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ABSTRACT Gesture recognition is the most intuitive form of human computer-interface. Gesture sensing
can replace interfaces such as touch and clicks needed for interacting with a device. Gesture recognition
in a practical scenario is an open-set classification, i.e. the recognition system should classify correct
known gestures while rejecting arbitrary unknown gestures during inference. To address the issue of gesture
recognition in an open set, we present, in this paper, a novel distance-metric based meta-learning approach
to learn embedding features from a video of range-Doppler images generated by hand gestures at the
radar receiver. Further, k-Nearest Neighbor (kNN) is used to classify known gestures, distance-thresholding
is used to reject unknown gesture motions and clustering is used to add new custom gestures on-the-
fly without explicit model re-training. We propose to use 3D Deep Convolutional Neural Network (3D-
DCNN) architecture to learn the embedding model using distance-based triplet-loss similarity metric.
We demonstrate our approach to correctly classify gestures using short-range 60-GHz compact short-range
radar sensor achieving an overall classification accuracy of 94.5% over six fine-grained gestures under
challenging practical environments, while rejecting other unknown gestures with 0.935 F1 score, and capable

of adding new gestures on-the-fly without an explicit model re-training.

INDEX TERMS Gesture recognition, human-machine interface, mm-wave radar, triplet loss.

I. INTRODUCTION
Dynamic gestures are one of the most intuitive and
effective approach for human-computer interaction. Ges-
ture recognition has applications in wearable and mobile
devices, gesture-controlled smart TVs, gesture-controlled
smart homes, automotive infotainment systems, and aug-
mented reality-virtual reality applications. Gesture sensing
has also been used in sign language for communicating with
hearing-impaired people [1] and controlling robots [2].
Traditionally hand gesture recognition systems have been
based on optical sensors and cameras [3]. Although opti-
cal sensors have a high resolution that enables tracking
and recognition of the motions of the finger and wrist,
however they don’t provide accurate depth estimates [4].
Camera-based hand gesture recognition can provide high
accuracy applying sophisticated computer vision techniques
such as hand segmentation, tracking, and classification [5],
however such systems have limitations. They are limited
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by sufficient lighting conditions requirement, suffer from
self-occlusion issues, and can introduce privacy issues.
Recently, radar-based approaches for dynamic hand ges-
ture recognition has attracted much attention from industry
and academia [4], [6]-[14]. Compared to vision-based ges-
ture recognition systems, radar-based solutions are invariant
to illumination conditions, hand visibility occlusions and
additionally provides privacy-preserving features and capa-
bility to capture subtle hand gesture motions. Furthermore the
processing and classification pipeline for radar can be rela-
tively thin thus faciliating embedded implementation. At the
FMCW radar receiver, a hand gesture produces a superpo-
sition of reflections from different parts of the hand with
different range and velocity change over time, thus inducing
a unique time-varying range-Doppler representation, which
can help to detect and classify them reliably. In an FMCW
radar, gesture recognition system typically consists of three
steps - a) gesture detection and pre-processing by creating
the range-Doppler image (RDI) while neglecting static targets
and background environment, b) feature extraction, which
can be accomplished through hand-crafted features such as
Gabor transform etc. or implicitly through deep convolutional
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neural network (DCNN) and then c) classification of the
detected gesture from a library of trained gestures using con-
ventional machine learning approaches such as random for-
est, support vector machine, etc. or deep learning approaches.

In [6], the authors use a 2.4-GHz Doppler radar to iden-
tify and distinguish several gestures using hand-crafted fea-
tures. Authors in [7] use a 24-GHz one transmit (TX),
two receive (Rx) FMCW radar to demonstrate gesture
recognition by jointly calibrating the depth sensor. In [4],
the authors propose a novel 3D deep convolutional neu-
ral network (3D-DCNN) for feature extraction, long-short
term memory (LSTM) with connectionist temporal classifi-
cation (CTC) loss function for the recognition of a gesture
across time on camera and depth data. In [8], the authors
introduce a 60-GHz FMCW radar sensor with two Tx, four
Rx channels and demonstrate reliable gesture recognition
using hand-crafted features and classification using random
forest classifier. In [9], the authors propose novel signal
processing pipeline to negate the effect of vibration facili-
tating gesture recognition using random forest classifier in
a car using 60-GHz FMCW radar. In [10], authors propose a
novel hand-crafted feature using sparsity-based approach for
micro-Doppler extraction and subsequent recognition.

