p← Merkle− extracth(E0, p, λ− 2hλ′,Ai),

- set λ← λ′.
• Compute the Merkle root

p← Merkle− extractc(E0, p, λ,Acache).

The result is 1 if p = E ′0, and 0 otherwise.

E. PARAMETER SIZES
In order to achieve λ bits of post-quantum security
(see. Sec.2.1), we can set dlog2 pe ≈ 4λ over Fp2 .
Note that all supersingular curves are defined over Fp2 and

represented in Montgomery form By2 = x3+Ax2+ x where
the A-coefficient suffices for the computations of isogenous
curves. Meanwhile, a point on the curve can be represented
only by its x-coordinate to complete the computations of
scalar multiplications and isogenies. Since each field element
requires 8λ bits overFp2 , in both cases, we only need one field
element.
Public Keys: The public key includes the initial curve E0,

the root node E ′0 and the random x, which require 20λ bits of
storage.
Private Keys: The private key can be stored as an element

seed ∈ {0, 1}4λ, requiring 4λ bits.
Signatures: Our signature has the form

(e,Abatch, σd,w, oct, σd−1,w,Ad−1, ..., σ0,w,A0,Acache).

According to the signature scheme, these authentications
Abatch, Ai(0 ≤ i ≤ d − 1) and Acache separately include b
curves, h curves and c curves. The Octopus authentication
oct at most includes k(log2 t − blog2 kc) curves. σd,w and

129842 VOLUME 7, 2019

Y. Huang et al.: Efficient Signature Scheme From Supersingular Elliptic Curve Isogenies

σi,w(0 ≤ i ≤ d − 1) include k curves and l curves, respec-
tively. The index e is a b-bit number. Thus the entire signature
has size roughly

b+ (b+ k + k(log2 t − blog2 kc)+ (l + h)d + c)8λ

bits at most.
For instance, to achieve 128 bits of post-quantum security

over Fp2 , the size of p is at least 521 bits, the PORST set size t
is at least 16 bits and subset size k = 28. Other parameters can
be set flexibly according to the number of signatures. In order
to achieve the capacity of signing 264 messages per key pair,
we can set b = 0, h = 14, d = 4, c = 8, w = 24, then the
signature requires 12λ = 962808 bits at most.
Since we have shown the security of WOTS+, the security

of the whole scheme can be proved in the same way as the
method in [19], we will not go into the details here.

V. IMPLICATIONS RESULTS AND EFFICIENCY ANALYSIS
We used Visual Studio 2015 in Windows 10 on a computer
with 2.90GH Intel Core i7-7700T CPU and 8G RAM to
implement1 our scheme. The details were partly referred to
the implementation process of the signature scheme based
on hash function proposed by Aumasson et al. [19] and
OpenSSL 1.0.0e for the implementation of prime field Fp
where p = 2521−1. The initial curve E0 is chosen by starting
a random walk from a special curve y2 = x3 + 6x2 + x.

TABLE 3. Concrete efficiency comparison with other signatures at least
128-bit security levels. The notations Sig, Sk and Pk denote the signature,
secret key and public key, respectively. All sizes are in bits.

Next, we compare our scheme, which can sign
250 messages per key pair, with the signature schemes based
on supersingular elliptic curve in TABLE 3. In the light of the
introduction mentioned before, DFJP+U, Sec4+U as well
as the Yoo’s schemes [4] attain 128-bit quantum security
levels, while DFJP+FS, Sec4+ FS, SeaSign and CSI-Fish
schemes attain 128-bit classical security levels. The results
in TABLE 3 show that the signature size of our scheme is
shorter than those post-quantum signature schemes based on
supersingular elliptic curve isogenies. Thus, when there are
fewer messages required signatures, our scheme has more
obvious advantages.

1See https://github.com/sysu-sidh/An-Efficient-Signature-Scheme-from-
Supersingular-Elliptic-Curve-Isogenies

VI. CONCLUSIONS
We propose a more efficient hash function from supersin-
gular elliptic curve isogeny. Based on the hash function, a
new signature scheme is designed. In contrast to other post-
quantum signature schemes based on supersingular elliptic
curve isogeny, the scheme has smaller signature size. Fur-
thermore, all our operations are over finite fields Fp2 where
p = 2521−1. It is well known that the addition,multiplication,
squaring and inversion operations on it are fast.

