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ABSTRACT Contrast-enhanced Computed Tomography (CT) imaging is very helpful for the detection of
tumor metastasis and cancer cells. It is one of the most effective means of clinical imaging examination.
The objective of this paper is to realize the quantitative reconstruction of two contrast agents at the same
time and obtain the non-contrast-enhanced images in four energy bins as an additional product. This
paper presents an iterative material decomposition method based on volume conservation and K-edge
characteristics. Compared with other K-edge basedmaterial decomposition algorithms, the proposedmethod
can simultaneously quantify the two contrast agents and make better use of the energy information provided
by the photon-counting detector. The proposed algorithm was compared with the image-domain K-edge
subtraction, Angular Rejection and filtered back projection (FBP) reconstruction. Numerical simulation
and Monte Carlo simulation were used to verify the effectiveness of the proposed algorithm. We found
that the proposed algorithm has higher efficiency and is meaningful for the quantification of contrast agent
concentration. The proposed algorithm can achieve the quantitative separation of dual K-edge contrast agent
by a single scan, which is significant for reducing the radiation dose to patients and improving the efficiency
of material decomposition.

INDEX TERMS Contrast-enhanced imaging, K-edge, photon-counting CT, material decomposition.

I. INTRODUCTION
Contrast-enhanced imaging based on spectral CT is an impor-
tant tool for clinical diagnosis, enhancing the detection of
tumor metastases and infarcted myocardium as well as deter-
mining plaque composition [1], [2], and it is of great signifi-
cance for the prevention of major diseases. Depending on the
attenuation characteristics of contrast agents at various ener-
gies, contrast-enhanced imaging clearly distinguishes lesion
from healthy tissue [3].

When the energy of the incident X-ray photon passing
through high-Z material is exactly equal to the K-edge energy
of the material, the attenuation coefficient of the X-ray will
rise suddenly. The K-edge property of high-Z materials gives
photon-counting CT great potential in the field of contrast-
enhanced imaging.

At present, dual-energy CT based on energy integral detec-
tor is widely used in clinical contrast-enhanced imaging [4].

The associate editor coordinating the review of this article and approving
it for publication was Qiangqiang Yuan.

Conventional CT based on energy integral detectors has no
energy resolution ability; therefore, it cannot take advantage
of K-edge characteristics of materials for imaging [5], [6].
Compared with traditional CT, dual-energy CT introduces
energy information into imaging. However, sequential injec-
tion of gadolinium- and iodine- based contrast agents is
often required for enhanced imaging in clinical examination.
For example, the standard CT scan protocol for the liver
usually includes enhanced scan of arteries and portal veins,
as well as non-enhanced scan if necessary [7]. This scanning
protocol is useful for studing dynamic phases in different
liver pathology setting [7]. Therefore, it is meaningful to
implement the material decomposition algorithm suitable for
the dual-contrast single-scan CT protocol. Dual-energy CT
could only obtain the projection of two energy bins at a single
scan. For dual-energy CT, at least two scans are needed to
distinguish the two contrast agents, increasing the radiation
dose received by patients. Photon-counting CT could obtain
the projection of multiple energy bins simultaneously by
setting multiple energy thresholds at a single scan [8], [9].

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 124441

https://orcid.org/0000-0001-6085-2844


X. Zhang et al.: Quantitative Reconstruction of Dual K-Edge Contrast Agent Distribution for Photon-Counting CT

Spectral photon-counting CT could distinguish at least two
contrast agents simultaneously in a single CT acquisi-
tion [10]. Photon-counting CT has the potential to reduce
radiation dose thanks to the dual-contrast single-scan
CT protocol and the multi-energy threshold of photon count-
ing detector [8], [11]–[14]. To make full use of the energy
information provided by the photon-counting detector, it is
necessary to study the K-edge based material decomposition
algorithm suitable for spectral CT.

Some studies have reported the K-edge imaging method
for spectral photon-counting CT. E Roessl and R Proksa sug-
gested that the attenuation coefficient of material was a lin-
ear combination of photoelectric effect, Compton effect and
K-edge absorption, and the maximum likelihood estimation
was used in the projection domain for material decomposi-
tion [15]. E Rubenstein et al. proposed to subtract the recon-
structed image before the K-edge from the reconstructed
image after the K-edge to highlight the contrast agent and
suppress the interference of background noise [16], [17].
These are two methods for K-edge material decomposi-
tion in the projection domain and image domain;however,
both only effectively distinguish one contrast agent. If two
contrast agents are introduced into the method proposed
by E Roessl, the increase in the number of unknown variables
would introduce difficulties for obtaining the exact solution,
and the reconstructed image would be noisy. Although there
are some studies on K-edge material decomposition based on
photon-counting CT, few methods focus on the problem of
distinguishing two ormoreK-edge contrast agents at the same
time.