In [11], the authors proposed an end-to-end classifi-
cation pipeline with 2D CNN with LSTM to implicitly
extract features from range-Doppler images and recognize
the gesture through the subsequent fully-connected layers
and LSTM layer and demonstrated the superiority of the
approach using 60-GHz FMCW radar. Authors in [12] use
Doppler spectrogram from a Doppler radar and fed it into a
DCNN to classify 8 gestures with 85.6% accuracy. In [13],
the authors extend the 2D CNN-LSTM approach to use long
recurrent all-convolutional network (LRACN) to improve
the accuracy, memory footprint, computational complexity
and improve inference time to facilitate customization into
a real-time embedded platform. In [14], the authors pro-
pose to use 3D CNN-LSTM with CTC loss function using
FMCW radar to improve the classification accuracy and sup-
port variable-length gestures by identifying the boundaries
between gestures during inference, resulting in improved
latency.

A. PROBLEM STATEMENT
Gesture sensing using radars have several major challenges to
be addressed for deployment in a practical scenario - Firstly,
the gesture recognition system should be able to handle large
inter-class and intra-class differences of gestures. Inter-class
differences refer to the variation where the same gesture is
performed by another person, such as someone making the
same gesture slow and another faster. Intra-class differences
refer to the variation arising when the same person performs
the same gesture at a different instance and under different
sensor orientation.

Secondly, the gesture recognition system should be able
to reject motions or unknown gestures. In a practical deploy-
ment, the system would be exposed to gestures or motions not
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trained and the system is expected to be able to infer these
as random motions or gestures. Using conventional deep
learning approaches, one approach of rejecting unknown ges-
tures/motion is to apply a threshold on the output softmax
probability. However, this is expected to work only for very
few subsets of cases [15], which is not acceptable for a
product-ready solution.

Thirdly, the system should work under all alien or unknown
background environment. The gesture sensing application is
also expected to work under all background environment such
as in car’s dashboard while perturbed with vibrations from
the engine, in an unknown environment with interference
from nearby walking people, background objects, etc. For
gesture sensing systems to work using conventional deep
learning models under all plausible background environment
would require a lot of training data for each class. However,
modeling or collecting training gesture data in all variable
environment and background, in most cases, is practically
implausible. Therefore, conventional deep learning solutions
would fail under such scenarios since little or no supervised
information can be made available during training.

Further, the system should be scalable and allow users
to introduce gestures of their choice or convenience during
life-cycle of its usage. However, conventional deep learning
approaches firstly would require a lot of training examples
of the new gesture to be added. Secondly, once a model is
trained for a library of gestures inclusion of a new gesture
for inference would require re-training the whole network or
fine-tuning of last layers, which are computationally intensive
and not conducive in an embedded platform without access to
large compute resources.

B. CONTRIBUTIONS

To address the above challenges for a scalable and product
ready end-to-end gesture recognition system using FMCW
radar, we propose to use meta-learning or learning-to-learn
algorithms, specifically called few-shot learning [16], [17].
Meta-learning using distance-metric based models learns the
relationship between data samples in the task-space and thus
are capable of well adapting or generalizing to new tasks
and new environments that have never been encountered
during training time. To further learn appropriate feature
representations and address the generalization capabilities,
we exploit the triplet loss based embedding model [18]. The
embedding model, thus, can simultaneously minimize the
distance between similar gestures and maximize the distance
between different gestures with triplet loss function metric.
Such model and metrics have been successfully applied to a
2D image in literature, however, to the best of author’s knowl-
edge this is first work that extends it to 3D data, specifically
video of radar RDIs.

With the well-learned gesture features embedding,
k-Nearest Neighbor (kNN) algorithm is used to recognize
a known gesture even under an alien environment while
rejecting unknown gestures using a simple thresholding tech-
nique to minimize false alarms. The embedding network
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(b) FMCW radar RF signal chain

FIGURE 1. (a) Infineon’s BGT60TR24 60-GHz radar sensor. (b) Functional
block diagram of FMCW radar signal chain.

learns a unique structure to naturally rank similarity between
inputs. Once a network has been tuned, we can then capi-
talize on powerful discriminative features to generalize the
predictive power of the network to not only new data from
existing class but to entirely new classes from unknown
distributions through clustering, i.e. completely new ges-
tures, without the requirement of retraining the embedding
model. Furthermore, for training, embedding models require
only a few example data compared to a large amount of
data typically required for conventionally deep learning
approaches [19]. Using a 3D deep convolutional neural
network (DCNN) architecture in conjunction with triplet
loss, we can solve practical issues and also achieve strong
classification performance which exceeds those of other
deep learning models with near state-of-the-art deep learning
performance.

