
Received July 13, 2019, accepted August 24, 2019, date of publication August 30, 2019, date of current version September 17, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2938565

Semantic Integration of Plug-and-Play Software
Components for Industrial Edges
Based on Microservices
WENBIN DAI 1, (Senior Member, IEEE), PENG WANG2, WEIQI SUN1, XIAN WU1,
HUALIANG ZHANG2, VALERIY VYATKIN3,4, (Senior Member, IEEE),
AND GENKE YANG1
1Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
2Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
3Department of Electrical Engineering and Automation, Aalto University, FI-00100 Espoo, Finland
4Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, 971 87 Luleå, Sweden

Corresponding author: Wenbin Dai (w.dai@ieee.org)

This work was supported in part by the National Research and Development Key Program of China under Project 2017YFA0700603, and
in part by the Natural Science Foundation of China under Project 61973216.

ABSTRACT The industrial cyber-physical system enables collaboration between distributed nodes across
industrial clouds and edge devices. Flexibility and interoperability could be enhanced significantly by
introducing the service-oriented architecture to industrial edge devices. From the industrial edge computing
perspective, software components shall be dynamically composed across heterogeneous edge devices to
perform various functionalities. In this paper, a knowledge-driven Microservice-based architecture to enable
plug-and-play software components is proposed for industrial edges. These software components can be
dynamically configured based on the orchestration of microservices with the support of the knowledge base
and the reasoning process. These semantically enhanced plug-and-play microservices could provide rapid
online reconfiguration without any programming efforts. The use of the plug-and-play software components
is demonstrated by an assembly line example.

INDEX TERMS Service-oriented architecture, industrial automation, IEC 61499 function blocks, plug and
play, microservices, interoperability, REST API, SQWRL, OWL.

I. INTRODUCTION
The Industrial Cyber-Physical System (iCPS) refers to a sys-
tem composes a number of network-connected smart devices
that collaborate with each other subject to changes raised by
customization requirements [1]. Various distributed intercon-
nected devices form resilient and flexible production systems,
on the other hand, also add to their complexity. One big issue
is the interoperability between legacy devices and systems.
Service-oriented architecture (SOA) is considered as the key
to enabling adaptive, flexible and self-manageable systems.
In the past few years, SOA has been piloted as a novel system
engineering concept in several industrial automation areas,
particularly in large projects, such as IMC-AESOP [2] and
Arrowhead [3].

The associate editor coordinating the review of this article and approving
it for publication was Zhangbing Zhou.

As shown in Fig. 1, the information and communication
side of existing industrial automation control systems are
traditionally depicted as a ‘‘Pyramid’’ following the ISA-95
standard [4]. In the ISA-95 pyramid, 5 layers are defined from
top to bottom including enterprise resource planning (ERP),
manufacturing execution systems (MES), supervisory control
and data acquisition (SCADA), the controller (PLC) and field
level (sensors and actuators).

The information exchange can only be achieved between
two adjacent layers in the ISA-95 setup. For example, a con-
troller can only communicate with SCADA and read/write
values from/to sensors and actuators. If a change request is
raised from MES, the message needs to be transmitted via
SCADA to PLC. This mechanism limits the efficiency of
information exchange especially when the frequency of data
sampling is high. Within iCPS, the 5 layers are divided into
two groups: the top two layers are moved to industrial clouds
due to low real-time requirements; the remaining layers retain

125882 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0001-5292-1555

W. Dai et al.: Semantic Integration of Plug-and-Play Software Components for Industrial Edges Based on Microservices

FIGURE 1. ISA-95 architecture for industrial automation systems.

FIGURE 2. Service-oriented architecture enabled industrial cloud and
edge computing systems.

as industrial edges for handling high real-time constraints.
By adopting the SOA, information between industrial clouds
and edge devices could be exchanged easily via flexible
interfaces without any restrictions as shown in Fig. 2.

In the previous work [5], SOA is introduced for pro-
grammable logic controllers (PLC) to enable dynamic recon-
figuration of distributed automation systems with minimum
disruption to the real-time control processes. Each software
component, deployed to the controller, is published as a
service that can be accessed individually. However, the pre-
vious work relies on Web Services protocol stacks that are
relatively heavy for edge devices with limited computing
and storage resources. It was not capable of providing rapid
self-configuration according to constantly changing require-
ments. In this paper, the Microservices-based plug-and-play
software components are enhanced with knowledge bases to
achieve dynamic reconfiguration for industrial edge devices.

This paper is organized as follows: In section II, state-
of-the-art works related to SOA and plug-and-play software
services are revised. In section III, the knowledge-driven
Microservice-based plug-and-play software components for
industrial edge computing are defined. The Microser-
vices design pattern is applied for industrial edge devices
in section IV. In section V, the automatic service orchestra-
tion process with knowledge reasoning support is discussed.
Finally, a case study of the assembly line is presented to
demonstrate the plug-and-play of software components and
results are discussed in section VII.

II. RELATED WORKS
Cyber-physical systems (CPS), as defined by Lee [6], inte-
grate computation and physical processes. CPS is considered
as an enabling technology for Industry 4.0 [7], which gave
rise to a new research domain of industrial CPS [8].

A. SERVICE-ORIENTED ARCHITECTURE AND
MICROSERVICES RELATED PLUG-AND-PLAY
A service-oriented architecture is tightly connected with the
future factory and CPS research [9]. The SOA is introduced to
industrial automation systems by Jammes and Smit [10]. The
intelligence of computing and communications is driven by
SOA from enterprise level all the way down to device level
as network-connected devices with Web Services standards
implemented on-board.