In this paper, an iterativematerial decomposition algorithm
was proposed according to the K-edge attenuation charac-
teristics of materials at different energies. The advantage of
the proposed algorithm is that the concentration distribution
of two contrast agents and the non-contrast-enhanced image
in four energy bins could be simultaneously obtained. The
projections of different energy required by the experiments
were obtained using numerical simulation and Monte Carlo
simulation. The method of numerical simulation is described
in the third part of the paper. Monte Carlo simulation was per-
formed using GATE [18], an open source software based on
Geant4 [19], [20]. The scanning parameters set in GATE are
described in the third part. Three experiments were designed
to verify the proposed algorithm, and the experimental results
were compared with the results of K-edge subtraction and
Angular Rejection [21].

II. METHODOLOGY
When the energy of incident photon is exactly equal to
the binding energy of K-shell electrons of the material,
the linear attenuation coefficient increases abruptly, and the
energy value is the K-edge of the material. According to the
NIST [22] table, the K-edge of iodine is 33.2 KeV and that
of gadolinium is 50.2 KeV. Fig. 1 shows the mass attenuation
coefficient of iodine and gadolinium. In the paper, the energy
spectrum of the whole range was divided into four energy

FIGURE 1. Mass attenuation coefficients of iodine and gadolinium at
different energies.

ranges. We used ωL1 and ωH1 to represent the energy bins
before and after the K-edge of iodine, respectively, and simi-
larly,ωL2 andωH2 were used to express the energy bins before
and after the K-edge of gadolinium, respectively.

According to the Beer-Lambert law, the theoretical number
of photons received by detector in the energy bins ofωL1 ,ωH1 ,
ωL2 and ωH2 could be expressed as follows:

IL1 =
∫
ωL1

I0(E)× e−
∫
µ(l,E)dldE (1)

IH1 =

∫
ωH1

I0(E)× e−
∫
µ(l,E)dldE (2)

IL2 =
∫
ωL2

I0(E)× e−
∫
µ(l,E)dldE (3)

IH2 =

∫
ωH2

I0(E)× e−
∫
µ(l,E)dldE (4)

where I0(E) represents the number of incident photons at
energy E, and µ(l,E) represents the linear attenuation coeffi-
cient of the scanned phantom at energy E. To show the differ-
ence in the attenuation characteristics of the contrast agent
in different energy bins, the projection obtained after the
K-edge was subtracted from the projection obtained before
the K-edge. The attenuation coefficient of the substance in
the narrow energy bin around the K-edge does not change
significantly. To simplify the calculation process, the average
attenuation in the energy bins of ωL1 , ωH1 , ωL2 and ωH2 was
used to replace the attenuation at each energy. The projec-
tion difference of the iodine-based contrast agent could be
obtained from (1) and (2):

ln IL1 − ln IH1 ≈ ln
e−

∫
µL1

(l,ωL1 )dl ×
∫
ωL1

I0(E)dE

e−
∫
µH1

(l,ωH1 )dl ×
∫
ωH1

I0(E)dE
(5)

where µL1 (l, ωL1 ) is the effective attenuation coefficient of
the scanned object in ωL1 , and µH1

(l, ωH1 ) is the effective
attenuation coefficient of the scanned object in ωH1 . The pro-
jection difference of gadolinium-based contrast agent could
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be obtained from (3) and (4):

ln IL2 − ln IH2 ≈ ln
e−

∫
µL2

(l,ωL2 )dl ×
∫
ωL2

I0(E)dE

e−
∫
µH2

(l,ωH2 )dl ×
∫
ωH2

I0(E)dE
(6)

where µL2 (l, ωL2 ) is the effective attenuation coefficient of
the scanned object in ωL2 , and µH2

(l, ωH2 ) is the effective
attenuation coefficient of the scanned object in ωH2 .