The rest of the paper is organized as follows, we present
the radar system design in Section II, we outline the input
RDI generation in Section III, we present the proposed 3D
DCNN architecture and the associated learning in Section IV,
we present the system specification with details of the gesture
set and implementation details in Section V, the results and
discussion are presented in Section VI, and we conclude in
Section VII.

Il. RADAR SYSTEM DESIGN

Fig. la represents a highly integrated 57-64 GHz chipset
of FMCW radar with four fully differential receivers and
two fully differential transmitters [20] and Fig. 1b repre-
sents its functional block diagram. The RF front-end of
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BGT60TR24 package is integrated into an embedded wafer
level ball grid array package with six integrated patch anten-
nas realized with a metal redistribution layer. The chip
includes an integrated VCO with a measured phase noise
lower than -80 dBc/Hz at 100 kHz offset.

Each transmitter channel is realized using a differential
cascode stage, a measured output power of 2-5 dBm over
the complete frequency range. The output power of the
transmitter is controllable by fine current control using a
6 bit DAC, which provides a reference voltage to the cas-
code stage. The chip’s integrated VCO has a low impedance
bias network to minimize phase noise contribution. The pro-
grammable frequency divider is driven by the fundamental
signal. A programmable frequency divider with two-division
ratios is included in the chipset to enable the use of both
hardware and software phase-locked loop (PLL) systems.

The frequency of the FMCW waveform with bandwidth B
and chirp duration 7" can be expressed as

e =fot 2 1
r0) = fot ()

where f is the ramp start frequency. The reflected signal from
the target is mixed with a replica of the transmitted signal
resulting in beat signal. The phase of the beat signal after the
mixer due to k”* point target is

[0} =27 (fotk + =tk — — 17 2
k clk T k T k
where 7 = —2(13"0 %D s the round trip propagation delay

between the transmitted and received signal after reflection
from the k™ target with range R; and radial velocity vy. The
down-converted Intermediate Frequency (IF) signal therefore
is the super-position of received signal from K point scatter-
ers and thus expressed as

K -Re  (2fivi  2BRk
sip(t) = ) _exp <2n< : +< — + )t)) ?3)
]Z:; c c cT

after ignoring the second-order terms 21;%1‘2.

Each of the receiver channels consists of a double-balanced
mixer and an intermediate frequency (IF) buffer amplifier.
The IF bandwidth is expected to be between 10 kHz to 1 MHz,
and thus the IF stage analog filter is set accordingly. A low
noise amplifier is not present to increase the overall linear-
ity of the receiver stage. An active RF distribution network
is used to feed the single-ended local oscillator signal to
all receive channels. This beat signal is low-pass filtered,
which is next sampled by the 12-bit analog to digital con-
verter (ADC).

The propagation delay is translated to beat frequency,
which can be identified by spectral analysis (eg. FFT) and the
Doppler manifests as a frequency over the slow time, which
refers to the time index within pulses in a frame or coherent
processing interval. Conventionally the angle is estimated by
analyzing the phase between receive channels at a specific
range and Doppler.
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FIGURE 2. Saw-tooth ramps within a frame with timing defintions.

IIl. INPUT RANGE-DOPPLER IMAGES

The frequency shifts due to range and velocity arising from
multiple point targets at the IF signal are decoupled by gener-
ating RDI across all virtual channels. The blob pixel intensity
on the RDI represents the collective reflected energy from all
scatterers at the same range and Doppler and is captured in the
RDI. A gesture generates a unique time-varying RDI at the
radar receiver over time sequences representing the artifacts
of the hand movement to produce the gesture.

Expanding the time index # as 1y Trame +75TprRT+15 , Where
ny is the fast time index 0 < ny < T. ng denotes the slow time
index and Tprr is the chirp repetition time indicating the time
difference between the start of two consecutive chirps in a
frame. ny denotes the frame number, where the indexing starts
when a gesture is detected and Tfame is the total frame as
denoted in Fig. 2. The received signal at frame ng, s;r(t; ng),
from consecutive chirps are arranged in the form of a 2D
matrix, i.e. s;p(ng, ne; ng). The RDI is generated for each
channel by applying window function, zero-padding and then
1D fast Fourier transform (FFT) along fast time to obtain the
range transformation, followed by applying window function,
zero-padding and then 1D FFT along slow time index. Subse-
quently, the moving average filter is employed to subtract the
background over the RDI from the current frame. Thus the
RDIs over frames captures the dynamics of the gesture over
the temporal domain.