The major limitation lies in the fact that the efficient
representation of supersingular elliptic curve, i.e., the output
length of our hash function, significantly affects the signa-
ture size. In our setting, each supersingular elliptic curve
is represented in terms of j−invariants and needs 2n bits
over Fp2 with dlog2 pe = n. Theoretically, there are about
p/12 supersingular j−invariants [24], each one can be repre-
sented by n bits. Future work should be done to investigate
the efficient representation of the elliptic curve j−invariants
over Fp2 .

APPENDIX
A. TRANSFORMATION BETWEEN E AND KSQR

1) CONVERT THE MONTGOMERY CURVE E OVER Fp2

INTO KUMMER SURFACES KSqr OVER Fp

Converting the Montgomery curve Eα : y2 = x(x − α)(x −
1/α) to squared Kummer surface needs three steps.
The first step is to convert the Montgomery curve Eα

into Jacobian JCα . According to Proposition 1 [31], the Weil
restriction of scalars of Eα(Fp2) with respect to Fp2/Fp is
(2, 2)- isogenies to the Jacobian JCα of

Cα/Fp : y2 = (x−z1)(x−z2)(x−z3)(x−z4)(x−z5)(x−z6)

where

γ 2
= α;β2 =

(α2 − 1)
α

.

Write β = β0 + β1i and γ = γ0 + γ1i with

z1 :=
β0

β1
; z2 :=

γ0

γ1
; z3 := −

γ0

γ1
; z4 := −

β1

β0
; z5 := −

γ1

γ0
;

z3 :=
γ1

γ0
.

Converting a Montgomery curve y2 = x3 + Ax2 + x into

the form y2 = x(x − α)(x − 1/α) where α = −A+
√
A2−4

2

and 1/α = −A−
√
A2−4

2 costs one square root, one squaring,
one inversion and two multiplications over Fp2 . Computing
γ and β cost two square roots, one inversion, one mul-
tiplication and one squaring and z1, z2, z3, z4,z5, z6 cost
6 inversions and 6 multiplications. Thus this step in total
costs 3 square roots, 7 inversions, 9 multiplications and two
squarings, i.e., 4138 M + 5S.

The second step is to convert the curve Cα into the Rosen-
hain form Cλ,µ,ν : y2 = x(x − 1)(x − λ)(x −µ)(x − ν) by an
isomorphism. By setting a = z2 − z4, b = −az1, c = z2 − z1

VOLUME 7, 2019 129843

Y. Huang et al.: Efficient Signature Scheme From Supersingular Elliptic Curve Isogenies

and d = −cz4, the isomorphism is

κa,b,c,d : Cα → Cλ,µ,ν

(x, y) → ((
β0γ0 + β1γ1

γ0β1 − γ1β0
)(
β1x − β0
β0x − β1

),

ey(
β0β1γ1

(β1γ0 − β0γ1)(β0x + β1)
)3)

with e2 = ac(a− c)(a− νc)(a− µc)(a− λc), and

λ :=
(β0γ1 + β1γ0)(β0γ0 + β1γ1)
(γ0β0 − γ1β1)(γ0β1 − γ1β0)

;

µ :=
(β0γ0+β1γ1)(β0γ0−β1γ1)
(γ0β1+γ1β0)(γ0β1−γ1β0)

; ν :=
(β0γ0 + β1γ1)2

(γ0β1 − γ1β0)2
.

This step only needs to compute λ, µ and ν, which costs
308 M + 2S.
The third step is to convert the Rosenhain form into the

squared Kummer surface K Sqr , i.e.,

K Sqr
: F × X1X2X3X4 = (X2

1 + X
2
2 + X

2
3 + X

2
4

−G(X1 + X2)(X3 + X4)− H (X1X2 + X3X4))2

where

µ1 = (
γ 2
0 − γ

2
1

γ 2
0 + γ

2
1

) ·
√
λ;µ2 = (

γ 2
0 − γ

2
1

γ 2
0 + γ

2
1

)/
√
λ;µ3 = µ4 = 1

and

F := 4µ1µ2
(µ1 + µ2 + 2)2(µ1 + µ2 − 2)

(µ1µ2 − 1)2
;G := µ1 + µ2;

H :=
µ2
1 + µ

2
2 − 2

µ1µ2 − 1
.

This step needs to compute µ1, µ2, µ3, µ4 and F,G,H ,
which costs 1450M + 7S.
Henceforth, converting a Montgomery curve E over Fp2 to

Kummer surfaces K Sqr Over Fp costs 5896M + 14S.