Equations (5) and (6) could also be expressed as
follows:

ln
IL1
IH1

= ln

∫
ωL1

I0(E)dE∫
ωH1

I0(E)dE

+

∫
µH1

(l, ωH1 )dl −
∫
µL1 (l, ωL1 )dl (7)

ln
IL2
IH2

= ln

∫
ωL2

I0(E)dE∫
ωH2

I0(E)dE

+

∫
µH2

(l, ωH2 )dl −
∫
µL2 (l, ωL2 )dl (8)

According to the principle of volume conservation, the atten-
uation coefficient of the mixture could be expressed linearly
as follows:{
µmix(l,E)= fI (l)µI (E)+fGd (l)µGd (E)+fn(l)µn(l,E)
fn(l)=1−fI (l)−fGd (l)

(9)

where fI (l) and fGd (l) are the volume fraction of iodine-based
contrast and gadolinium-based contrast agent, respectively;
µI (E) and µGd (E) are the linear attenuation coefficient of
the two contrast agents; and µn(l,E) is the linear attenuation
coefficient of the non-contrast-enhanced image. According to
equation (9), the average attenuation in the four energy bins
of ωL1 , ωH1 , ωL2 and ωH2 could be written as follows:

µL1 (l, ωL1 )

= fI (l)µI (ωL1 )+fGd (l)µGd (ωL1 )+fn(l)µn(l, ωL1 ) (10)

µH1
(l, ωH1 )

= fI (l)µI (ωH1 )+fGd (l)µGd (ωH1 )+fn(l)µn(l, ωH1 ) (11)

µL2 (l, ωL2 )

= fI (l)µI (ωL2 )+fGd (l)µGd (ωL2 )+fn(l)µn(l, ωL2 ) (12)

µH2
(l, ωH2 )

= fI (l)µI (ωH2 )+fGd (l)µGd (ωH2 )+fn(l)µn(l, ωH2 ) (13)

where µI (ωL1 ), µI (ωH1 ), µGd (ωL1 ), and µGd (ωH1 ) are the
average attenuation of iodine-based and gadolinium-based
contrast agent before and after the first K-edge (33.2 KeV).
µI (ωL2 ), µI (ωH2 ), µGd (ωL2 ), and µGd (ωH2 ) are the average
attenuation of iodine-based and gadolinium-based contrast
agent before and after the second K-edge (50.2 KeV).

Substitute (10) and (11) into (7):

ln
IL1
IH1

− ln

∫
ωL1

I0(E)dE∫
ωH1

I0(E)dE

=

∫
(fI (l)µI (ωH1 )+fGd (l)µGd (ωH1 )+fn(l)µn(l, ωH1 ))dl

−

∫
(fI (l)µI (ωL1 )+fGd (l)µGd (ωL1 )+fn(l)µn(l, ωL1 ))dl

(14)

Substitute (12) and (13) into (8):

ln
IL2
IH2

− ln

∫
ωL2

I0(E)dE∫
ωH2

I0(E)dE

=

∫
(fI (l)µI (ωH2 )+fGd (l)µGd (ωH2 )+fn(l)µn(l, ωH2 ))dl

−

∫
(fI (l)µI (ωL2 )+fGd (l)µGd (ωL2 )+fn(l)µn(l, ωL2 ))dl

(15)

Reorganize (14) to make fI (l) and fGd (l) as weighting
coefficients, as shown in (16):

ln
IL1
IH1

− ln

∫
ωL1

I0(E)dE∫
ωH1

I0(E)dE
−

∫
(µn(l, ωH1 )− µn(l, ωL1 ))dl

=

∫
fGd (l)× ((µGd (ωH1 )− µn(l, ωH1 ))

− (µGd (ωL1 )− µn(l, ωL1 )))dl

+

∫
fI (l)× ((µI (ωH1 )− µn(l, ωH1 ))

− (µI (ωL1 )− µn(l, ωL1 )))dl (16)

Reorganize (15) to make fI (l) and fGd (l) as weighting
coefficients, as shown in (17):

ln
IL2
IH2

− ln

∫
ωL2

I0(E)dE∫
ωH2

I0(E)dE
−

∫
(µn(l, ωH2 )− µn(l, ωL2 ))dl

=

∫
fGd (l)× ((µGd (ωH2 )− µn(l, ωH2 ))

− (µGd (ωL2 )− µn(l, ωL2 )))dl

+

∫
fI (l)× ((µI (ωH2 )− µn(l, ωH2 ))

− (µI (ωL2 )− µn(l, ωL2 )))dl (17)

Equations (16) and (17) are the core of the algorithm
proposed in this paper. Although fI (l), fGd (l), µn(l, ωHm ) and
µn(l, ωLm ) (m = 1,2) are unknown, it is possible to make
µn(l, ωHm ) equal to µn(l, ωLm ) (m = 1,2); then, only two
unknowns (fI (l) and fGd (l)) exist at the beginning of the
first iteration, and the results could be easily obtained by
solving the equations. The next step is to use the results of
fI (l) and fGd (l) to determine the remaining unknowns. The
iterative process of the material decomposition method could
be summarized as follows:

1. Initialize fI (l) and fGd (l);
2. Load the system matrix and the projection of the four
energy bins;
3. FOR iterations = 1:irt{
4. IF(iterations == 1) {
5. µn(l, ωHm ) = µn(l, ωLm ) m = 1,2}
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TABLE 1. Brief description of scan parameters: SOD is the distance from the source to the rotation center, and SDD is the distance from the source to the
detector. dsize is the size of the detector pixel, and α is the angle of the fanbeam. nC is the number of channels, and nV is the number of angular views.