The two 1D FFT transforms the signal sjr(ny, ne; ng),
along fast time and slow time, into range-Doppler domain

ZNe  , ZNTS -
S, g, m) = Z < Z wr (nf)sir (. ny nk)e_ﬂ”l’”f/ZNTS)

ng=1 “nr=1

W (ns)e—jzﬂqns/zzvc 4)

with NTS and Zyrs being number of transmitted samples
defined by DAC sampling points over chirp duration and
zero-padding along fast-time respectively. Nc and Zy, being
the number of chirps in a frame and zero-padding along
the slow-time respectively. wr(ny) and wq(ny) represents the
window function along fast-time and slow-time respectively,
for our implementation we have used the Hamming window
and Kaiser window respectively. p, g denotes the index over
range and Doppler respectively. It is obvious that the peaks in
the range-Doppler domain occur at

2 2B
<£vk + —Rk>
c cT

qr = )

Pk
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FIGURE 3. RDI generation by (a) 1D FFT along fast time, (b) 1D FFT along

slow time, (c) background subtraction, (d) thresholding, (e) detection and
collection of RDI over frames.

Using saw-tooth FMCW with fast ramps, %vk << ?—?Rk,
thus the range peaks appear at z—ng.

Fig. 2 depicts the sawtooth FMCW ramps within a frame
along with timing consideration and the definitions thereof.
The ramps within a frame are used to generate a processed
RDI and across frames to generate the video of RDIs. Ty
denotes the chirp preparation time and includes the ADC
settling time, power amplifier turn on-time and PLL setup
time. N.TprT denotes the coherent pulse integration time and
defines the Doppler resolution. Tfame defines the refresh or
update rate of the FMCW system and is limited by the RDI
processing and classification time. The maximum velocity
is given as vpax m and the minimum velocity is
= T .

Fig. 3 shows the signal processing steps to create the
processed RDIs. The 1D FFT along fast time transforms the
data to range domain, wheras the 1D FFT along slow time
transform the other dimension to Doppler domain. Following
the 2D FFT to transform the data into range-Doppler domain,
background subtraction is achieved through moving average
filter as

S(p? q; i’lk) = S(pv q; nk) - SB(pv q; i’lk)
Sp@, q;ni +1) = ySpp, q; ) + (1 — IS, q; ng)  (6)

where S(p, ¢; nx) is the RDI at n}(h frame, and Sp(p, q; ny)
is the background RDI at the n}ch frame. y is the moving
average coefficient and is set to 0.7 for our setup. Following
the background subtraction of RDI, thresholding operation
is performed to limit the values below pre-defined fixed
threshold to zero so that they do not influence the subsequent
neural training process, the thresholding operation also limits
the range to Rjpax = 0.5m to reduce interferences from farther
distance targets.

For gesture detection, the effective energy of the back-
ground subtracted RDI is calculated and once it crosses a
pre-defined threshold, a gesture is said to be detected and
this initalizes the RDI recording for subsequent 100 frames,
i.e. 2 s, which is then fed to the classification pipeline for
recognition of the gesture or rejecting the gesture motion as
false alarm.
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IV. ARCHITECTURE AND LEARNING

The objective of the proposed 3D DCNN is to achieve an
embedding f(g) for a given gesture g (video of RDI) into
a feature space R? so that the squared Euclidean distance
between same gestures is small and that of two different
gesture is large, independent of the intrinsic properties of the
radar. The model not only learn the class of g but also how dif-
ferent it is from other gestures g’. In terms of objective func-
tion this can be achieved through triplet loss distance-metric
by training three 3D-DCNN sharing same weights feeding
an anchor example, positive example (i.e. same gesture),
negative example (i.e. different gestures). The triplet loss tries
to form a margin between different gestures in the embedding
space, thus allowing embeddings of the same gestures to exist
in a close-knit cluster and distanced away from other gesture
clusters.

A. 3D - DEEP CONVOLUTION NEURAL NETWORK
ARCHITECTURE
Generally, 2D DCNNS are used to apply convolution on 2D
feature images to extract features in the spatial dimension.
However, in case of video of RDIs, temporal information that
is present over a stream of input frames needs to be captured
to make a sequential data classification. So, we employ 3D
convolutions in our network to capture spatial and temporal
information. In 3D convolution, the input is a 3D cube where
the third dimension denotes the temporal dimension contain-
ing sequence of frames and is formed by stacking 2D frames
sequentially.
1) 3D Convolution Layer - The convolution in this case is
achieved by convolving a 3D kernel over the data cube.
In i layer, the value at position (x, y, z) in j feature
images is given as
Pi—1Q;—1R;—1
e o+ Y 3 3w )

m p=0 ¢g=0 r=0
@)

where R; is the size of the 3D kernel along the temporal
dimension, W‘qur is the (p, g, ) value of the kernel
connected to the m™ feature image in the previous layer.
Multiple such filter kernels are required at each layer to
extract diverse information.