2) MAPPING THE POINT R ON E INTO
THE POINT RKSQR on KSqr

Mapping a point R on E into the point RKSqr on K Sqr needs
two steps: The first step is to map the point R on E into
the divisor RJCα on JCα . This can be performed by the
mapping [31]

η : E → JCα
R → (τ ◦ ρ ◦ ψ(R)),

where ψ , ρ and τ are defined as follows:

ψ : E → Ê

(x, y) → ((β̂/β)2x + r1, (β̂/β)3y),

with Ê : y2 = (x−r1)(x−r2)(x−r3), r1 = (α−1/α)p−1, r2 =
αp−1, r3 = 1/αp−1,and β̂2 = r3 − r2. Computing ψ costs
4M + 1563S + I .

ρ : Ê → JCα (Fp2)
(̂x, ŷ) → (x2 + u1x + u0, v1x + v0),

with u1 = 2i(x̂+1x̂−1), u0 = −1, v1 = −4i
ŷ(̂x+3)
w(̂x−1)2

and v0 =
4̂y

w(̂x−1) . Computing ρ costs 6M + S + I .

τ : JCα (Fp2) → JCα (Fp)
(x2 + u1x + u0, v1x + v0) → (x2 + u1x + u0, v1x + v0)

⊕ (x2 + up1x + u
p
0, v

p
1x + v

p
0)

where ⊕ denotes the addition law in JCα (Fp2). Computing τ
costs 29M + 2091S.
The second step is to use Algorithm 3 in [32] to

translate the point on JCα (Fp) into K Sqr (Fp), which costs
12m + 1s + 11a. Thus mapping the point R on E into the
point RKSqr on K Sqr needs 243M + 3655S.

3) MAPPING THE POINT RKSQR ON KSqr

INTO THE POINT R ON E
Firstly, we map the point RKSqr on K Sqr into RJCα on JCα (Fp)
by Algorithm 8 in [32], which costs 243M + 12S. Then we
use the mapping η̂ to map the point RJCα on JCα into the point
R on E .

η̂ : JCα → Eα(Fp2))
RJCα → ψ−1 ◦ ⊕E ◦ ρ̂(P)

where ρ̂ and ψ−1 are defined as follows:

ρ̂ : JCα (Fp)) → Êα(Fp2)× Êα(Fp2)
P → ((ω ◦ φ−1)(x1, y1), (ω ◦ φ−1)(x2, y2)),

with

φ−1 : Cα(Fp2) → Ĉα(Fp2)

(x, y) → (−
x − i
x + i

,−i
yw

(x + i)3
)

and

ω : Ĉα → Êα
(x, y) → (x2, y);

ψ−1 : Êα → Eα
(x, y) → (β/β̂)2(x − r1), (β/β̂)3y).

The map η̂ needs 478M + 4S. Thus mapping the point RKSqr

on K Sqr into the point R on E costs 721M + 16S.

4) OPERATIONS ON KUMMER SURFACES
When converting the Montgomery curves into Kummer sur-
faces, the scalar multiplications and isogeny computations are
all calculated on Kummer surfaces and are comprised of three
sub-operations. DefineH : P3

→ P3 as the 4-way Hadamard
transform in P3, i.e.,

H : (l1 : l2 : l3 : l4)→ (l1 + l2 + l3 + l4 : l1 + l2 − l3 − l4 :

l1 − l2 + l3 − l4 : l1 − l2 − l3 + l4)

together with the coordinate squaring operation
S : P3

→ P3, as

S : (l1 : l2 : l3 : l4)→ ((l21 : l
2
2 : l

2
3 : l

2
4))

129844 VOLUME 7, 2019

Y. Huang et al.: Efficient Signature Scheme From Supersingular Elliptic Curve Isogenies

and the coordinate scaling operation Cd1:d2:d3:d4 : P3
→

P3, as

Cd1:d2:d3:d4 : (l1 : l2 : l3 : l4)→ (l1/d1 : l2/d2 : l3/d3 : l4/d4)

= (π1l1 : π2l2 : π3l3 : π4l4)

where πi = d1d2d3d4/di for i ∈ {1, 2, 3, 4}. It follows that
performing the Hadamard transform needs at most 8 field
additions, the coordinate squaring operation needs at most
4 field squarings and the coordinate scaling operation needs
at most 10 field multiplications.