A flexible and interoperable architecture is proposed by
Girbea et al. [11] for designing distributed industrial automa-
tion systems. OPC UA servers along with multiple levels
of services are proposed to extract information from con-
trollers. An adapter is developed for integration of legacy
devices. Large concurrent connections can be managed by
the OPC UA server by adopting this adapter software. Real-
time constraints of the manufacturing process are proved
by using service-based software solution in that paper.
Jirkovsky et al. [12] utilized Semantic Web technologies
along with OPC UA to achieve horizontal and vertical
data integration. The plug-and-play software components
are based on semantic big data historian. With ontology,
SPARQL and workflow, those components can be self-
described and data can be easily gathered and integrated for
analysis.

Yang et. al. proposed a plug and play peripherals for the
Internet of Things devices [13]. The proposed solution pro-
vides support for automatic integration, discovery and remote
access to third-party peripherals. The solution only requires
minimal memory footprint and a series of event handlers are
used to handle the event exchange between drivers, inter-
connected libraries and network protocol stacks for rapid
response times.

Rufino et. al. proposed an orchestration of lightweight
Microservices based on Docker [14]. The proposed archi-
tecture offers better modularity and scalability for Industrial
IoT. The Microservices based virtualization enables simple
distributed deployment across different devices and improves

VOLUME 7, 2019 125883

W. Dai et al.: Semantic Integration of Plug-and-Play Software Components for Industrial Edges Based on Microservices

robustness by self-healing. Li. et. al. from Siemens also
applied the Microservice patterns for industrial edge soft-
ware life cycle management [15]. Four Microservices pat-
terns are proposed to cover four stages of industrial edge
software including deployment, monitoring, adaptation, and
testing. These patterns could improve load-balancing and
QoS for industrial edge software. Dobaj et. al. also proposed
a lightweight Microservice-based architecture for the Indus-
trial IoT [16]. The Microservice design pattern provides bet-
ter flexible deployment from industrial clouds and continuous
integration through all levels including cloud, fog, and edge
devices. From these experiments, the Microservices design
pattern could bring flexibility for industrial edge devices.

B. WEB SERVICES PROTOCOLS
Cândido et. al. [18] proposed a service-oriented evolvable
production system for device lifecycle tracing in industrial
automation systems. TheWS-Management protocol is imple-
mented on the engineering tool as well as functions on PLCs
to assist deployment process. Newly deployed management
services in PLCs start to provide track and trace information
and exchange with other devices or systems. Continuing
from that, Cucinotta et. al. further enhanced the proposed
web service-based functions with real-time support for indus-
trial automation applications [19]. Web services enabled the
client’s ability to negotiate with other clients to eliminate
interference by measuring QoS. The QoS is ensured from the
enterprise level all the way down to the shop floor level for
real-time applications.

The gap between sensor level and enterprise applica-
tion level is bridged by adopting SOA as proposed by
Kyusakov et al. [17]. By adopting the Simple Object Access
Protocol (SOAP) and web services, these two layers are
directly connected and intermediate gateways are eliminated.
Sensor data can be directly sent using SOAP to legacy
SCADA, MES and ERP systems with service adapters.
Adding Web Services on sensor nodes had minimal effects
of performance as proved by the authors.

Mathes et al. [20] enhanced legacy programmable logic
controllers with flexibility and interoperability by inserting
web services. A SOAP engine was developed for enabling
SOAon legacy PLCs formanufacturing processes. The devel-
oped engine only requires a small memory footprint and low
computational power.

Farrag et al. [21] provided a direct mapping from WSDL
to OWL-S for web service discovery. Information extracted
fromWSDL files is automatically generated into OWL-S for-
mat that allows further to be registered and published online.
Local service repository based on ontological knowledge
base is created for storing OWL-S based service contracts.

From these results, the Web Services protocol stacks are
commonly adopted for improving flexibility for industrial
automation systems. However, the WS-* features including
centralized discovery, context-based identification, shared
models, static code generation and explicit conversation are
not suitable for lightweight Web applications.

C. SEMANTIC WEB TECHNOLOGIES
AND KNOWLEDGE BASE
Plug-and-play software components are discussed in the
computer science domain since decades ago [22], [23].
Schulte et al. [24] discussed the feasibility of introducing
plug-and-play components in virtual factories. Technolo-
gies including service-oriented computing and Internet-of-
Things are adopted in the business process management to
assist establishing, managing and monitoring in a plug-and-
play way.

Schulte et al. [24] described an engineering knowledge
base framework for integrating software components from
multidisciplinary to create a software-intensive system. Data
models could be exchanged seamlessly while no change
is made to existing engineering tools. The results were
demonstrated on a software-intensive production automation
system. The programming effect could be reduced by reusing
existing software components.

Puttonen et al. [25] presented a semantic web service
approach for managing production processes. Web service
interfaces are introduced to devices and web ontology lan-
guage for services (OWL-S) is used to compose services
automatically. The semantic model of the production system
is demonstrated to be automatically updated based on three
web services for compositions of different processes.

Guinard et al. [26] integrated SOA with embedded devices
to introduce intelligence in Internet-of-Things. A suitable
system architecture is proposed for large numbers of net-
worked, resource limit devices to query, select and invoking
web services dynamically. Device Profiles for Web Services
(DPWS) and RESTful services are recommended for inte-
gration between physical devices and enterprise information
systems.

Overall, existing works provide the fundamental archi-
tecture for vertical integration through multiple layers. The
aim of this work is to enable lightweight scalable, flexible
and interoperable components for industrial edge software.
By integrating Semantic Web Technologies including OWL
and SQWRL with the Microservices design pattern, plug-
and-play software components for industrial edge software
can be achieved.