2) 3D Max Pooling - The objective of employing the
3D max pooling layer is to achieve lower-dimensional
feature images with retention of most relevant informa-
tion. Pooling helps to make the representation invariant
to small translations, increase global receptive field and
helps to counter the overfitting of the model.

3) Activation Layer - The activation layer introduces
non-linear transformation on the input signal by learn-
ing whether a neuron will fire or not is known as the
activation function. Rectified Linear unit (ReLu) is one
of the most widely used activation function. It facil-
itates faster backpropagation and doesn’t activate all
neurons thus is computationally very efficient.

VOLUME 7, 2019

4) Dropout - It is a regularization approach that reduces
inter-dependent learning among a set of neurons and
thus preventing overfitting of training data.

5) Dense Layer - The neurons in this layer have a complete
connection to the high-level features extracted in the
previous layers and their activation is computed by
matrix multiplication and then a bias offset.

B. TRIPLET LOSS

The embedding model embeds a RDI sequence g into a d-
dimensional embedding space. The triplet loss used for 3D
data-cube is inspired by FaceNet [18] proposed in the context
of 2D image face classifciation. Given the triplets (g”, g%, g")
where p, a, n represents positive, anchor and negative exam-
ples respectively, we want to ensure that the anchor of a given
gesture sequence is closer to all other sequences of same
gesture g” than sequences of other gestures g" and maintain a
defined margin (o) between different gesture sequences. This
requires the fulfillment of the following constraint

1F (gD —fENNE+a < IfEH —fEDI3 (8)

V£ (g9, £ (&), f(g") € T and the loss function can be defined
as the following

N

DI —FEDIE = IFE) —fE@hl+els 9

i=1
where [x]4 represents max(0,x). Using all the possible
triplets at every epoch would result in many triplets that
satisfy the constraints after a few epochs. These easy triplets
would not help in training and rather slow down the conver-
gence as they will be passed through the network. Therefore,
it is desirable to select hard triplets that would contribute
to the training process and lead to faster convergence. The
following sub-section discusses the adapted triplet selection
model.

C. TRIPLET SELECTION

Triplet selection or triplet mining is a critical aspect of train-
ing a DCNN using triplet loss, if not done correctly the loss
can get stuck in local minima after reducing drastically in the
first few epochs. We adapt offline triplet selection, where after
every 100 epochs we save a checkpoint and select triplets that
are semi-hard negatives. Semi-hard negatives are the ones
where the positive anchor distance is smaller than that of
negative anchor but the negative anchor distance is close to
the to positive anchor distance and the negatives exist within
the margin. We do not select the hard negatives as they can
lead to early local minima and poor training.

D. WEIGHT INITIALIZATION

The weight initialization for 3D convolutional layers was per-
formed by drawing samples from a normal distribution with
zero-mean and standard deviation of 1072, The respective
biases were initialized with samples drawn from a normal
distribution also but with a mean of 0.5 instead of zero.
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FIGURE 4. Gesture set and its corresponding video of RDI at time stamps 0.1s, 0.3s, 0.9s, 1.3s, 1.5s from detection of the gesture for Rx antenna one for
1) grab, 2) finger rub, 3) finger waves, 4) circle, 5) swipe, and 6) top-down gestures respectively. In the x-axis, the negative velocity is represented by 0 to
15 bins and 16 to 31 bins represents positive velocity, whereas the y-axis represents increasing range bins from top to bottom.

The weights for the dense layers were initialized with Xavier
uniform initializer, which draws samples from a uniform
distribution within [-limit, limit] where the limit is calculated
by taking the square root of 6 divided by the total number of
input and output units in the weight tensor.

E. LEARNING SCHEDULE

Adaptive moment estimation (Adam) [21] optimizer is used
to compute adaptive learning rate for each network weight
over the learning process from estimates of first and sec-
ond moments of the gradients. In configuration parameters,

125628

the learning rate (alpha) is set to 0.001 and the exponential
decay rate for the first (betal) and second (beta2) moment
estimates are set to 0.9 and 0.999. The epsilon that counters
divide by zero problem is set to le-8.