Computing (2, 2)-isogenies between Kummer surfaces
were derived in [31]. Like the general case as in [31], the
2-isogeny corresponds to 2-torsion point which is not (0, 0)
on Montgomery curve, the corresponding (2,2)-isogeny can
be computed by finding a pointQ ∈ K Sqr of order 4 such that
P = 2Q ∈ {ϒ, ϒ̂} where ϒ or ϒ̂ is the (2,2)-kernel. Writing
Q′ = H (Q) = {Q′1 : Q

′

2 : Q
′

3 : Q
′

4} and P
′
= H (P) = {P′1 :

P′2 : P
′

3 : P
′

4}, then

CQ,P : (X1 : X2 : X3 : X4)→ (π1X1 : π2X2 : π3X3 : π4X4)

where

π1 = P′2Q
′

4, π2 = P′1Q
′

4, π3 = π4 = P′2Q
′

1

when P ∈ {ϒ1, ϒ̂1} or

π1 = P′2Q
′

3, π2 = P′1Q
′

3, π3 = π4 = P′2Q
′

1

when P ∈ {ϒ2, ϒ̂2}.
Then the (2,2)-isogeny can be derived from [31]. Let Q be

a point of order 4, P = 2Q and P ∈ {ϒ, ϒ̂}. Denote by

ϕP : K Sqr
→ K Sqr/{ϒ, ϒ̂}

R → (S · H · CQ,P · H (R))

the full (2,2)-isogeny.
Evaluating an 2-isogeny needs 4m+4s+16a and comput-

ing an 2-isogeny curve costs 19m+ 4s+ 16a.

B. INTERNAL FUNCTIONS
Operation on Address: The function make − addr :
{0, ..., d} × N → A takes as input a layer i ∈ {0, ..., d} and
an index j ∈ N and returns a = (i, j mod 2c+dh, 0) ∈ A.

The function incr − addr : A× N→ A takes as input an
address a = (i, j, λ) and an integer x and returns the address
a′ = (i, j, λ+ x) ∈ A.
L-Tree: The function L-tree: {0, 1}2n × {0, 1}2nl →
{0, 1}2n takes as input a supersingular curve E0 and l leaves
hashes xi ∈ {0, 1}2n, and returns the associated L-tree root
r ∈ {0, 1}2n, defined by recurrence as follows.

L − tree(x1)

= x1.

L − tree(x1, ..., x2i+2)

= L − tree(H (E0, x1||x2), ...,H (E0, x2i+1||x2i+2)).

L − tree(x1, ..., x2i+3)

= L − tree(H (E0, x1||x2), ...,H (E0, x2i+1||x2i+2), x2i+3).

Merkle-Root: The function Merkle-root: {0, 1}2n ×
{0, 1}2n×2

h
→ {0, 1}2n takes as input a supersingular curve

E0 and 2h leaf hashes xj, and outputs the associated Merkle
tree root r ∈ {0, 1}2n. The process is as follows:

Merkle− root0(x0)

= x0.

Merkle− rooti(x0, ..., x2i)

= Merkle− rooti−1(H (E0, x0||x1), ...,H (E0, x2i−1||x2i)),

where 0 < i ≤ h

Merkle Tree Authentication: The functionMerkle−authh :
{0, 1}2n × {0, 1}2n·2

h
× {0, ..., 2h − 1} → {0, 1}2nh takes as

input a supersingular curve E0, 2h leaf hashes xi and a leaf
index 0 ≤ j < 2h, and outputs the associated Merkle tree
authentication path (a1, ..., ah) ∈ {0, 1}2nh.
Merkle − auth1(x0, x1, j) = a1 ← xj⊕1 where ⊕ denotes

the bitwise XOR operation on non-negative integers.
Merkle− authh(x0, x1..., x2h , j) is

a1 ← xj⊕1,

a2, ..., ah ← Merkle− authh−1(H (E0, x0||x1), ...,

H (E0, x2i−1||x2i), bj/2c).

Merkle Tree Root Extraction: The function Merkle −
extracth : {0, 1}2n × {0, 1}2n × {0, ..., 2h − 1} × {0, 1}2nh→
{0, 1}2n takes as input a supersingular curve E0, a leaf hash xi,
a leaf index 0 ≤ j < 2h and an authentication path (a1, ..., ah),
and outputs the associated Merkle tree root r ∈ {0, 1}2n.