III. PLUG-AND-PLAY SOFTWARE COMPONENTS
BASED ON MICROSERVICES
Existing industrial applications like control and HMI are pre-
programmed and commissioned by engineers prior to the
production stage. These applications are normally composed
of a set of functions or function blocks that must be down-
loaded onto devices they assigned to. Control applications are
usually designed following the bottom-up principle that is:
reusable functions and function blocks with pre-defined inter-
faces are created prior to construct system functionalities.
Online editing of control programs is allowed only for minor
code changes while program structures remain unchanged.

The plug-and-play software component provides a new
top-down design process for creating distributed applications

125884 VOLUME 7, 2019

W. Dai et al.: Semantic Integration of Plug-and-Play Software Components for Industrial Edges Based on Microservices

FIGURE 3. Design process for plug-and-play service-based software
components.

for industrial edge as shown in Fig. 3. In the iCPS, each field-
level device such as sensors and actuators contain atomic
functions registered as software services on controllers.
These atomic services can be composed into composite ser-
vices to provide a hierarchical structure to hide complexities.
Atomic services together with composite services can be
organized as different service flows automatically to meet
massive customization requirements.

The Microservices design pattern perfectly suits for these
scenarios. The Microservices design pattern is designed
for scales software components for flexibility. It can be
described as a three-dimensional model: The first dimension
is the duplication that scale components by cloning services;
the second dimension is functional decomposition that scale
component by splitting services by various functionalities;
The last dimension is the data partitioning that scale com-
ponents by splitting services with similar functionalities but
separated data.

By adopting Microservices design pattern, the following
benefits could be introduced to industrial edge applications:
Firstly, monolithic industrial edge applications can be decom-
posed into a set of services and each service can be developed
and deployed independently. Secondly, each service can be
replaced with new technology or another programming lan-
guage without affecting other services. Finally, these services
can be scaled independently that can be assigned to hardware
best suit these services.

To enable Microservices-based industrial edge applica-
tions, the Microservice design pattern must be applied to the
distributed modeling language by defining a set of mapping
rules. Service discovery, service orchestration and deploy-
ment patterns based on Microservices will be explained in
the following sections.

IV. PUBLISH AND DISCOVER MICROSERVICES
FOR INDUSTRIAL EDGE
To achieve plug-and-play, the first step is to publish services
that can be discovered by other distributed nodes. As defined
in the previous work [5], the IEC 61499 standard [27]

is used for modelling iCPS by encapsulating IEC 61131-3
programming languages (such as ST and LD) [28] and
other high-level programming languages (such C/C++, Java
and JavaScript) into event-triggered function blocks (FB) as
internal algorithms [30]. These FBs with a common inter-
face that can be composed into function block networks to
perform various functionalities. Following that, each IEC
61499 function block instance is wrapped as a software ser-
vice. A runtime environment was also developed for creating,
modifying, deleting and invoking FB services. Continuing
from there, these service-based IEC 61499 FBs will be
published and discovered through the Microservices design
pattern.

A. MICROSERVICE ARCHITECTURE FOR IEC 61499
As shown in Fig. 4, a typical Microservice architecture con-
tains anAPI gateway and a set of services that can be accessed
via REST APIs.

FIGURE 4. Microservices Architecture mapping with IEC 61499 FB.

Rule 1: Each IEC 61499 Resource Manager is mapped to
an API gateway.

The IEC 61499 resource manager is responsible for man-
age function block networks by creating and deleting func-
tion block types, instances, and connection between function
blocks on a device. It can also fetch and write data variables
from function blocks as well as control operation of appli-
cations by using START, STOP and KILL command. In the
Microservice architecture, the entrance of the application is
managed by the API gateway. The API gateway contains
all services running on this device and interfaces to these
services. The IEC 61499 resource manager shall be acted as
an API gateway in the Microservice architecture.

The IEC 61499 management commands are redefined by
using one of the four HTTP methods adopted in REST APIs:
GET, PUT, POST and DELETE. Firstly, the HTTP GET
method is normally used to retrieve the data element or collec-
tion. The QUERY and READ action of the IEC 61499 man-
agement commands can be mapped to the GET method as
shown in Table 1 below. Both actions retrieve data including

VOLUME 7, 2019 125885

W. Dai et al.: Semantic Integration of Plug-and-Play Software Components for Industrial Edges Based on Microservices

TABLE 1. REST API mapping between HTTP methods and IEC
61499 actions of the management commands.

status and variable data from the IEC 61499 resource man-
ager. Secondly, the HTTP PUT method is used to update
the existing data element or collection with new values.
In the IEC 61499 version, device operation control commands
including START, STOP, KILL and RESET are set to use the
HTTP PUT request as these actions only updates controller
modes. Also, the WRITE action is also using HTTP PUT
request to update variable values. Next, the HTTP POST
method creates a new entry of an element or a collection.
It could be used to create new FB types and instances as
well as connections of events and data. Finally, the HTTP
DELETE method is used to remove an element from the
target node. In this case, it can be used to delete function
block types, instances, and connections from function block
networks.
Rule 2: Each Function Block Instance is mapped to a

backend service.
Each function block instance is created as an independent

service. The IEC 61499 resource manager handles requests
by simply routing them to the appropriate backend services,
in this case, trigger function block instances and aggregating
the results. For example, a management command that is
defined in the XML format to create a new FB instance could
be written as an HTTP POST request:

Rule 3: The contents of the management commands are
converted into the HTTP URI and parameters if there is no
child node. Otherwise, the original XML formats will be used
as the contents.

In the example above, since the target FB has no child node
in the original XML format, it is converted to the URI /FB

TABLE 2. Inter-process communication mapping for function block
network.

in the HTTP POST request. In addition, all attributes of the
original XML are transferred into the HTTP parameters in the
HTTP POST body message. On the other hand, for creating
a new FB type, the FBType node that with interfaces and
algorithms attached in the XML will be embedded directly
as the body message.