F. DATA AUGMENTATION

The RDI are augmented to increase the dataset and achieve a
broader generalization of the model. In our data augmentation
technique, we create synthetic images with a variance to the
original RDIs. At first, a mean RDI across all channels for
each gesture class is created and for each time. Following that,
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we generate values for each of our synthetic records in each
time step by drawing values from a normal distribution with
mean equal to the corresponding original RDI at that time step
and variance drawn from gesture class variation. This helps to
model the time variations of a gesture performed by different
individuals.

V. SYSTEM SPECIFICATIONS

A. GESTURE SET

After a rigorous literature review on the use of different hand
gestures in human-computer interaction, we have defined
a gesture set for training purpose. All the chosen 6 ges-
tures involve the movement of fingers or minimum muscle
movement for hand displacement and are thus dynamic and
micro. Gestures like finger rub and rotation allow us to
exploit the intrinsic property of the radar which unlike camera
doesn’t suffer from self-occlusion and can recognize very
small motion. The six selected gestures, whose RDI over time
are illustrated in Fig. 4, are

1) Grab (moving a hand towards the sensor, perform a
grab action and move it away),

2) Finger Rub (displacement of thumb placed on the index
finger),

3) Finger Waves (movement of all the fingers above the
sensor like playing a piano),

4) Circle (circular movement of a finger above the sensor),

5) Swipe (moving the hand horizontally from right to left),

6) Top-Down (movement of the palm toward the sensor
and away like pushing a button).

B. SYSTEM PARAMETERS

The sweep bandwidth of 7 GHz is used, hence the theoretical
range resolution of our system is §r = ¢/2B = 2.14 cm,
where c is the speed of light. The fast-time window func-
tion results in some loss of range resolution. The number
of transmit DAC samples used for generating the chirp is
NTS = 64, hence the maximum detectable range is Ryax =
(NTS/2) - ér = 0.68 m, since the BGT60TR24 sensor
has only I channel. The ADC sampling frequency is set to
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TABLE 1. 3D Proposed DCNN architecture used for the embedding model.

Layer (Type) Output Shape Parameters
conv3d_1 (Conv3D) (None, 96,28,28,32) 16032
relu_1 (Activation) (None, 96, 28,28,32) | 0
max_pooling3d_1 (MaxPooling3D) | (None, 48, 14, 14,32) | 0
dropout_1 (Dropout) (None, 48, 14,14,32) | O
conv3d_2 (Conv3D) (None, 46,12,12,64) 55360
relu_2 (Activation) (None, 46, 12,12,64) | 0
dropout_2 (Dropout) (None, 46, 12,12,64) | 0
conv3d_3 (Conv3D) (None, 44,10,10,64) 110656
relu_3 (Activation) (None, 44, 10, 10,64) | 0
dropout_3 (Dropout) (None, 44, 10, 10,64) | 0
max_pooling3d_2 (MaxPooling3D) | (None, 22, 5, 5, 64) 0
conv3d_4 (Conv3D) (None, 18,1,1,64) 512064
relu_4 (Activation) (None, 18,1, 1, 64) 0
dropout_4 (Dropout) (None, 18, 1, 1, 64) 0
conv3d_5 (Conv3D) (None, 18,1,1,128) 8320
relu_5 (Activation) (None, 18, 1, 1, 128) 0
dropout_5 (Dropout) (None, 18, 1, 1, 128) 0
flatten_1 (Flatten) (None, 2304) 0
dense_1 (Dense) (None, 32) 73760
sigmoid_1 (Activation) (None, 32) 0
Total Parameters 776,192

2 MHz, the maximum beat frequency is given by

495.83 kHz.

2BRmax __
cT -

The chirp time is set to 32 us and the chirp repetition time

is set to 64 us and we use 16 consecutive chirps in a frame,
thus the maximum velocity is given as vpax = 39.0625 m/s
and the minimum velocity is v = 2.44 m/s. The frame time
is set to 20 ms, and 100 consecutive frames, i.e. 2 s of data is
recorded once a gesture is detected. We use one Tx antenna
and four Rx antennas for reception, and the 3dB azimuth and
elevation Field of View (FoV) are both 70°.

C. IMPLEMENTATION DETAILS

For each gesture, 100 consecutive RDIs are stacked together
and fed to the network as input shape of (100, 32, 32, 4).
Triplet mining is performed and the (g%, g”, ¢") set is fed to
the three identical 3D networks that share the same weights
as depicted in Fig. 5.