Merkle− extract0(x, j) = x,

Merkle− extracth(x, j, a1, ..., ah) = Merkle− extrach−1
(x ′, bj/2c, a2, ..., ah)

where

x ′ =
{
H (E0, x||a1) if j mod 2 = 0
H (E0, a1||x) if j mod 2 = 1.

Octopus Authentication: The function Octopus − authh :
{0, 1}2n×{0, 1}2n×2

h
×{0, ..., 2h− 1}k → {0, 1}∗×{0, 1}2n

takes as input a supersingular curve E0, 2h leaf hashes xi
and k distinct octopus authentication nodes, and outputs the
authentication path oct and the octopus root r ∈ {0, 1}2n. It is
defined by recurrence on h as:
Octopus− auth0(x0, j1) = (∅, x0),
Octopus− authh(x0, x1, ..., x2h , j1, ..., jk) is computed as

j′1, ..., j
′

k ′ ← unique(bj1/2c, ..., bjk/2c);
oct ′, r ← Octopus− authh−1(H (E0, x0||x1), ...,
H (E0, x2h−1||x2h), j

′

1, ..., j
′

k ′);
z1, ..., z2k ′−k ← (j1 ⊕ 1, ..., jk ⊕ 1)/(j1, ..., jk);
a1, ..., a2k ′−k ← (xz1 , ..., x2k ′−k);
oct ← (a1, ..., a2k ′−k).

where unique() removes duplicates in a sequence, and A/B
denotes the set difference.

VOLUME 7, 2019 129845

Y. Huang et al.: Efficient Signature Scheme From Supersingular Elliptic Curve Isogenies

Octopus Root Extraction: The function Octopus −
extracth,k :

{0, 1}2n × {0, 1}2nk × {0, 1}∗→ {0, 1}2n
⋃
{⊥}

takes as input a supersingular curve E0, k leaf hashes xi ∈
{0, 1}2n, k leaf indices 0 ≤ ji < 2h and an authentication
octopus oct ∈ {0, 1}∗, and outputs the associated Merkle tree
root r ∈ {0, 1}2n. If the number of hashes in the authentication
octopus is invalid, it outputs ⊥. It is defined by recurrence
on h as:

Octopus− extract0,1(x1, j1, oct) =
{
x1 if oct = ∅
⊥ if otherwise.

Octopus− extracth,k (x1, ..., xk , j1, ..., jk , oct) is computed as
j′1, ..., j

′

k ′ ← unique(bj1/2c, ..., bjk/2c);
L ← Oct − layer((x1, j1), ..., (xk , jk), oct);
⊥ if L =⊥;
Octopus− extracth−1,k ′ (x ′1, ..., x

′

k ′ , j
′

1, ..., jk ′ , oct
′);

if L = (x1, ..., xk ′ , oct ′).

where Oct-layer() is defined by recurrence as:

oct − layer(x1, j1, oct)

=

⊥ if oct = ∅
H (E0, x1||a), oct ′ if oct = (a, oct)

∧
j1 mod 2 = 0

H (E0, a||x1), oct ′ if oct = (a, oct)
∧
j1 mod 2 = 1.

Oct − layer(x1, j1, x2, j2, ..., xk , jk , oct) is

H (E0, x1||x2), oct − layer(x3, j3, ..., xk , jk , oct)

if j1 ⊕ 1 = j2;

⊥ if j1 ⊕ 1 6= j2 ∧ oct = ∅;
H (E0, x1||a), oct − layer(x2, j2, ..., xk , jk , oct ′)

if oct = (a, oct) ∧ j1 mod 2 = 0;

H (E0, a||x1), oct − layer(x2, j2, ..., xk , jk , oct ′)

if oct = (a, oct) ∧ j1 mod 2 = 1.

PORS: This function PORS: {0, 1}2n×{0, 1}2n→ N ×T k

takes as input a supersingular curve E0 and a hash m, and
outputs a hyper-tree index λ ∈ N and k distinct indices xi as
follows:

• Compute s = H (E0,m) mod 2n.
• Set address A = make− addr(d, 0) and pad A to n bits.
• Compute an index λ = G(s,A) mod 2c+dh.
• Initialize X ← ∅ and j = 0.
• While |X | < k do the following:
- increment j← j+ 1,
- compute address Aj = incr − addr(A, j) and pad Aj to
n bits,
- compute u = G(s,Aj) and split u into v = bn/ log2 tc
blocks, namely u = u1||u2||...uv,
- for i ∈ {1, ..., v}, if |X | < k update X ← X

⋃
ui,

• Compute (x1, ..., xk)← sorted(X).