FIGURE 2. Phantoms used in numerical and Monte Carlo simulation.
(a) The FORBILD thorax phantom with three contrast-enhanced regions.
(b) The Multi-Contrast phantom. (c) The human body phantom with two
contrast-enhanced regions.

6. Calculate fI (l) and fGd (l):

FBP(ln ILm
IHm
− ln

∫
ωLm

I0(E)dE∫
ωHm

I0(E)dE
−∫

(µn(l, ωHm )− µn(l, ωLm ))dl) m = 1,2
7. Substitute fI (l) and fGd (l) into equations ((1) to (4)) to
calculate µn(l, ωHm ) and µn(l, ωLm ) m = 1,2 }
8. END

III. SIMULATION
In this paper, numerical simulation and Monte Carlo simu-
lation were used to obtain projections at different energies.
The first part of this section simply describes the method
of numerical simulation, and the second part describes the
process of Monte Carlo simulation and lists the parame-
ters. We adopted four energy bins (29-33 KeV, 34-38KeV,
46-50 KeV and 51-55 KeV) for both the FORBILD thorax
phantom and the Multi-Contrast phantom.

A. NUMERICAL SIMULATION
In the numerical experiment, we used the FORBILD thorax
phantom and the human body phantom. The left ventricle and
right ventricle of FORBILD thorax phantom were injected
with gadolinium-based contrast agent with concentrations
of 1.5% (Gd) and 1.0% (Gd), respectively, and the artery
was filled with iodine-based contrast agent with a concen-
tration of 1.8% (I), as shown in Fig. 2(a). The human body
phantom contains two ROIs with a diameter of 1.17 cm
in the liver region, as shown in Fig. 2(c). The left circular
area was filled with blood and iodine-based contrast agent
of 0.1% (I), 0.2% (I) and 0.5% (I), while the right circular
region was filled with blood and gadolinium-based contrast
agent of 0.1% (Gd), 0.2% (Gd) and 0.5% (Gd). The attenu-
ation coefficients of materials at different energies could be
inquired on the NIST library. The HU range of the pixel in the

image could correspond to a certain substance, which could
correspond to the density and element composition. Then the
monoenergetic images could be obtained by filling attenua-
tion coefficients of different energies into the corresponding
positions.

In the simulation, the system matrix was used to
project monoenergetic images to obtain the monoenergetic
projections:

Pmono = M × [XminE , ...,XmaxE ] = [pminE , ..., pmaxE ] (18)

where M is the system matrix, X are the monoenergetic
images with a total of (maxE − minE) energy levels, and
p are monoenergetic projections. The incident X-ray spectra
of 90 kVp and 130 kVp were used for FORBILD thorax
phantom and human body phantom, respectively. The scan
parameters of the system matrix are shown in Table 1. For-
mula (18) could be converted into the following:

exp(−Pmono) = [e−pminE , ..., e−pmaxE ] (19)

The projection received by the photon-counting detector
at different energy bins could be expressed in the form of
accumulation:

IEBin =
∑

E=EBin

I0(E)× exp(−Pmono(E)) (20)

where I0(E) is the number of incident photons at energy E ,
and IEBin represents the number of photons received by the
detector in the energy bin. IEBin is the input of the proposed
algorithm.

B. MONTE CARLO SIMULATION
Monte Carlo simulation is widely used in the field of medical
imaging, which is of great help to the research of reconstruc-
tion algorithm optimization, artifact elimination and dose
measurement. GATE is a software based on Geant4, which
could be used for Monte Carlo simulation. In this study,
we used GATE 8.1 version to simulate the CT scanning
process to obtain the multi-energy projection.

We designed a photon counting detector made of CdTe in
the GATE environment. The pixel size of the detector was
0.254 × 0.254. The detector was set to have 512 channels,
and the number of pixels on the detector was 1 × 512.
More detailed geometric parameters are listed in Table 1.
SPECPRO software was used to generate a spectrum with
a tube voltage of 90 kVp. The anode target angle was
12 degrees, and the thickness of aluminum filter was 2 mm.
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FIGURE 3. Photon-counting CT system designed in GATE environment.
The multi-contrast phantom was composed of nine holes with a diameter
of 10 mm filled with contrast agent of different concentrations.