Instead of linear activation, sigmoid activation is used at
the last fully connected layer to prevent loss of information by
yielding positive values. Different 3D architectures based on
the trade-off of accuracy and model size have been explored.
Our proposed solution, as depicted in Tab. 1, is aimed to
run in small consumer electronics like mobile phones and
wearable devices. Although, having deeper networks yielded
slightly better results but increased the number of parameters
and FLOPs exponentially. For our use case, the proposed
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FIGURE 6. Overall gesture sensing pipeline depicting feature transformation through DCNN embedding model to enable gesture classification, rejection

of unknown gestures and new gesture class addition.

model seems to be optimal with a model size of 7.96 MB and
3.1 MFLOPs (without quantization/fusion/weight-pruning
optimization). Once the embedding model is trained,
a I-nearest neighbor (NN) classifier is trained to make gesture
class prediction taking generated embedding of the gestures.

Typically, training deep neural networks require a large
amount of data however, deep neural network using triplet
loss can be trained using much less amount of data owing
to the large number of possible triplet combinations. For
each gesture class, 150 sequences were recorded where each
sequence contains 100 frames making each gesture couple
of seconds long, performed by 10 individuals with mini-
mal prior instructions. The dataset were collected under dif-
ferent challenging environment, particularly gestures were
recorded in a crowded background. Other environments
include wherein the chip was hand-held and gesture was per-
formed with the other hand, also wherein the chip was placed
in the car’s infotainment dashboard while the engine was kept
on and co-passenger made random movements. The training
dataset size was augmented by techniques mentioned earlier
resulting in a total training size of 1800 (300 sequences for
each class). A testing dataset of 420 sequences (70 sequences
for each class) were recorded by 5 other individuals perform-
ing the same gestures under the same background environ-
ment as training dataset but 20 % of data was collected under
different background and sensor orientation which wasn’t
present in the training dataset. A change in RDI energy is
used to detect the start of a gesture and then a video of RDI
is transferred into the 3D CNN to generate the embedding
which then goes into 1-NN classifier where its either rejected
as a false alarm or gesture prediction is made. The end-to-end
proposed radar-based gesture recognition system is depicted
in Fig. 6.

VI. RESULTS AND DISCUSSION
The overall end-to-end gesture sensing pipeline is evaluated
by the following metrics -

125630

1) t-SNE Representation [22] - We use t-SNE for visu-
alizing the generated embeddings in a 2-dimensional
space, which gives a visually intuitive understanding
about how efficiently the model clusters similar ges-
tures together. t-SNE is a well suited non-linear tech-
nique to visualize higher dimensional data by per-
forming dimensionality reduction. Initially, the algo-
rithm computes the similarity probability of data points
in input space and targeted lower-dimensional space.
Next, the algorithm tries to minimize the conditional
probabilities (or similarities) in both the spaces for a
perfect lower-dimensional representation. The sum of
Kullback-Leiber divergence of all the data points is
minimized using gradient descent technique to measure
the minimization of the sum of difference of condi-
tional probability. One must note that after this process,
the data points are no longer retrievable and hence the
output of t-SNE can only be used for visualization and
exploration purposes.

Accuracy Metrics - Confusion matrices are computed
to evaluate the recognition accuracy of our proposed
end-to-end architecture. Further, the F1 score is com-
puted by calculating the precision and recall to evaluate
the capability of our proposed system to detect and
reject false alarms.

2)

A. GESTURE CLASSIFICATION

First, the gesture classification capability of our proposed
architecture is evaluated for known classes over the test data.
The accuracy of the architecture is computed with yet another
test set containing 180 sequences (30 each class) recorded
with different background noise to evaluate the generalization
capability of our embedding model. As seen in the confusion
matrix depicted in Table 2, we see that our proposed model
has high accuracy over all the classes and yields an overall
accuracy of 94.5 %. Furthermore, an interesting takeaway
from the following result is how efficiently and accurately
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TABLE 2. Confusion matrix of the test set containing 600 examples from
all classes. The overall accuracy is 94.5 %.

Predicted Class

a b c d e f
a 90 0 0 0 10 0
@ b 0 0 0 0 0
5 c 0 3 9 0 5 0
g d 0 0 0 9 8 0
< e 0 3 0 0 0

f 0 0 0 1 3

TABLE 3. Comparison of different approaches for gesture classification
under alien environment.

