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ABSTRACT The position of a moving point in a connected graph can be identified by computing the
distance from the point to a set of sonar stations which have been appropriately situated in the graph.
Let Q = {q1, q2, . . . , qk} be an ordered set of vertices of a graph G and a is any vertex in G, then the
code/representation of aw.r.tQ is the k-tuple (r(a, q1), r(a, q2), . . . , r(a, qk )), denoted by r(a|Q). If the dif-
ferent vertices ofG have the different representations w.r.tQ, thenQ is known as a resolving set/locating set.
A resolving/locating set having the least number of vertices is the basis for G and the number of vertices in
the basis is called metric dimension of G and it is represented as dim(G). In this paper, the metric dimension
of Toeplitz graphs generated by two and three parameters denoted by Tn〈1, t〉 and Tn〈1, 2, t〉, respectively is
discussed and proved that it is constant.

INDEX TERMS Metric dimension, basis, resolving set, Toeplitz graph.

I. INTRODUCTION AND PRELIMINARY RESULTS
A real world problem is the study of networks whose structure
has not been imposed by a central authority but arisen from
local and distributed processes. It is very difficult and costly
to obtain a map of all nodes and the links between them.
A commonly used technique is to obtain local view of the
network from various locations and combine them to obtain
a good approximation for the real network. Themetric dimen-
sion of graphs is very useful to solve such sorts of problems.

The notion of the metric dimension was first time intro-
duced by Slater [16] and then later by Harary and Melter
[5] independently. There are many applications of resolvabil-
ity in graph theory, for example it has applications in pat-
tern recognition, pharmaceutical chemistry [3], processing of
images, networks, combinatorial optimization, tricky games
and tasks on coin-weighing, robot navigation [9], facility
location problems and many more. Solutions of many other
practical applications can be found with the help of metric
dimension and metric basis of connected graphs. For more
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details in this regard see [10], [13], [14], [17], [22], [23].
The concept of metric dimension is also useful for solving
the problems of percolation in a hierarchical lattice. For more
details see [15]. The distance between any pair t, s ∈ V (G)
of vertices of G is the number of edges in a shortest path
between them, denoted by d(t, s). Any vertex p ∈ V (G) is
said to resolve or distinguish a pair t, s ∈ V (G) if d(p, t) 6=
d(p, s). An ordered set Q = {q1, q2, . . . , qk} ⊆ V (G) of a
connected graph G is considered as resolving set for G if any
pair of vertices of G is distinguished by some vertices of Q.
A resolving set with least number of vertices is referred as
metric basis for G and the cardinality of such resolving set is
know as metric dimension denoted by dim(G).
Dimension of graph is one if and only if G = Pn [12].

The dimension of graph G shown in Figure 1 is two. For
Q1 = {q1, q2}, r(q3|Q1) = r(q4|Q1) = (1, 1). So, Q1 is
not a resolving set. For Q2 = {q1, q3}, r(q2|Q2) = (1, 1)
and r(q4|Q2) = (1, 2). So, Q2 is the resolving set.
Hence dim(G) = 2.
The reader are advised to see the following papers for better

understanding and detailed study about this notion [1]–[3],
[7], [8], [11], [18], [19].
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FIGURE 1. Graph with metric dimension 2.

The following lemma works as a useful property for find-
ing the metric basis and metric dimension for any connected
graph G.
Lemma 1 [21]: Let Q be a resolving set for a connected

graphG and u, v ∈ V (G). If d(u,w) = d(v,w) for all vertices
w ∈ V (G) \ {u, v}, then {u, v} ∩ Q 6= ∅.
Let E be a family of connected graphs defined as Gm :

E = (Gm)m≥1 which depends on m, the order |V (G)| = ϕ(m)
and lim

m→∞
ϕ(m) = ∞. Let K > 0 be any constant, such

that dim(Gm) ≤ K for each m ≥ 1, then we say that family
of graphs E has bounded metric dimension; otherwise E has
unbounded metric dimension.
If all graphs in E have the same metric dimension (which

does not depend onm), then E has constant metric dimension.
Theorem 2 [12]: Let G be a simple connected graph of

order n ≥ 2. Then
(a) dim(G) = 1 if and only if G = Pn.
(b) dim(G) = n− 1 if and only if G = Kn.
(c) dim(G) = n− 2 if and only ifG = Kr,s, where r, s ≥ 1