REFERENCES
[1] S. D. Galbraith and F. Vercauteren, ‘‘Computational problems in super-

singular elliptic curve isogenies,’’ Quantum Inf. Process, vol. 17, no. 10,
p. 265, Oct. 2018.

[2] D. Jao and L. De Feo, ‘‘Towards quantum-resistant cryptosystems from
supersingular elliptic curve isogenies,’’ inProc. PQCrypto, Taibei, Taiwan,
2011, pp. 19–34.

[3] D. Jao et al. Supersingular Isogeny Key Encapsulation. Accessed:
2019. [Online]. Available: https://csrc.nist.gov/projects/post-quantum-
cryptography/round-1-submissions/SIKE.zip

[4] Y. Yoo, R. Azarderakhsh, A. Jalali, D. Jao, and V. Soukharev, ‘‘A post-
quantum digital signature scheme based on supersingular isogenies,’’ in
Proc. Int. Conf. Financial Cryptogr. Data Secur., Sliema, Malta, 2017,
pp. 163–181.

[5] J. F. Biasse, D. Jao, and A. Sankar, ‘‘A quantum algorithm for computing
isogenies between supersingular elliptic curves,’’ in Proc. INDOCRYPT,
New Delhi, India, 2014, pp. 428–442.

[6] D. Jao and V. Soukharev, ‘‘Isogeny-based quantum-resistant undeniable
signatures,’’ in Proc. PQCrypto, Waterloo, ON, Canada, 2014, pp. 19–34.

[7] X. Sun, H. Tian, and Y. Wang, ‘‘Toward quantum-resistant strong des-
ignated verifier signature,’’ Int. J. Grid Utility Comput., vol. 5, no. 2,
pp. 80–86, Mar. 2014.

[8] S. D. Galbraith, C. Petit, and J. Silva, ‘‘Identification protocols and
signature schemes based on supersingular isogeny problems,’’ in Proc.
ASIACRYPT, Hong Kong, 2017, pp. 3–33.

[9] W. Castryck, T. Lange, C.Martindale, L. Panny, and J. Renes, ‘‘CSIDH:An
efficient post-quantum commutative group action,’’ in Proc. ASIACRYPT,
Brisbane, QLD, Australia, 2018, pp. 395–427.

[10] L. De Feo and S. D. Galbraith, ‘‘SeaSign: Compact isogeny signatures from
class group actions,’’ in Proc. EUROCRY, Darmstadt, Germany, 2019,
pp. 759–789. [Online]. Available: https://eprint.iacr.org/2018/824

[11] T. Deru, L. Panny, and F. Vercauteren, ‘‘Faster seasign signatures
through improved rejection sampling,’’ in Proc. PQCrypto, Chongqing,
China, 2019, pp. 271–285. [Online]. Available: https://eprint.iacr.
org/2018/1109

[12] T. Kleinjung, ‘‘Quadratic sieving,’’ Math. Comp., vol. 85, no. 300,
pp. 1861–1873, 2016.

[13] W. Beullens, T. Kleinjung, and F. Vercauteren, ‘‘CSI-FiSh: Efficient
isogeny based signatures through class group computations,’’ Cryptol.
ePrint Arch., Tech. Rep. 2019/498.

[14] X. Bonnetain and A. Schrottenloher, ‘‘Submerging CSIDH cryptology,’’
ePrint Arch., Tech. Rep. 2018/1059, 2018. [Online]. Available: https://
eprint.iacr.org/2018/537

[15] C. Peikert, ‘‘He gives C-sieves on the CSIDH,’’ Cryptol. ePrint Arch., Tech.
Rep. 2019/725, 2018. [Online]. Available: https://eprint.iacr.org/2019/725

[16] D. Unruh, ‘‘Post-quantum security of Fiat–Shamir,’’ in Proc. ASIACRYPT,
Hong Kong, 2017, pp. 65–95.

[17] D. Unruh, ‘‘Non-interactive zero-knowledge proofs in the quantum random
oracle model,’’ in Proc. EUROCRYPT, Sofia, Bulgaria, 2015, pp. 755–784.