The source emitted 5× 107 photons at each projection angle.
As shown in Fig. 2(b), the multi-contrast phantom had nine
holes to be filled with mixed solutions of blood and con-
trast agents of different concentration. The concentration of
the solution rotated clockwise from the red line was 1.5%
(Gd), 1.2% (Gd), 0.9% (Gd), 0.6% (Gd), 1.8% (I), 1.5% (I),
1.2% (I), and 0.9% (I). The solution in the center was blood
without contrast agent. Fig. 3 shows the photon-counting
CT system designed based on the GATE platform.

IV. EXPERIMENTS AND RESULTS
A. PERFORMANCE EVALUATION OF ITERATIVE MATERIAL
DECOMPOSITION ALGORITHM
The concentration maps of iodine-based and gadolinium-
based contrast agents in the first experiment are shown
in Fig. 4(a) to (c). Fig. 4(a) shows the concentration of
gadolinium-based contrast agent in the left and right ven-
tricles of FORBILD thorax phantom, and Fig. 4(b) shows
the concentration of iodine-based contrast agent in the artery.
Fig. 4(c) is the reconstructed image of the FORBILD thorax
phantom covered with pseudo-color. The material decompo-
sition of the multi-contrast phantom based on GATE simula-
tion is shown in Fig. 4(d) to (f). Gadolinium map shows the
material decomposition at the concentration of 1.5% (Gd),
1.2% (Gd), 0.9% (Gd) and 0.6% (Gd), as shown in Fig. 4(d).
The distribution of iodine with concentrations of 1.8% (I),
1.5% (I), 1.2% (I) and 0.9% (I) is shown in Fig. 4(e). Fig. 4(f)
shows the pseudo-color image of the multi-contrast phan-
tom. The proposed algorithm could effectively distinguish
the iodine solution from gadolinium solution visually, and
the concentration maps of the two K-edge materials were
generated simultaneously. To verify the accuracy of material
decomposition results numerically, pixel values in ROI on the
concentration image were displayed, as shown in Fig. 5. The
pixel position was marked with red dotted lines, as shown
in Fig. 4, and the yellow labels next to the marked line
correspond to the serial number in Fig. 5.
The estimated concentrations calculated by the proposed

algorithm fluctuate above and below the real concentra-
tion, as shown in Fig. 5. The first experiment for the
FORBILD thorax phantom is a theoretical numerical simu-
lation, in which the noise of material decomposition is small.
The second experiment for the Multi-Contrast phantom is a
Monte Carlo simulation, which is closer to the real CT scan
but also introduces more noise.

FIGURE 4. Material decomposition using the proposed algorithm.
(a) Gadolinium map of FORBILD thorax phantom with the display range
[−2.89, 2]. (b) Iodine map of FORBILD thorax phantom with the display
range [−4.56, 2.2]. (c) Pseudo-color image of FORBILD thorax phantom.
(d) Gadolinium map of multi-contrast phantom with the display range
[−0.26,3.28]. (e) Iodine map of multi-contrast phantom with the display
range [−0.16,1.84]. (f) Pseudo-color image of multi-contrast phantom.

FIGURE 5. Line profiles of the FORBILD thorax phantom and
multi-contrast phantom after material decomposition. The dotted lines
represent the true concentration of the element. The line profiles include
the following concentrations: (a) 1.5% (Gd) and 1.0% (Gd), (b) 1.8% (I),
(c) 1.5% (Gd), 1.2% (Gd), (d) 0.9% (Gd), and 0.6% (Gd), (e) 1.8% (I) and
1.5% (I), (f) 1.2% (I), and 0.9% (I).

The mean, standard deviation and mean square error of
the above decomposition results were also used to evaluate
the performance of the algorithm, as shown in Table 2 and
Table 3. From the analysis of the numerical indexes in Table 2,
the proposed algorithm can achieve a good accuracy, whether
for the numerical simulation or Monte Carlo simulation, that
is, the estimated mean value of contrast agent concentration
has little difference from the real concentration, especially
when the contrast agent concentration is greater than 1.0%.
Due to the consideration of photoelectric effect, Compton
scattering and detector circuit noise in Monte Carlo simula-
tion, compared with thorax phantom in ideal state, which is
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TABLE 2. Mean and standard deviation of decomposition results of FORBILD thorax phantom and multi-contrast phantom.