and n ≥ 4
Theorem 3 [20]: Let G be a simple connected graph with

metric dimension 2 and let {v1, v2} ⊆ V (G) be a metric basis
in G, then the degree of both v1 and v2 is at most 3 and there
exists a unique shortest path between v1 and v2.
For a graph G with m vertices labelled as {1, 2, 3, . . . ,m}

its adjacency matrix A is m×mmatrix whose ijth entry is 1 if
the vertex i and vertex j joined by an edge and 0 otherwise.
A m × m matrix B = bij is known as Toeplitz matrix if
bij = bi+1,j+1 for each i, j = 1, . . . ,m− 1.

0 0 1 0 0 1
0 0 0 1 0 0
1 0 0 0 1 0
0 1 0 0 0 1
0 0 1 0 0 0
1 0 0 1 0 0


Toeplitz Matrix

A simple undirected graph Tm is Toeplitz graph if matrix
m×m which is B = bij is the symmetric Toeplitz matrix and
for all i, j = 1, . . . ,m satisfied the following: edge {i, j} is in
E(G) iff bij = bji = 1. An m × m matrix B will be labelled
0, 1, 2, . . . ,m − 1 which has m distinct diagonals. The main

FIGURE 2. Toeplitz graph T8〈4, 5〉, with gcd(4, 5) = 1.

FIGURE 3. Toeplitz graph T8〈2, 4〉 with two connected components.

diagonal has bii = 0 for all i = 1, . . . ,m, so Toeplitz graph
has no loop. The diagonals x1, x2, . . . , xp containing ones
0 < x1 < x2 < . . . < xp < m. The Toeplitz graph
Tm < x1, x2, . . . , xp > with vertex set {1, 2, 3, . . . ,m} has
edge {i, j}, 1 ≤ i ≤ j ≤ m, occurs if and only if j− i = xq for
some q, 1 ≤ q ≤ p.
As we know that the Toeplitz graphs are those graphs that

are derived from Toeplitz matrices. So, the importance of
the Toeplitz matrices is also the importance of the Toeplitz
graphs. Toeplitz matrices appear in the discretization of the
differential and integral equations, they also play a significant
role in physical data-processing applications.Moreover, these
matrices arise in moment problem, stationary process and the
theories of orthogonal polynomials. For more details see [6].

Important properties about the connectivity of Toeplitz
graph are as follows:
Theorem 4 [4]: Tn〈t1, . . . , tk 〉 has at least gcd(t1, . . . , tk )

components.
The above theorem shows that a Toeplitz graph can

have more than gcd(t1, . . . , tk ) components. The graph
T8〈4, 5〉 shown in Figure 2 has three components whereas
gcd (4, 5) = 1.
Theorem 5 [4]: If gcd(t1, . . . , tk ) > 1, then Tn〈t1, . . . , tk 〉

is disconnected.
We are interested only in connected graphs therefore we

will consider only those families of Toeplitz graphs which
has only one connected component. We show some of these
families of Toeplitz graphs have constant metric dimension.

II. METRIC DIMENSION OF TOEPLITZ GRAPHS Tn〈1, t〉

In this section we study the Toeplitz graph Tn〈1, t〉, where
1 and t are its generators. We classify the dimension of
this graph on the bases of the value of t . If t is even, then
dimension is 2. If t is odd, then dimension is 3.
Theorem 6: Let Tn〈1, 2〉 be the Toeplitz graph. Then

dim(Tn〈1, 2〉) = 2, where n ≥ 4.
Proof 6: We will show that only two elements in basis

set suffice to resolve all the vertices in V (Tn〈1, 2〉). Let Q =
{v1, v2} resolve the vertices of Tn〈1, 2〉. Then we have the
following two cases:
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Case 1: If i is odd, then we have the following representa-
tion of vi where i ≥ 3 with respect to Q;

r(vi|Q) =
(
i− 1
2

,
i− 1
2

)
As, all the representation of different vertices are distinct. So,
this shows that Q = {v1, v2} resolve the vertices of Tn〈1, 2〉
which means

dim(Tn〈1, 2〉) ≤ 2.