Next, the inter-process communication between distributed
services must be defined for service invocation. There are
two mechanisms could be applied here: the synchronous
approach that requires a response from the service and the
asynchronous approach that doesn’t wait for a response
immediately. Also, there are two interaction styles: one-to-
one where each request is handled by exactly one service;
one-to-many where multiple function block instances could
be invoked by a single request.

Each IEC 61499 application can use single or a combi-
nation of these inter-process communication mappings as
shown in Fig. 5 below.

In the synchronous approach, a FB sends a request to
another downstream FB and waits for a response, for exam-
ple, triggering an external timer and receive time up alarm.
This shall be modeled as an adapter connection in the IEC
61499 implementation as indicated in Fig. 5 (a). The IEC
61499 adapter is designed as a group of bidirectional com-
munication interface to hide complexities of massive con-
nections. In this case, the request and response side are used
as the Plug and the Socket on the two ends of the adapter
connection where two adapter instances are mirrored. In the
asynchronous version as shown in Fig. 5 (b), the one-to-one
communication shall be modeled as separated event connec-
tions. Once the execution of the downstream FB is completed,
another event output will be triggered to notify the requester
FB. In the scenario of one-to-many asynchronous communi-
cation, a set of Publish/Subscribe SIFBs with identical IDs
shall be used as indicated in Fig. 5 (c).

However, in the one-to-one synchronous approach, if the
downstream FB is faulted, the upstream FB will wait for
response cause the execution halted. To handling these partial
failures, the execution should never be blocked indefinitely
waiting for downstream FBs. Instead, a watchdog function as
shown in Fig. 6 below must be used to monitor the real-time
constraints. The state-machine contains three states IDLE,
WAIT and FAULT. When a requester FB sends a message
to the downstream FB, the state machine will move to the
WAIT state and start monitoring the time elapsed. A thresh-
old time is set for the download FB to return the response
message. If the threshold time expires, it will jump into

125886 VOLUME 7, 2019

W. Dai et al.: Semantic Integration of Plug-and-Play Software Components for Industrial Edges Based on Microservices

FIGURE 5. Inter-process communication pattern for microservice-based
IEC 61499.

FIGURE 6. Watchdog function for handling partial failures.

the FAULT state and current waiting process will be forced
to terminate. The execution will continue without further
delay.

Finally, interfaces of FB instancesmust be exposed for data
exchange purposes. When creating a FB instance, the vari-
ables of FB data inputs and outputs can be accessed via
REST APIs.
Rule 4: For each input, output and internal variable in any

function block instance, a unique URI is registered that can
be read or write via the HTTP GET and POST method.

The URIs for accessing the interface of a FB instance is
defined as:

http://<IPAddress>:<Port>/<FBI>/<Variable>

where <IPAddress> represents the current IP address of the
resource; <Port> refers to the port number where REST ser-
vices are running; <FBI> indicates the name of a particular
function block instance at the late binding stage; <Variable>
refers to input/output variable name of this function block
instance.

By applying all the rules described in this section, the FB
network could be managed as well as data integration can be
achieved via simple REST APIs.

B. PUBLISH AND SERVICE DISCOVERY
Once Microservices are created, the next step is to regis-
ter these services on the network and allow discovery from
other connected devices. In theMicroservices pattern, service
providers first register their contracts with a service reposi-
tory. To invoke services from providers, service consumers
query repository for fetching contracts. Service consumers
invoke services from providers through addresses and inter-
faces as defined in the REST APIs.

IEC 61499 function blocks are managed by interpret-
ing management commands that are defined in the IEC
61499 compliance profile for feasibility demonstrations as
illustrated by [29]. The resource manager is responsible for
handling external requests and modify function block net-
works according to received commands. In the industrial edge
computing, IEC 61499 resource managers are turned into
service repositories for register and publish services.

The IEC 61499 management commands that are defined in
the XML format can be directly applied as the application-
level protocol for service management. As defined in the
IEC 61499 compliance profile [29], management commands
support a set of actions including create, delete, read, write,
start, stop, reset, kill and query. The target object could be
selected from function block instance, connection, function
block type, adapter type, data type, and parameters. Every
request received by the device manager contains an ID. The
device manager shall process the request and compose a
response with the corresponding ID and result with reasons
(such as not ready, unsupported command, unsupported type,
no such object, etc.).

The microservice discovery is designed as a peer-to-peer
design pattern. Each resource manager is also running as a
service registry with REST APIs. The resource manager is
responsible for determining available service instances on
the network and performing load balancing requests across

VOLUME 7, 2019 125887

W. Dai et al.: Semantic Integration of Plug-and-Play Software Components for Industrial Edges Based on Microservices

FIGURE 7. Bridging IEC 61499 management model with microservice
repository.

LISTING 1. Extensions to IEC 61499 compliance profile definitions.

these resources. When creating a FB instance, the manage-
ment command is posted to the resource manager for pub-
lishing a new microservice (Step 1). The resource manager
will create add all endpoints (events) of this new service to
the service repository. Other device managers shall be able
to query this new service from where it has been registered.
However, there is an issue: managing services and query list
of available services are not covered in existing management
commands. To manage services in an IEC 61499 resource,
IEC 61499 compliance profile needs to be extended.

A new element is introduced to IEC 61499 compliance
profile definitions to enable service query:
Res: refer to an individual resource on a device. It also

has two attributes: Name of this resource and Type of this
resource. In addition, FB instances created on this resource
will also be attached during query.