Approach Description Accuracy
3D CNN Categorical cross entropy loss function|86.3 %
2D CNN-LSTM|CTC loss function 88.1 %
3D CNN - kNN | Triplet loss embedding 94.5 %

it can differentiate between very similar gestures like grab
(gesture d) and top-down (gesture f). The result also shows
that the embeddings generated by the proposed model is
invariant to background noise to a great extend.

Further, Table 3 presents the classification accuracy of the
proposed approach in comparison to known 3D CNN and
2D CNN-LSTM approaches. Since the test dataset contains
different background noise not present in training dataset,
the proposed approach outperforms both 2D CNN-LSTM
model and 3D CNN model without any significant incre-
ment in model size. This behavior is well expected and can
be explained because despite having a very small training
dataset, a huge number of triplet combinations are generated
which allows the model to learn similarity features. This also
allows high generalization capability of the model and is an
intrinsic property of the proposed approach.

B. NEW CLASS ADDITION

Second, to evaluate the scalability of our proposed embedding
model, the trained embedding model is used for generating
few embeddings of the new class (not present in the initial
training set). The trained embedding model projects the new
gesture class in a unique cluster in the embedding space.
The 1-NN classifier is then updated with the new class
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TABLE 4. Confusion matrix of the test set containing 700 examples from
all classes when a new gesture is added during inference. The overall
accuracy is 94.57 %.

Predicted Class

a b ¢ d e £ g
a IR 0 0 | 10 | o | o
b | 0 o | o | o | o0 |3
w
& ¢ | 0 | 3 0 0 | o
)
= d | 0 |0 | 0o BEEE 8 |0 | O
=
3e0300 0 | o0
£ o | 0o | 0o |1 0
g | o | o [0 | 2 | o0 | o

embeddings. This process allows adding new class with a
very few number of samples (in our case we have used
15 samples) without the requirement to retrain the original
deep learning model, which makes it a fast and computation-
ally inexpensive approach towards expanding to include new
gestures.

The existing test data used in the previous experiment
along with 100 new rotation gestures (moving the hand like
grabbing and rotating a knob as shown in Fig. 7) records
were added, of which again 30 of them were recorded with
unseen background not present in the training dataset. Table 4
presents the confusion matrix generated for the (6+1) classes
which show high accuracy for all gesture classes like in the
previous experiment, including the new gesture. We achieve
an overall accuracy of 94.57% and is interesting to see how
accurately the proposed model can recognize the new gesture
rotation (gesture g), which was absent in the training phase
of the embedding model without confusing it with a much
similar gesture such as finger waves (gesture c) present in the
training set.

We use t-SNE to visualize the embeddings, in Fig. 8,
generated by our proposed model for a small subset of test
data containing randomly chosen 10 gestures for each gesture
class including the new gesture class (rotation gesture). As we
can see in the figure, each gesture class forms its own cluster
as expected. However, the rotation gesture class and the finger
wave gesture class clusters are very close to each other with
an outlier in each, since both the gestures are very similar with
the involvement of all the five fingers. These observations
confirm the unique embedding capability of our proposed
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FIGURE 8. t-SNE representation of gestures embedding using proposed
3D-DCNN using triplet loss.

TABLE 5. Confusion matrix of the test set containing 200 examples from
all classes. The F1 score is 0.935.

very strict acceptance of performed gestures and very high
threshold would result in a very relaxed acceptance of the
gestures. A relatively low threshold value was selected, which
is optimal in our experiment and yields a precision of 0.93,
recall of 0.94 and a F1 score of 0.935 computed from Table 5.

We also visualize the embeddings, in Fig. 9, of the same
subset along with 10 randomly chosen gesture data of invalid
gestures. As expected, none of the invalid gestures (false
alarms) are present inside any of the valid gesture clusters
thus demonstrating the invalid gesture or motion rejection
capability of the system.

VII. CONCLUSION

Gesture recognition is more intuitive than mouse, touch, key-
board or joystick-based human-machine interaction. In this
paper, we propose a novel architecture using embedding
model for hand gesture recognition, which is capable of pro-
viding high classification accuracy while rejecting unknown
gestures or motion with a low memory footprint for real-time
interaction with a machine using 60-GHz mm-wave short-
range radar. Our proposed method generalizes well to alien
environments and background noise and is demonstrated
experimentally in the paper. The proposed system is also
scalable for adding new custom gesture with requirements of
few supervised examples and without the need of elaborate
model re-training. Future work can explore the training of
different deep learning architectures, such as 2D CNN-LSTM
embedding model, for smaller memory footprint and lower
latency during inference.
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