Case 2: If i is even, then we have the following represen-
tation of vi where i ≥ 3 with respect to Q;

r(vi|Q) =
(
i
2
,
i
2
− 1

)
As, all the representation of different vertices are distinct. So,
this shows that Q = {v1, v2} resolve the vertices of Tn〈1, 2〉
which means

dim(Tn〈1, 2〉) ≤ 2. (1)

Conversely: Now, we show that dim(Tn〈1, 2〉) ≥ 2. Sup-
pose on contrary that dim(Tn〈1, 2〉) = 1.
As, we know that dim(G) = 1 if and only if G = Pn by

Theorem 2. This is not possible for our Toeplitz graph.
So,

dim(Tn〈1, 2〉) ≥ 2. (2)

Hence from Eq. (1) and (2) we have

dim(Tn〈1, 2〉) = 2. �

Next theorem is about the metric dimension of Toeplitz graph
Tn〈1, t〉 where even t ≥ 4.
Theorem 7: Let Tn〈1, t〉 be the Toeplitz graph with even

t ≥ 4. Then dim(Tn〈1, t〉) = 2, where n ≥ t + 2.
Proof 7: We will show that only two elements in basis

set suffice to resolve all the vertices in V (Tn〈1, t〉). Let
Q = {v1, v t+2

2
} resolve the vertices of Tn〈1, t〉. Then we have

the following three cases:
Case 1: If k ≡ 2, 3, . . . , t

2 (mod t), then vk has the follow-
ing representation with respect to Q;

r(vk |Q) =
(
k − pt + p− 1,

(2p+ 1)t − 2k
2

+ p+ 1
)

where p = b kt c.As, all the representation of different vertices

are distinct. So, this shows that Q =
{
v1, v t+2

2

}
resolve the

vertices of Tn〈1, t〉 which means

dim(Tn〈1, t〉) ≤ 2.

Case 2: If k ≡ t
2 + 1(mod t), then vk has the following

representation with respect to Q;

r(vk |Q) =
(
k − pt + p− 1,

2k − (2p+ 1)t
2

+ p− 1
)

where p = b kt c.As, all the representation of different vertices

are distinct. So, this shows that Q =
{
v1, v t+2

2

}
resolve the

vertices of Tn〈1, t〉 which means

dim(Tn〈1, t〉) ≤ 2.

Case 3: If k ≡ t
2 + 2, t

2 + 3, . . . , t + 1(mod t) then vk has
the following representation with respect to Q;

r(vk |Q) =
(
pt − k + p+ 1,

2k − (2p− 1)t
2

+ p− 2
)

where p = b 2k+t2t c. As, all the representation of different

vertices are distinct. So, this shows that Q =
{
v1, v t+2

2

}
resolve the vertices of Tn〈1, t〉 which means

dim(Tn〈1, t〉) ≤ 2. (3)

Conversely: Now, we show that dim(Tn〈1, t〉) ≥ 2. Sup-
pose on contrary that dim(Tn〈1, t〉) = 1.
As, we know that dim(G) = 1 if and only if G = Pn

by Theorem 2. This is not possible for our graph which is
Toeplitz graph.

So,

dim(Tn〈1, t〉) ≥ 2. (4)

Hence from Eq. (3) and (4) we have

dim(Tn〈1, t〉) = 2. �

Next theorem is about the metric dimension of Toeplitz graph
Tn〈1, t〉 when t = 3.
Theorem 8: Let Tn〈1, 3〉 be the Toeplitz graph. Then

dim(Tn〈1, 3〉) = 3, where n ≥ 5.
Proof 8:We will show that only three elements in basis

set suffice to resolve all the vertices in V (Tn〈1, 3〉). Let
Q = {v1, v2, v3} resolve the vertices of Tn〈1, 3〉. Then we
have the following two cases:
Case 1: If k ≡ 1, 2(mod 3), then vk has the following

representation with respect to Q;

r(vk |Q) = (k − 2p− 1, 4p− k + 2, k − 2p− 1)

where p = b k3c. As, all the representation of different vertices
are distinct. So, this shows that Q = {v1, v2, v3} resolve the
vertices of Tn〈1, 3〉 which means

dim(Tn〈1, 3〉) ≤ 3.