The following management command is used to query all
available services on a particular resource (Step 2 in Fig. 7).
<Request ID = ‘‘2’’ Action = ‘‘QUERY’’>

<Res Name = ‘‘Dev1.Res1’’ Type = ‘‘EMDRES’’ />
</Request>

The resource manager will return all registered services as:
<Response ID = ‘‘2’’ Reason = ‘‘RDY’’>

<FB Name = ‘‘Dev1.Res1.App1.FB1’’ Type = ‘‘Con-
vControl’’ />

. . . . //All other FB Instances
</Request>

Once the target FB service is located, the following com-
mand is used to fetch the service endpoint (Step 3 in Fig. 7):
<Request ID = ‘‘3’’ Action = ‘‘QUERY’’>

<FB Name = ‘‘Dev1.Res1.App1.FB1’’ Type = ‘‘Con-
vControl’’ />
</Request>

The resource manager will return with the registered end-
point for this FB instance:
<Response ID = ‘‘3’’ Reason = ‘‘RDY’’>

<FB Name = ‘‘http://192.168.1.3:8080/ Dev1.Res1.
App1.FB1’’ />
</Response>

Alternatively, if the FB service is not found, the response
reason will be set to INVALID_OBJ with no content inter-
nally. Finally, the resource manager of the service consumer
will interpret the service contract and invoke service directly.

V. AUTOMATIC SERVICE ORCHESTRATION BASED ON
KNOWLEDGE BASE AND REASONING PROCESS
The final step is to organize individual microservices into
a logical order to perform control applications. In the SOA
paradigm, individual services are linked by service orchestra-
tion process that is usually described by a modeling language
namely business process execution language (BPEL) [33].
Using BPEL as the description language for organizing dis-
tributed control applications is also a feasible option. On the
other hand, the IEC 61499 standard is also used as the
modeling language for distributed automation systems [30].
More importantly, it provides a system-level software model
that can be directly deployed and executed on networked
controllers. This brings huge benefits from the engineering
perspective by cost-saving and rapid prototyping.

To automatic construct function blocks in the IEC
61499 architecture, the industrial software agent is adopted.
In the previous work, a knowledge-driven service-oriented
industrial software agent is proposed for managing
SQWRL queries [34]. The Monitor-Analyse-Plan-Execute-
Knowledge (MAPE-K) approach is used to form closed-
loop with the control software. In this case, this industrial
software agent is sitting on the top of all service reposito-
ries to monitoring requests from external conditions. When
reconfiguration is required, the software agent will plan the
necessary changes and send commands to corresponding
service repositories to perform service orchestration.

The service orchestration process is as illustrated in Fig. 7:
1) Check for all existing services and interfaces from

service repositories.
2) Remove all bindings (event and data Connections)

between microservices.
3) Select required services according to reasoning results
4) Create bindings for required service invoking (event

and data connections)
The MAPE-K agent utilizes the knowledge base and the

reasoning process to assist service orchestration. The knowl-
edge base is designed based on ontologies and the seman-
tic query-enhanced web rule language (SQWRL) is used

125888 VOLUME 7, 2019

W. Dai et al.: Semantic Integration of Plug-and-Play Software Components for Industrial Edges Based on Microservices

FIGURE 8. Service orchestration process for distributed control
applications using IEC 61499 function blocks.

to query the knowledge [31]. The SQWRL is an extended
version of the semantic web rule language (SWRL) with
query abilities [32]. The ontological knowledge base contains
orchestration rules defined in SWRL.

In the monitor and analyze the process, information is
collected and decision on any necessary change is made.
In the plan and execute the process, the service orchestration
is handled by the reasoning of semantic rules. An individual
Profile is created for each IEC 61499 application that contains
a FB network. The rule for searching a particular with a given
type is shown as:

Profile (?p) ∧ serviceCategory (?p, ?sc)
∧ categoryName(?sc, ?scname)
∧ swrlb:equal (?scanme, ‘‘APP_NAME’’)
∧ serviceName (?p, ?name) -> sqwrl:select (?name)

The serviceCategory defines type name of an IEC 61499
application. The swrlb:equal is a SWRL built-in function
for comparing two operands. When a profile is selected,
the service flow could be built by connecting events and data
variables sending an HTTP POST request to the resource
manager via the RESTAPI with the following message body:
<Request ID = ‘‘4’’ Action = ‘‘CREATE’’>

<Connection Source= ‘‘FB1’’ Destination= ‘‘FB2’’ />
</Request>

Once the orchestration process is completed, the system
is dynamically reconfigured so that newly plugged software
components are now in action. In the next section, the detailed
knowledge-driven service orchestration will be illustrated
using a material handling example.

VI. CASE STUDY OF PLUG-AND-PLAY MICROSERVICES
The knowledge-driven plug-and-play software-defined sys-
tem will experiment through the dynamic routing for AGV in
the assembly line.

As shown in Fig. 9, the assembly line for power sockets has
two workstations and each work station equips with an indus-
trial robot for installing sockets partially. The power sockets
can be customized with one or two ports and with/without
Wi-Fi feature. The first workstation is used to assemble
socket bases. The second one is designed as a shared worksta-
tion for installing the Wi-Fi module as well as the front cover

FIGURE 9. Case study example of the assembly line with AGV: layout and
architecture.

for the sockets. An AGV is used to transport parts between
the warehouse and the workstations.

To assemble a two-ports power socket with Wi-Fi module,
the AGV needs to pick up parts from the warehouse and then
travel through all three workstations in sequence to complete
the process. Before starting the assembly process, the routing
plan for the AGV must be dynamically reconfigured. The
knowledge base is queried by the agent to fetch the proper
profile as shown in the previous section. As shown in Fig. 9,
the selected profile contains a route from the warehouse
WH1 to the dispatch point DP1 via the two workstations
WK1(base), WK2/3 (Wi-Fi module and Front Cover). The
orchestrated function block network is given in Fig. 10.
Functions block instances are invoked in sequence according
to motion action steps by emitting event outputs to down-
stream FB instances.