[18] J. D. Bernstein et al. (2017). SPHINCS +. [Online]. Available:
https: //csrc.nist.gov/projects/post-quantum-cryptography/round-
1-submissions/SPHINCS+.zip

[19] J. P. Aumasson and G. Endignoux. (2017). Design and Imple-
mentation of a Post-Quantum Hash-Based Cryptographic Signature
Scheme. [Online]. Available: https: //csrc.nist.gov/projects/post-quantum-
cryptography/round-1-submissions/Gravity-SPHINCS.zip

[20] D. X. Charles, K. E. Lauter, and E. Z. Goren, ‘‘Cryptographic hash func-
tions from expander graphs,’’ J. Cryptol., vol. 22, no. 1, pp. 93–113, 2009.

[21] K. Eisentrager, S. Hallgren, K. Lauter, T. Morrison, and C. Petit, ‘‘Super-
singular isogeny graphs and endomorphism rings: Reductions and solu-
tions,’’ in Proc. EUROCRYPT, Tel Aviv, Israel, 2018, pp. 329–368.

[22] J. Doliskani, G. C. C. F. Pereira, and P. S. L. M. Barreto, ‘‘Faster cryp-
tographic hash function from supersingular isogeny graphs,’’ Cryptol.
ePrint Arch., Rep. 2017/1202, 2017. [Online]. Available: https://eprint.iacr.
org/2017/1202.

[23] J. Buchmann, E. Dahmen, S. Ereth, A. Hülsing, and M. Rückert, ‘‘On
the security of the winternitz one-time signature scheme,’’ Int. J. Appl.
Cryptogr., vol. 3, pp. 363–378, Jul. 2011.

[24] J. H. Silverman, The Arithmetic of Elliptic Curves. New York, NY, USA:
Springer, 2009.

[25] W. C. Waterhouse and J. S. Milne, ‘‘Abelian varieties over finite fields,’’
Univ. Nguyen, Cambridge, MA, USA, Tech. Rep., 1968, vol. 6, no. 1.

[26] J. Vélu, ‘‘Isogénies entre courbes elliptiques,’’ Comptes Rendus de
l’Académie des Sciences de Paris, vol. 273, pp. 238–241, 1971.

129846 VOLUME 7, 2019

Y. Huang et al.: Efficient Signature Scheme From Supersingular Elliptic Curve Isogenies

[27] S. Hoory, N. Linial, and A. Wigderson, ‘‘Expander graphs and their appli-
cations,’’ Bull. Amer. Math. Soc., vol. 43, pp. 439–561, Aug. 2006.

[28] P. N. Chung, C. Costello, and B. Smith, ‘‘Fast, uniform scalar multiplica-
tion for genus 2 jacobians with fast kummers,’’ in Proc. SAC, vol. 10532,
2017, pp. 465–481.

[29] I. B. Damgård, ‘‘A design principle for hash functions,’’ in Proc. CRYPTO,
Santa Barbara, CA, USA, 1989, pp. 416–427.

[30] J. Scholten. Weil Restriction of an Elliptic Curve Over a
Quadratic Extension. [Online]. Available: http://citeseerx.ist.psu.
edu/viewdoc/download?doi=10.1.1.118.7987& rep=rep1&type=pdf

[31] C. Costello, ‘‘Computing supersingular isogenies on kummer surfaces,’’ in
Proc. ASIACRYPT, Brisbane, QLD, Australia, 2018, pp. 428–456.

[32] J. Renes, P. Schwabe, B. Smith, and L. Batina, ‘‘µKummer: Efficient
hyperelliptic signatures and key exchange on microcontrollers,’’ in Proc.
CHES, Santa Barbara, CA, USA, 2016, pp. 301–320.

[33] L. De Feo, D. Jao, and J. Plût, ‘‘Towards quantum-resistant cryptosystems
from supersingular elliptic curve isogenies,’’ J.Math. Cryptol., vol. 8, no. 3,
pp. 209–247, 2014.

[34] S. Kölbl, M. M. Lauridsen, F. Mendel, and C. Rechberger. Haraka v2-
Efficient Short-Input Hashing for Post-Quantum Applications. [Online].
Available: https://eprint.iacr.org/2016/098

[35] J. Katz and Y. Lindell, Introduction to Modern Cryptography. New York,
NY, USA: Taylor & Francis, 2014, pp. 174–182.