Case 2: If k ≡ 0(mod 3), then vk has the following
representation with respect to Q;

r(vk |Q) = (p+ 1, p, p− 1)

where p = k
3 . As, all the representation of vertices are

distinct. So, this shows that Q = {v1, v2, v3} resolve the
vertices of Tn〈1, 3〉 which means

dim(Tn〈1, 3〉) ≤ 3. (5)

Conversely: Now, we show that dim(Tn〈1, 3〉) ≥ 3. Sup-
pose on contrary that dim(Tn〈1, 3〉) = 2.
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There are two possible cases according to nwhich are given
below:
Case 1:When n = 5, 6
Following are two possible basis sets by Theorem 3.
If Q1 = {vi, vi+1} where 1 ≤ i ≤ n− 1, then the following

vertices have the same representation;

r(vi+2|Q1) = r(vi+4|Q1) = (2, 1)

If Q2 = {vi, va} where 1 ≤ i ≤ n − 1 and a ≡ p(mod 3)
where p = 1, 2, . . . , n−3 and k = b n−p3 c, then the following
vertices have the same representation;

r(vi+2|Q2) = r(vi+4|Q2) = (2, 1).

Our supposition is wrong, the dimension is not 2 because
there exist the same representations.

So,

dim(Tn〈1, 3〉) ≥ 3.

Case 2:When n ≥ 7
Following are two possible basis sets by Theorem 3.
IfQ1 = {vi, vi+1}where i = 1, 2 and i = n−2, n−1, then

the following vertices have the same representation;

r(vi+2|Q1) = r(vi+4|Q1) = (2, 1).

If Q2 = {vi, va} where i = 1, 2, 3 and a ≡ p(mod 3) where
p = 0, 1, 2 and k = b n−p3 c, then the following vertices have
the same representation;

r(vi+2|Q2) = r(vi+4|Q2) = (2, 1).

Our supposition is wrong, the dimension is not 2 because
there exist same representations.

So,

dim(Tn〈1, 3〉) ≥ 3. (6)

Hence, from Eq. (5) and (6) we have

dim(Tn〈1, 3〉) = 3. �

Next theorem is about the metric dimension of Toeplitz graph
Tn〈1, t〉 when odd t ≥ 5.
Theorem 9: Let Tn〈1, t〉 be the Toeplitz graph with odd

t ≥ 5. Then dim(Tn〈1, t〉) = 3, where n ≥ t + 2.
Proof 9: We will show that only three elements in the

basis set suffice to resolve all the vertices in V (Tn〈1, t〉). Let
Q = {v1, v2, v t+3

2
} resolve the vertices of Tn〈1, t〉. Then we

have the following four cases:
Case 1: If k ≡ 3, 4, . . . , t+12 (mod t), then vk has the

following representation with respect to Q;

r(vk |Q) =
(
k − pt + p− 1, k − pt + p− 2,

(2p+ 1)t − 2k + 2p+ 3
2

)

where p = b kt c.As, all the representation of different vertices

are distinct. So, this shows that Q =
{
v1, v t+3

2

}
resolve the

vertices of Tn〈1, t〉 which means

dim(Tn〈1, t〉) ≤ 3.

Case 2: If k ≡ t+3
2 (mod t), then vk has the following

representation with respect to Q;

r(vk |Q) =
(
k − pt + p− 1, k − pt + p− 2,

2k − (2p+ 1)t + 2p− 3
2

)
where p = b kt c.As, all the representation of different vertices

are distinct. So, this shows that Q =
{
v1, v t+3

2

}
resolve the

vertices of Tn〈1, t〉 which means

dim(Tn〈1, t〉) ≤ 3

Case 3: If k ≡ t+5
2 , t+72 , . . . , t+ 1(mod t), then vk has the

following representation with respect to Q;

r(vk |Q) =
(
pt − k + p+ 1, pt − k + p+ 2,

2k − (2p− 1)t + 2p− 5
2

)
where p = b 2k+t2t c. As, all the representation of different

vertices are distinct. So, this shows that Q =
{
v1, v t+3

2

}
resolve the vertices of Tn〈1, t〉 which means

dim(Tn〈1, t〉) ≤ 3.