The orchestration process starts by loading a detailed rou-
tine for the AGV. The routine can be further divided into
several steps. For each step, a set of management commands
are sent to the target controller via REST APIs. For exam-
ple, after the parts are loaded at the warehouse, the AGV
will start moving from the warehouse to the workstation
A by moving 1m forward. Several changes are required
to perform that movement. First, two motors (FB28 and
FB39) and a position sensor (FB11) are linked to the routing
control module (FB59). For example, the following man-
agement commands are sent to the resource manager using
HTTP PUT methods by creating connections between the
routine control FB59 and the motor control FB28 as well
as set movement distance to 1m with 30% of the motor full
speed:
<Request ID = ‘‘1’’ Action = ‘‘CREATE’’>

<Connection
From= ‘‘Dev1.Res1.App1.FB59.RUN_TO_REL_POS’’
To = ‘‘Dev1.Res1.App1.FB28.RUN_POS’’ />
<Connection From= ‘‘Dev1.Res1.App1.FB59.position_

out’’ To = ‘‘Dev1.Res1.App1.FB28.position’’ />
<Connection From = ‘‘Dev1.Res1.App1.FB59.speed_

out1’’ To = ‘‘Dev1.Res1.App1.FB28.speed’’ />
<Parameter Name = ‘‘Dev1.Res1.App1.FB59.position_

in’’ Value = ‘‘100’’ />

VOLUME 7, 2019 125889

W. Dai et al.: Semantic Integration of Plug-and-Play Software Components for Industrial Edges Based on Microservices

FIGURE 10. An IEC 61499 application example of AGV routing.

<Parameter Name = ‘‘Dev1.Res1.App1.FB59.speed_
in1’’ Value = ‘‘30’’ />
</Request>

Similar commands could be used to create connections
between the routine control FB59 and the other motor con-
trol FB39 and the sensor FB11. Once the FB network is
orchestrated according to the routing plan fetched from the
knowledge base, the start running command is sent to the
resource manager to perform this movement. When the AGV
is reached at the endpoint of the 1m, these connections will
be removed for the next step orchestration. By repeating these
steps, the AGV will reach its final destination at the dispatch
point.

VII. MEASUREMENTS AND DISCUSSIONS
Two measurements are taken for the plug-and-play process
and a knowledge base is created manually for these tests.
The hardware used is a Core-i7 2.6Ghz quad-core CPUs with
16GB RAM. The first one is the processing time of service
orchestration. The results in Fig 11 demonstrate that the
orchestration time for 1 device is significantly faster than that
for 5 devices. The orchestration time on a single device can
be of the millisecond level, however, with multiple devices,
it takes seconds or even minutes.

The reason is that the orchestration time consists of
two parts: query time and reconfiguration time. For single
devices, a query and search time is minimal, the entire pro-
cessing time could be limited to milliseconds. With multiple

FIGURE 11. Plug-and-play processing time comparison.

FIGURE 12. Storage analysis for knowledge base support on controllers.

devices, the number of management commands is continu-
ously increasing. When it reaches a limit, the orchestration
time will increase exponentially due to the previous orches-
tration task is already completed and messages are pushed
into buffers. For manufacturing lines or process control,
the orchestration process can be completed within real-time
requirements. However, it is not yet suitable for high real-time
constrained applications such as motion control systems.

Secondly, the storagememory required for knowledge sup-
port is measured. Embedded controllers usually have limited
memory for storage. With increasing of elements (function
block instances and connections), the storage size required on
controllers is gradually increasing as one function block may
create several connections. With 100 combined instances,
the storage size required is still at hundreds of KB which is
acceptable for modern industrial controllers.

The plug-and-play feature brings several benefits for con-
trollers. Although all industrial controllers claim they are
compatible with the IEC 61131-3 standard, there are still
lots of platform-dependent implementations. As a result, con-
trol software implemented in one platform cannot be ported
to other platforms. By adopting the proposed knowledge-
driven microservice-based plug-and-play software compo-
nents, massive re-development time could be saved. When
the target platform is switched from one to another, the diffi-
culty for the integration of distributed automation systems is
reduced significantly.

125890 VOLUME 7, 2019

W. Dai et al.: Semantic Integration of Plug-and-Play Software Components for Industrial Edges Based on Microservices

Also, plug-and-play software services enable dynamic
reconfigurations with no programming operations that may
affect manufacturing operations. In legacy manufactur-
ing lines, entire control systems must be stopped and
re-programmed to add extra new functionalities. With plug-
and-play, new features are easily introduced to existing con-
trol systems during normal operations. This could also save
a large portion of site commissioning time by minimizing
system downtime. Finally, the IEC 61499 management com-
mand and SQWRL based service composition process can be
extended easily and future-proof.

There are also some downsides of the proposed method
that need to be addressed. Since the HTTP REST protocol
requires long interpretation time [35], management com-
mands could be encoded as binary XML for speed up sending
and receiving HTTP request messages [36]. To the maxi-
mum, the plug-and-play feature, automatic code generation
is needed [37], [38].

Last but not least, plug-and-play software components in
IEC 61131-3 PLCs are also achievable by using the proposed
approach. The PLCOpen XML format can be used to store
and manage IEC 61131-3 function blocks [39]. However,
there are several issues that need to be solved, for exam-
ple, choose a proper system modeling language to represent
service orchestration process as top-level entity of the IEC
61131-3 software model is limited to a single device; how to
perform code generation from created system model is also a
challenge as the system model cannot be directly executed.