TABLE 3. Mean square error of decomposition results of FORBILD thorax phantom and multi-contrast phantom.

not disturbed by noise, multi-contrast phantom is very close
to the real scanning condition. The larger standard devia-
tion of the decomposition result of multi-contrast phantom
is caused by noise, but noise is inevitable in the case of
actual scanning. The mean square error shown in Table 3
represents the difference between the decomposition results
and the true concentration of contrast agent. The range of
mean square error of decomposition results in the numerical
simulation experiment with thorax phantom is [0.01,0.015],
and the range of Monte Carlo simulation experiment with
multi-contrast phantom is [0.12,0.29].

In addition, the proposed algorithm could not only achieve
K-edge material decomposition but also generate non-
contrast-enhanced images in different energy bins simulta-
neously. The estimated non-contrast-enhanced images were
compared with the real non-contrast-enhanced images, and
the errors between the two groups of images were accumu-
lated according to (22):

error =
norm2(festimate − freal)

norm2(freal)
(21)

where festimate represents estimated non-contrast enhanced
image, freal represents real non-contrast enhanced image. The
virtual non-contrast enhanced images of the third experiment
for human body phantom with concentrations of 0.1% (Gd)
and 0.1% (I) are shown in Fig. 6. Visually, the reconstructed
tissue images are very close to the real tissue images. The
errors before the first and second K-edge are 0.0167 and
0.0292, and the errors after the first and second K-edge are
0.0527 and 0.0409, respectively.

B. COMPARATIVE EVALUATION
In this paper, the proposed iterative material decomposition
algorithm was compared with image domain-based K-edge
subtraction, angular rejection and traditional FBP reconstruc-
tion. Fig. 7 and Fig. 8 show gadolinium and iodine maps of
human body phantom with concentrations of 0.1% Gd (I),
0.2% Gd (I) and 0.5% Gd (I). As shown in Fig. 7 and
Fig. 8, the first, second and third lines are the results of

FIGURE 6. Non-contrast-enhanced images of human body phantom.
(a) and (c) are the virtual non-contrast-enhanced images before the first
K-edge (33.2 KeV) and the second K-edge (50.2 KeV), respectively;
(b) and (d) are the virtual non-contrast-enhanced images after the first
K-edge and the second K-edge, respectively; (e) and (g) are the real
non-contrast-enhanced images before the first K-edge and the second
K-edge, respectively; (f) and (h) are the real non-contrast-enhanced
images after the first K-edge and the second K-edge, respectively. The
display range is [0, 3000] HU.

iterative material decomposition, K-edge subtraction and
angular rejection respectively. The FBP reconstruction is
shown in the last line.

K-edge subtraction in the image domain is an effective and
widely used method to distinguish K-edge materials, but its
limitations are that it is unable to distinguish two contrast
agents at the same time, and it is difficult to achieve accurate
concentration quantification. According to the experimental
results of human body phantom, the effect of the proposed
algorithm is very close to that of K-edge subtraction, and both
are significantly better than traditional CT reconstruction.
Especially in the case of low concentration, the traditional
CT images can barely highlight the area with contrast agent,
and different contrast agents with similar density cannot be
distinguished by the grayscale of the image.

The image-based K-edge substraction is difficult to quan-
tify the concentration of contrast agent. To comprehensively
discuss the performance of iterative material decomposition
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TABLE 4. Mean and standard deviation in ROI of material maps generated by the proposed algorithm and angular rejection algorithm in the human body
phantom experiment.

FIGURE 7. Comparison of gadolinium maps with different algorithms.
(a)-(c) show iterative material decomposition images of human body
phantom with concentrations of 0.1% (Gd), 0.2% (Gd) and 0.5% (Gd);
(d)-(f) show K-edge subtraction images of human body phantom with
concentrations of 0.1% (Gd), 0.2% (Gd) and 0.5% (Gd); (g)-(i) are the
material decomposition images with concentrations of 0.1% (Gd), 0.2%
(Gd) and 0.5% (Gd) generated by Angular Rejection; (j)-(l) show
conventional CT images of human body phantom with concentrations
of 0.1% (Gd), 0.2% (Gd) and 0.5% (Gd). The display ranges are [-0.02,
0.05] for (a)-(c), [-1.94e-4, 7.81e-4] for (d)-(f), [0,1.0] for (g)-(i), [0, 3000]
HU for (j)-(l).

algorithm, the angular rejection [21] algorithm is also
used as a comparative experiment. Angular rejection is a
material decomposition method used by MARS [23]–[25]