Case 4: If k ≡ 2(mod t), then vk has the following
representation with respect to Q;

r(vk |Q) =
(
k − pt + p− 1, k − pt + p− 2,

2k − (2p− 1)t + 2p− 5
2

)
where p = b kt c.As, all the representation of different vertices

are distinct. So, this shows that Q =
{
v1, v t+3

2

}
resolve the

vertices of Tn〈1, t〉 which means

dim(Tn〈1, t〉) ≤ 3. (7)

Conversely: Now, we show that dim(Tn〈1, t〉) ≥ 3. Sup-
pose on contrary that dim(Tn〈1, t〉) = 2. There are two
possible cases according to n which are given below:
Case 1:When t + 2 ≤ n ≤ 2t.
Following are three possible basis sets by Theorem 3.
If Q1 = {vi, vi+a} where 1 ≤ i ≤ n− a and 1 ≤ a ≤ b t2c,

then the following vertices have the same representation;

r(vi+a+1|Q1) = r(vt+i+a|Q1) = (a+ 1, 1).
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If Q2 = {vi, vi+a} where i = 1 and i = n − a, and
t+3
2 ≤ a ≤ t − 1, then the following vertices have the same

representation;

r(vi+a− t−1
2
|Q2) = r(vi+a+ t−1

2
|Q2) =

(
a−

t − 1
2

,
t − 1
2

)
.

If Q3 = {vi, va} where 1 ≤ i ≤ n − t and a ≡ p(mod t)
where p = 1, 2, . . . , n− t and k = b n−pt c, then the following
vertices have the same representation;

r(vi+ t+1
2
|Q3) = r(vi+ 3t−1

2
|Q3) =

(
t + 1
2

, k +
t − 3
2

)
Our supposition is wrong, the dimension is not 2 because
there exist same representations.

So,

dim(Tn〈1, t〉) ≥ 3.

Case 2:When n ≥ 2t + 1.
Following are four possible basis sets by Theorem 3.
If Q1 = {vi, vi+a} where 1 ≤ i ≤ t − a and n− (t − a) ≤

i ≤ n− a, and 1 ≤ a ≤ b t2c, then the following vertices have
the same representation;

r(vi+a+1|Q1) = r(vt+i+a|Q1) = (a+ 1, 1).

If Q2 = {vi, vi+a} where i = t − c + 1 with 1 ≤ c ≤ a − 1
and n = 2t + d with 1 ≤ d ≤ a− c, and 2 ≤ a ≤ b t2c, then
the following vertices have the same representation;

r(vi+a+1|Q2) = r(vt+i+a|Q2) = (a+ 1, 1).

If Q3 = {vi, vi+a} where i = 1 and i = n − a, and
t+3
2 ≤ a ≤ t − 1, then the following vertices have the same

representation;

r(vi+a− t−1
2
|Q3) = r(vi+a+ t−1

2
|Q3) =

(
a−

t − 1
2

,
t − 1
2

)
.

If Q4 = {vi, va} where 1 ≤ i ≤ t and a ≡ p(mod t) with
p = 0, 1, 2, . . . , t − 1 and k = b n−pt c, then the following
vertices have the same representation;

r(vi+ t+1
2
|Q4) = r(vi+ 3t−1

2
|Q4) =

(
t + 1
2

, k +
t − 3
2

)
.

Our supposition is wrong, the dimension is not 2 because
there exist same representation.

So,

dim(Tn〈1, t〉) ≥ 3. (8)

Hence from Eq. (7) and (8) we have

dim(Tn〈1, t〉) = 3. �

III. METRIC DIMENSION OF TOEPLITZ GRAPHS
Tn〈1, 2, t〉

In this section we study the Toeplitz graph Tn〈1, 2, t〉, where
1, 2 and t are its generators. We find the metric dimension of
Toeplitz graph Tn〈1, 2, t〉, where t = 3, 4, 5, 6.
Theorem 10: Let Tn〈1, 2, 3〉 be the Toeplitz graph. Then

dim(Tn〈1, 2, 3〉) = 3, where n ≥ 5.
Proof 10:Wewill show that only three elements in basis

set suffice to resolve all the vertices in V (Tn〈1, 2, 3〉). Let
Q = {v1, v2, v3} resolve the vertices of Tn〈1, 2, 3〉. Then we
have the following two cases:
Case 1: If k ≡ 1, 2(mod t), then vk has the following

representation with respect to Q;

r(vk |Q) = (k − pt + p, p, p)

where p = b kt c.As, all the representation of different vertices
are distinct. So, this shows that Q = {v1, v2, v3} resolve the
vertices of Tn〈1, 2, 3〉 which means

dim(Tn〈1, 2, 3〉) ≤ 3.