VIII. CONCLUSION
Industrial cyber-physical systems bridge various devices and
systems by enabling loosely coupled collaborative automa-
tion systems. To achieve coordination between distributed
industrial edge devices, plug-and-play software components
based on microservice architecture are adopted for indus-
trial edge computing. Interfaces of software components are
defined as microservices with REST APIs. Dynamic compo-
sition of software components is achieved by service orches-
tration using reasoning rules and knowledge base between
multiple industrial edge controllers.

This work presents a foundation for implementing
automatic code generation based on plug-and-play compo-
nents with the support of knowledge bases. Also, integra-
tion between microservice-enabled controllers and legacy
IEC 61131-3 PLCs will be investigated. Finally, semantic
enrichment process will be introduced to iCPS by interpret-
ing flow diagrams as knowledge. Together with industrial
software agents, knowledge-driven plug-and-play software
services could provide autonomous intelligent control
for iCPS.

REFERENCES
[1] J. Schlick, ‘‘Cyber-physical systems in factory automation—Towards the

industrial revolution,’’ in Proc. 9th IEEE Int. Workshop Factory Commun.
Syst. (WFCS), May 2012, p. 55.

[2] A. W. Colombo, T. Bangemann, S. Karnouskos, J. Delsing, P. Stluka,
R. Harrison, F. Jammes, and J. Lastra, Industrial Cloud-Based Cyber-
Physical Systems: The IMC-AESOP Approach. New York, NY, USA:
Springer-Verlag, 2014.

[3] P. Varga, F. Blomstedt, L. L. Ferreira, J. Eliasson,M. Johansson, J. Delsing,
and I. M. de Soria, ‘‘Making system of systems interoperable—The core
components of the arrowhead framework,’’ J. Netw. Comput. Appl., vol. 81,
pp. 85–95, Mar. 2016.

[4] B. Scholten, The Road to Integration: A Guide to Applying the ISA-95
Standard in Manufacturing. Paris, France: ISA, 2007.

[5] W. Dai, V. Vyatkin, J. H. Christensen, and V. N. Dubinin, ‘‘Bridging
service-oriented architecture and IEC 61499 for flexibility and interoper-
ability,’’ IEEE Trans. Ind. Informat., vol. 11, no. 3, pp. 771–781, Jun. 2015.

[6] E. A. Lee, ‘‘Cyber physical systems: Design challenges,’’ in Proc. 11th
IEEE Int. Symp. Object Compon.-Oriented Real-Time Distrib. Comput.
(ISORC), May 2008, pp. 363–369. doi: 10.1109/ISORC.2008.25.

[7] J. Schlick, ‘‘Cyber-physical systems in factory automation—Towards the
4th industrial revolution,’’ in Proc. 9th IEEE Int. Workshop Factory Com-
mun. Syst., May 2012, p. 55.

[8] A. Fisher, C. Jacobson, E. Lee, R. Murray, A. Sangiovanni-Vincentelli,
and E. Scholte, ‘‘Industrial cyber-physical systems—iCyPhy,’’ in Com-
plex Systems Design & Management. Cham, Switzerland: Springer, 2014,
pp. 21–37.

[9] A. Colombo and S. Karnouskos, ‘‘Towards the factory of the
future: A service-oriented cross-layer infrastructure,’’ in ICT Shaping the
World: A Scientific View, vol. 65. Hoboken, NJ, USA: Wiley, 2009.

[10] F. Jammes and H. Smit, ‘‘Service-oriented paradigms in industrial automa-
tion,’’ IEEE Trans. Ind. Informat., vol. 1, no. 1, pp. 62–70, Feb. 2005.

[11] A. Girbea, C. Suciu, S. Nechifor, and F. Sisak, ‘‘Design and implemen-
tation of a service-oriented architecture for the optimization of industrial
applications,’’ IEEE Trans. Ind. Informat., vol. 10, no. 1, pp. 185–196,
Feb. 2014.

[12] V. Jirkovský, M. Obitko, P. Kadera, and V. Mařík, ‘‘Toward plug&play
cyber-physical system components,’’ IEEE Trans. Ind. Informat., vol. 14,
no. 6, pp. 2803–2811, Jun. 2018.

[13] F. Yang, N. Matthys, R. Baciller, S. Michiels, W. Joosen, and D. Hughes,
‘‘µpnp: Plug and play peripherals for the Internet of Things,’’ in Proc. 10th
ACM Eur. Conf. Comput. Syst., 2015, Art. no. 25.

[14] J. Rufino, M. Alam, J. Ferreira, A. Rehman, and K. F. Tsang, ‘‘Orchestra-
tion of containerized microservices for IIoT using docker,’’ in Proc. IEEE
Int. Conf. Ind. Technol., Mar. 2017, pp. 1532–1536.

[15] F. Li, J. Fröhlich, D. Schall, M. Lachenmayr, C. Stückjürgen, S. Meixner,
and F. Buschmann, ‘‘Microservice patterns for the life cycle of industrial
edge software,’’ in Proc. 23rd ACM Eur. Conf. Pattern Lang. Programs,
Jul. 2018, Art. no. 4.

[16] J. Dobaj, J. Iber, M. Krisper, and C. Kreiner, ‘‘A microservice architec-
ture for the industrial Internet-of-Things,’’ in Proc. 23rd ACM Eur. Conf.
Pattern Lang. Programs, Jul. 2018, Art. no. 11.

[17] R. Kyusakov, J. Eliasson, J. Delsing, J. van Deventer, and J. Gustafsson,
‘‘Integration of wireless sensor and actuator nodes with IT infrastructure
using service-oriented architecture,’’ IEEE Trans. Ind. Informat., vol. 9,
no. 1, pp. 43–51, Feb. 2013.