[36] S. Goldwasser, S. Micali, and R. L. Rivest, ‘‘A digital signature scheme
secure against adaptive chosen-message attacks,’’ SIAM J. Comput.,
vol. 17, no. 2, pp. 281–308, 1988.

[37] T. Malkin, D. Micciancio, and S. Miner, ‘‘Efficient generic forward-secure
signatures with an unbounded number of time periods,’’ in Proc. EURO-
CRYPT, Amsterdam, The Netherlands, 2002, pp. 400–417.

[38] H. Hisil and C. Costello, ‘‘Jacobian coordinates on genus 2 curves,’’ in
Proc. ASIACRYPT, vol. 8873, pp. 338–357, 2016.

[39] R. Granger and M. Scott, ‘‘Faster ECC over F521
2 − 1,’’ in Proc. PKC,

Gaithersburg, MD, USA, 2015, pp. 539–553.

YAN HUANG was born in 1988. She received
the B.S. degree from the School of Mathematics,
South China Normal University, China, in 2015.
She is currently pursuing the Ph.D. degree with the
School of Communication Engineering, Sun Yat-
sen University, Guangzhou, China. Her research
interest includes isogeny-based cryptography.

FANGGUO ZHANG received the Ph.D. degree
from the School of Communication Engineering,
Xidian University, in 2001. From 2003 to 2004, he
was a Research Fellow with the school of Infor-
mation Technology and Computer Science, Wol-
longong University, Australia. He is currently a
Professor with the School of Data and Computer
Science, Sun Yat-sen University, Guangzhou,
China. He is also the Standing Director of the
China Association for Cryptologic Research and

the Co-Director of the Guangdong Key Laboratory of Information Security
Technology. His research interests include cryptography and its applications,
especially elliptic curve cryptosystems, securemulti-party computations, and
the provable security of elliptic curve cryptosystems.

ZHIJIE LIU was born in 1993. He received the
B.S. degree from the School of Computer Science,
South China Normal University, China, in 2017.
He is currently pursuing the M.S. degree with the
School of Data and Computer Science, Sun Yat-
sen University, Guangzhou, China. His research
interest includes elliptic curve cryptosystems.

HUANG ZHANG was born in 1988. He received
the M.S. degree from the School of Data and
Computer Science, Sun Yat-sen University, China,
in 2014, where he is currently pursuing the Ph.D.
degree. His research interests include lattice-based
cryptography and zero-knowledge.

VOLUME 7, 2019 129847

	INTRODUCTION
	OUR CONTRIBUTIONS
	ORGANISATION

	PRELIMINARIES
	SUPERSINGULAR ELLIPTIC CURVE ISOGENIES AND KUMMER SURFACES
	 KEY ONE-WAYNESS
	 SIGNATURES
	HASH-BASED SIGNATURE SCHEMES
	WINTERNITZ ONE-TIME SIGNATURE SCHEME (WOTS):
	PRNG TO OBTAIN A RANDOM SUBSET FROM A TREE (PORST)
	GRAVITY-SPHINCS

	HASH FUNCTION AND KEYED ONE-WAY FUNCTION FROM SUPERSINGULAR ELLIPTIC CURVE ISOGENIES AND WINTERNITZ ONE-TIME SIGNATURE
	 HASH FUNCTION AND KEYED ONE-WAY FUNCTION FROM SUPERSINGULAR ISOGENIES
	WINTERNITZ ONE-TIME SIGNATURE (WOTS)
	KEY GENERATION
	SIGN
	VERIFY

	SIGNATURE SCHEMES
	PUBLIC PARAMETERS
	PRIMITIVES
	INTERNAL ALGORITHMS
	THE SIGNATURE BASED ON SUPERSINGULAR ELLIPTIC CURVE ISOGENIES
	PARAMETER SIZES

	IMPLICATIONS RESULTS AND EFFICIENCY ANALYSIS
	CONCLUSIONS
	TRANSFORMATION BETWEEN E AND KSQR
	CONVERT THE MONTGOMERY CURVE E OVER Fp2 INTO KUMMER SURFACES KSqr OVER Fp
	MAPPING THE POINT R ON E INTO THE POINT R KSQR on KSqr
	MAPPING THE POINT R KSQR ON KSqr INTO THE POINT R ON E
	OPERATIONS ON KUMMER SURFACES

	INTERNAL FUNCTIONS

	REFERENCES
	Biographies
	YAN HUANG
	FANGGUO ZHANG
	ZHIJIE LIU
	HUANG ZHANG