FIGURE 8. Comparison of iodine maps with different algorithms.
(a)-(c) show iterative material decomposition images of human body
phantom with concentrations of 0.1% (I), 0.2% (I) and 0.5% (I);
(d)-(f) show K-edge subtraction images of human body phantom with
concentrations of 0.1% (I), 0.2% (I) and 0.5% (I); (g)-(i) are the material
decomposition images with concentrations of 0.1% (I), 0.2% (I) and 0.5%
(I) generated by Angular Rejection; (j)-(l) show conventional CT images of
human body phantom with concentrations of 0.1% (I), 0.2% (I) and
0.5% (I). The display ranges are [-0.04, 0.05] for (a)-(c), [-1.17e-3, 1.46e-3]
for (d)-(f), [0,0.52] for (g)-(i), [0, 3000] HU for (j)-(l).

system. Calibration phantom with known material con-
centration is necessary for Angular Rejection method,
which is used to obtain the effective attenuation coefficient
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TABLE 5. Mean square error in ROI of material maps generated by the proposed algorithm and angular rejection algorithm in the real human phantom
experiment.

TABLE 6. Mean and standard deviation in ROI of material maps generated by the proposed algorithm and angular rejection algorithm in the
multi-contrast phantom experiment.

of different materials for subsequent material decomposi-
tion. In this study, reconstructed images in three energy bins
(10-30 KeV, 30-50 KeV, 50-70 KeV) were adopted to realize
material decomposition using Angular Rejection.

In the experiment of human phantom, the phantom contain-
ing 0.5% Gd and 0.5% I was used as the calibration phantom.
As shown in Fig. 7 and Fig. 8, Angular Rejection can visually
distinguish iodine-based contrast agent from background.
However, gadolinium-based contrast agent cannot be sepa-
rated from the background, and even at low concentration
(0.1% Gd), there is little contrast between the ROI contain-
ing gadolinium-based contrast agents and the background.
Since Angular Rejection can quantify the concentration of
contrast agent, the proposed algorithm was also evaluated
numerically, as shown in Table 4 and Table 5. According to
Table 4, when the concentration of contrast agent is 0.5%
Gd(I), the mean and standard deviation of iterative material
decomposition are very close to those of Angular Rejection,
and the mean values of both algorithms are close to the true
concentrations. With the decrease of concentration, there is a
big deviation between the mean value of Angular Rejection
and the real concentration, which might be related to the con-
centration of calibration phantom. Themean value of iterative
material decomposition is not affected by the concentration
reduction and is still close to the real concentration, indicating
that the proposed algorithm is more effective for quantifying
the concentration of contrast agent. The mean square error
shown in Table 5 also indicates that the iterative material
decomposition algorithm has high quantization accuracy.

In the Monte Carlo simulation experiment with multi-
contrast phantom, iterative material decomposition, K-edge
subtraction and Angular Rejection can effectively distinguish
iodine- and gadolinium-based contrast agent visually, and the
contrast of material maps generated by these three methods
is much better than that reconstructed by FBP, as shown in
Fig. 9. In the experiment of multi-contrast phantom, Angular
Rejection used calibration phantomwith 1.5%Gd and 1.8% I.
According to numerical evaluation in Table 6 and Table 7,

FIGURE 9. Material decomposition of multi-contrast phantom using four
different algorithms. (a)-(c) are gadolinium maps with display range of
[-0.26,3.28], [-0.26,3.28] and [0,2.01] obtained by iterative material
decomposition, K-edge subtraction and Angular Rejection algorithm;
(e)-(g) are iodine maps with display range of [-0.16,1.84], [-1.88,6.14] and
[0,2.28] obtained by iterative material decomposition, K-edge subtraction
and Angular Rejection algorithm; (d) and (h) are FBP reconstruction
images with display range of [0,80].

Angular Rejection performs well when the contrast agent
concentration is similar to that of the calibration phantom.
At higher contrast agent concentrations, such as 1.5% Gd,
1.2% Gd, 1.8% I and 1.5% I, the mean values of iterative
material decomposition and Angular Rejection are close to
the true concentration, and the standard deviation and mean
square error of Angular Rejection are smaller than those of
iterative material decomposition. However, as the concen-
tration decreases, the error of material maps generated by
the Angular Rejection becomes larger. When the contrast
agent concentration is low, such as 0.6% Gd and 0.9% I,
the mean square error of Angular Rejection is larger than that
of the iterative material decomposition. According to Fig. 7
to Fig. 9, compared with the proposed algorithm, the image-
based Angular Rejection would classify tissue wrongly as
contrast agent. As shown in Fig. 9, blood without contrast
agent in the center of the multi-contrast phantom was incor-
rectly classified as contrast agent using Angular Rejection,
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TABLE 7. Mean square error in ROI of material maps generated by the proposed algorithm and angular rejection algorithm in the multi-contrast
phantom experiment.