Case 2: If k ≡ 0(mod t), then vk has the following
representation with respect to Q;

r(vk |Q) = (k − pt + p, k − pt + p, p− 1)

where p = b kt c.As, all the representation of different vertices
are distinct. So, this shows that Q = {v1, v2, v3} resolve the
vertices of Tn〈1, 2, 3〉 which means

dim(Tn〈1, 2, 3〉) ≤ 3. (9)

Conversely: Now, we show that dim(Tn〈1, 2, 3〉) ≥ 3.
Suppose on contrary that dim(Tn〈1, 2, 3〉) = 2. There are two
possible cases according to n which are given below:
Case 1: For n ≡ 1(mod 3) and n = 3k + 1 where

k = b n3c. In Tn〈1, 2, 3〉 the only possible basis set by The-
orem 3 is given:

If Q = {v1, vn}, then the following vertices have the same
representation;

r(v2|Q) = r(v3|Q) = (1, k).

Our supposition is wrong, the dimension is not 2 because
there exist same representations.

So,

dim(Tn〈1, 2, 3〉) ≥ 3.

Case 2: For the remaining values of n in Tn〈1, 2, 3〉 the only
possible basis set by Theorem 3 is Q = {v1, vn}, but v1 and
vn does not have the unique shortest path. Our supposition is
wrong, the dimension is not 2.

So,

dim(Tn〈1, 2, 3〉) ≥ 3. (10)

Hence from Eq. (9) and (10) we have

dim(Tn〈1, 2, 3〉) = 3. �
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Next theorem is about the metric dimension of Toeplitz graph
Tn〈1, s, t〉 when t = 4 and s = 2.
Theorem 11: Let Tn〈1, 2, 4〉 be the Toeplitz graph. Then

dim(Tn〈1, 2, 4〉) = 3, where n ≥ 6.
Proof 11:Wewill show that only three elements in basis

set suffice to resolve all the vertices in V (Tn〈1, 2, 4〉). Let
Q = {v1, v2, v3} resolve the vertices of Tn〈1, 2, 4〉. Then we
have the following three cases:
Case 1: If k ≡ 3(mod 4), then vk has the following

representation with respect to Q;

r(vk |Q) = (k − 3p− 3, k − 3p− 3, p)

where p = b k4c.As, all the representation of different vertices
are distinct. So, this shows that Q = {v1, v2, v3} resolve the
vertices of Tn〈1, 2, 4〉 which means

dim(Tn〈1, 2, 4〉) ≤ 3.

Case 2: If k ≡ 0, 1(mod 4), then vk has the following
representation with respect to Q;

r(vk |Q) = (5p− k + 1, k − 3p, p)

where p = b 2k+48 c. As, all the representation of different
vertices are distinct. So, this shows that Q = {v1, v2, v3}
resolve the vertices of Tn〈1, 2, 4〉 which means

dim(Tn〈1, 2, 4〉) ≤ 3.

Case 3: If k ≡ 2(mod t), then vk has the following
representation with respect to Q;

r(vk |Q) = (p+ 1, p, p+ 1)

where p = b k4c.As, all the representation of different vertices
are distinct. So, this shows that Q = {v1, v2, v3} resolve the
vertices of Tn〈1, 2, 4〉 which means

dim(Tn〈1, 2, 4〉) ≤ 3. (11)

Conversely: Now, we show that dim(Tn〈1, 2, 4〉) ≥ 3.
Suppose on contrary that dim(Tn〈1, 2, 4〉) = 2. There are two
possible cases according to n which are given below:
Case 1: For n ≡ 1(mod 4) and n = 4k+1 where k = b n4c.

In Tn〈1, 2, 4〉 the only possible basis set by Theorem 3 is
given:

If Q = {v1, vn}, then the following vertices have the same
representation;

r(v4|Q) = r(v6|Q) = (2, k).

Our supposition is wrong, the dimension is not 2 because
there exist same representation.

So,

dim(Tn〈1, 2, 4〉) ≥ 3.

Case 2: For the remaining values of n in Tn〈1, 2, 4〉 the only
possible basis set by Theorem 3 is Q = {v1, vn}, but v1 and
vn does not have the unique shortest path. Our supposition is
wrong, the dimension is not 2.

So,

dim(Tn〈1, 2, 4〉) ≥ 3. (12)

Hence, from Eq. (11) and (12) we have

dim(Tn〈1, 2, 4〉) = 3. �

Next theorem is about the metric dimension of Toeplitz graph
Tn〈1, s, t〉 when t = 5, 6 and s = 2.
Theorem 12: Let Tn〈1, 2, t〉where t = 5, 6 be the Toeplitz

graph. Then dim(Tn〈1, 2, t〉) = 3, where n ≥ t + 3.
Proof 12:Wewill show that only three elements in basis

set suffice to resolve all the vertices in V (Tn〈1, 2, t〉). Let
Q = {v1, v2, vt−1} resolve the vertices of Tn〈1, 2, t〉. Then
we have the following four cases:
Case 1: If k ≡ 3, . . . , t − 2(mod t), then vk has the

following representation with respect to Q;

r(vk |Q) = (k − pt + p− 2, p+ 1, p+ 1)

where p = b kt c.As, all the representation of different vertices
are distinct. So, this shows thatQ = {v1, v2, vt−1} resolve the
vertices of Tn〈1, 2, t〉 which means

dim(Tn〈1, 2, t〉) ≤ 3.

Case 2: If k ≡ t − 1(mod t), then vk has the following
representation with respect to Q;

r(vk |Q) = (p+ 2, k − pt + p− 3, p)

where p = b kt c.As, all the representation of different vertices
are distinct. So, this shows thatQ = {v1, v2, vt−1} resolve the
vertices of Tn〈1, 2, t〉 which means

dim(Tn〈1, 2, t〉) ≤ 3.

Case 3: If k ≡ 0, 1(mod t), then vk has the following
representation with respect to Q;

r(vk |Q) = (pt − k + p+ 1, p+ 1, p)

where p = b 2k+t2t c. As, all the representation of different
vertices are distinct. So, this shows that Q = {v1, v2, vt−1}
resolve the vertices of Tn〈1, 2, t〉 which means

dim(Tn〈1, 2, t〉) ≤ 3.

Case 4: If k ≡ 2(mod t), then vk has the following
representation with respect to Q;

r(vk |Q) = (p+ 1, p, p+ 1)

where p = b kt c.As, all the representation of different vertices
are distinct. So, this shows thatQ = {v1, v2, vt−1} resolve the
vertices of Tn〈1, 2, t〉 which means

dim(Tn〈1, 2, t〉) ≤ 3. (13)

Conversely: Now, we show that dim(Tn〈1, 2, t〉) ≥ 3.
Suppose on contrary that dim(Tn〈1, 2, t〉) = 2where t = 5, 6.
There are two possible cases according to n which are given
below:
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Case 1: For n ≡ 1(mod t) and n = tk + 1 where
k = b nt c. In Tn〈1, 2, t〉 the only possible basis set by
Theorem 3 is given:

If Q = {v1, vn}, then the following vertices have the same
representation;

r(v2|Q) = r(v3|Q) = (1, k + 1).

Our supposition is wrong, the dimension is not 2 because
there exist same representation.
So,

dim(Tn〈1, 2, t〉) ≥ 3.

Case 2: For the remaining values of n in Tn〈1, 2, t〉 the only
possible basis set by Theorem 3 is Q = {v1, vn}, but v1 and
vn does not have the unique shortest path. Our supposition is
wrong, the dimension is not 2.

So,

dim(Tn〈1, 2, t〉) ≥ 3. (14)

Hence from Eq. (13) and (14) we have

dim(Tn〈1, 2, t〉) = 3. �

IV. CONCLUSION
We studied the metric dimension of certain families of
Toeplitz graphs, Tn〈1, t〉 when t is even and odd and
Tn〈1, 2, t〉 when t = 3, 4, 5, 6. We have also concluded that
these graphs have constant metric dimension.

V. OPEN PROBLEMS
It is natural to ask about the characterization of connected
graphs on the bases of the nature of the metric dimension.
For the characterization of the Toeplitz graphs the readers are
invited to study the following open problems.

1) Is dim (Tn〈2, t〉) for t ≥ 3 odd constant, bounded or
unbounded?

2) Is dim (Tn〈1, 2, t〉) for t ≥ 7 constant, bounded or
unbounded?

3) Is dim (Tn〈1, 3, t〉) for t ≥ 4 constant, bounded
or unbounded?

4) If anyone work on the general result for
dim (Tn〈t1, t2, t3, . . . , tk 〉), then it will be an interesting
result.
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