FIGURE 10. Error histogram and probability density curve of
decomposition results of multi-contrast phantom. (a)-(d) represents the
error histogram of gadolinium map with concentration of 0.6% (Gd), 0.9%
(Gd), 1.2% (Gd), 1.5% (Gd); (e)-(h) represents the error histogram of
iodine map with concentration of 0.9% (I), 1.2% (I), 1.5% (I), 1.8% (I).

whether on iodine map or gadolinium map. The accuracy
of Angular Rejection is easily affected by the calibration
phantom, and this image-domain-based method is sensitive
to the quality of reconstructed image.

FIGURE 11. Convergence of the algorithm. For the second experiment for
Multi-Contrast phantom, (a) show the difference in gadolinium
distribution changed with the number of iterations; (b) show the
difference in iodine distribution changed with the number of iterations.

V. DISCUSSION
Among the existing K-edge-based imaging methods, the pro-
jection decomposition proposed by E Roessl and K-edge
subtraction proposed by E Rubenstein have been widely
accepted. In addition to the K-edge method, Angular Rejec-
tion used by MARS system also has high precision and effi-
ciency. The projection decomposition method uses maximum
likelihood estimation to separate the contrast agent directly
in the projection domain. Since the number of pixels in the
projection is quite large, the maximum likelihood estimation
needs to be used for the projection decomposition of each
pixel, resulting in long time consumption. K-edge subtraction
in the image domain clearly distinguished the contrast agent
from the surrounding tissues. In clinical practice, however,
this method requires a scan before the contrast agent is
injected, undoubtedly increasing the radiation dose to the
patient. As discussed above, Angular Rejection needs to use
the calibration phantom and requires high quality of recon-
structed images.Moreover, the scanning conditions of the cal-
ibration phantom must be consistent with the scanning con-
ditions of the target object to obtain more accurate effective
attenuation coefficient of the material. The method proposed
in this paper distinguished two kinds of contrast agents simul-
taneously using a single scan, and the non-contrast-enhanced
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images of four energy bins could be obtained. The iterative
material decomposition algorithmmade full use of the energy
information provided by the photon counting detector, and
the data obtained from a single scan met the requirements of
material decomposition, thereby reducing the radiation dose
to patients.

We also analyzed the applicability and convergence of the
new algorithm. In the Monte Carlo simulation experiment
with multi-contrast phantom, the error histogram and normal
density curve of the error in the ROI of iodine (gadolinium)
map are shown in Fig. 10. The error was calculated according
to (21), where festimate represents the value of a pixel on the
material map and freal represents the real material concen-
tration. This error is an assessment at the pixel level rather
than the material map level. Fig. 10 shows the statistics of the
number of pixels in different error ranges in the ROI of the
phantom. According to the analysis of Fig. 10, the errors of
pixel values in ROI of iodine map and gadolinium map are
normally distributed. The case in Fig. 10 where the error on
the x axis is greater than 1 is caused by the negative value
of the pixel. Pixels with a value less than zero belong to the
category of invalid material decomposition. From the distri-
bution of errors, the proposed algorithm can achieve more
accurate decomposition results when the contrast agent con-
centration is higher than 1.0%. Although the proposed algo-
rithm could distinguish the regions with lower contrast agent
concentration, it would cause a large quantization error.
We evaluated the convergence of the proposed iterative algo-
rithm based on the difference between the current decompo-
sition fcurrent and the previous decomposition fprevious in the
iterative process. The difference was defined as (22):

difference =
norm2(fcurrent − fprevious)

norm2(fprevious)
(22)

In the case of Multi-Contrast phantoms using Monte Carlo
simulation, the difference decreases with the increase in iter-
ative times, as shown in Fig. 11. The proposed algorithm has
good convergence, and the final results could be obtained
after several iterations.

VI. CONCLUSION
In this paper, we proposed a K-edge-based iterative mate-
rial decomposition algorithm. This method distinguished two
contrast agents simultaneously and obtained the virtual non-
contrast enhanced images. The new method improves the
efficiency and reduces the radiation dose. It overcomes the
limitation of K-edge subtraction that distinguishes one con-
trast agent at a time, and the results are comparable to those
of K-edge subtraction. The proposed algorithm has great
potential in the field of multi-contrast-enhanced imaging.
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