[18] G. Cândido, A. W. Colombo, J. Barata, and F. Jammes, ‘‘Service-oriented
infrastructure to support the deployment of evolvable production systems,’’
IEEE Trans. Ind. Informat., vol. 7, no. 4, pp. 759–767, Nov. 2011.

[19] T. Cucinotta, A. Mancina, G. F. Anastasi, G. Lipari, L. Mangeruca,
R. Checcozzo, and F. Rusina, ‘‘A real-time service-oriented architecture
for industrial automation,’’ IEEE Trans. Ind. Informat., vol. 5, no. 3,
pp. 267–277, Aug. 2009.

[20] M. Mathes, C. Stoidner, S. Heinzl, and B. Freisleben, ‘‘SOAP4PLC: Web
services for programmable logic controllers,’’ in Proc. 17th Euromicro Int.
Conf. Parallel, Distrib. Netw.-Based Process., Feb. 2009, pp. 210–219.

[21] T. A. Farrag, A. I. Saleh, and H. A. Ali, ‘‘Toward SWSs discovery: Map-
ping fromWSDL to OWL-S based on ontology search and standardization
engine,’’ IEEE Trans. Knowl. Data Eng., vol. 25, no. 5, pp. 1135–1147,
May 2013.

[22] F. Bronsard, D. Bryan, W. Kozaczynski, E. S. Liongosari, J. Q. Ning,
Á. Ólafsson, and J. W. Wetterstrand, ‘‘Toward software plug-and-play,’’ in
Proc. Symp. Softw. Reusability, Boston, MA, USA, May 1997, pp. 19–29.

[23] M. Mezini and K. Lieberherr, ‘‘Adaptive plug-and-play components
for evolutionary software development,’’ in Proc. 13th ACM SIGPLAN
Conf. Object-Oriented Program., Syst., Lang., Appl., vol. 24, Oct. 1998,
pp. 97–116.

[24] S. Schulte, D. Schuller, R. Steinmetz, and S. Abels, ‘‘Plug-and-play
virtual factories,’’ IEEE Internet Comput., vol. 16, no. 5, pp. 78–82,
Sep./Oct. 2012.

[25] J. Puttonen, A. Lobov, and J. L. M. Lastra, ‘‘Semantics-based composition
of factory automation processes encapsulated by Web services,’’ IEEE
Trans. Ind. Informat., vol. 9, no. 4, pp. 2349–2359, Nov. 2013.

VOLUME 7, 2019 125891

http://dx.doi.org/10.1109/ISORC.2008.25

W. Dai et al.: Semantic Integration of Plug-and-Play Software Components for Industrial Edges Based on Microservices

[26] D. Guinard, V. Trifa, S. Karnouskos, P. Spiess, and D. Savio, ‘‘Interacting
with the SOA-based Internet of Things: Discovery, query, selection, and
on-demand provisioning of Web services,’’ IEEE Trans. Service Oriented
Comput., vol. 3, no. 3, pp. 223–235, Jul./Sep. 2016.

[27] Function Blocks, International Standard, Standard IEC 61499, IEC,
Geneva, Switzerland, 2nd ed., 2012.

[28] Programmable Controllers—Part 3: Programming Languages, Stan-
dard IEC 61131-3, 2nd ed., 2003.

[29] Compliance Profile for Feasibility Demonstrations, Standard IEC 61499,
2014. doi: 10.1049/PBCE095E.

[30] A. Zoitl andH. Prähofer, ‘‘Guidelines and patterns for building hierarchical
automation solutions in the IEC 61499 modeling language,’’ IEEE Trans.
Ind. Informat., vol. 9, no. 4, pp. 2387–2396, Nov. 2013.

[31] M. O’Connor, and A. Das, ‘‘SQWRL: A query language for OWL,’’ in
Proc. 6th Int. Conf. OWL: Experiences Directions, vol. 529, Oct. 2009,
pp. 208–215.

[32] SWRL: A Semantic Web Rule Language Combining OWL and RuleML.
Accessed: Mar. 19, 2019. [Online]. Available: http://www.w3g.org/
Submission/SWRL/

[33] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and D. F. Ferguson,
Web Services Platform Architecture: SOAP, WSDL, WS-Policy,
WS-Addressing, WS-BPEL, WS-Reliable Messaging, and More.
Upper Saddle River, NJ, USA: Prentice-Hall, 2005.

[34] W. Dai, V. Dubinin, J. Christensen, V. Vyatkin, and X. Guan, ‘‘Toward
self-manageable and adaptive industrial cyber-physical systems with
knowledge-driven autonomic service management,’’ IEEE Trans. Ind.
Informat., vol. 13, no. 2, pp. 725–736, Apr. 2017.

[35] S. Kumari and S. Rath, ‘‘Performance comparison of SOAP and REST
based Web services for enterprise application integration,’’ in Proc.
Int. Conf. Adv. Comput., Commun. Inform. (ICACCI), Aug. 2015,
pp. 1656–1660.

[36] A. Zoitl, I. Hegny, and A. Schimmel, ‘‘Utilizing binary XML represen-
tations for improving the performance of the IEC 61499 configuration
interface,’’ in Proc. 7th IEEE Int. Conf. Ind. Inform., Jun. 2009, pp. 66–71.

[37] E. Latronico, E. A. Lee, M. Lohstroh, C. Shaver,
A. Wasicek, and M. Weber, ‘‘A vision of swarmlets,’’ IEEE Internet
Comput., vol. 19, no. 2, pp. 20–28, Mar. 2015.

[38] P. Leitao, V. Marik, and P. Vrba, ‘‘Past, present, and future of indus-
trial agent applications,’’ IEEE Trans. Ind. Informat., vol. 9, no. 4,
pp. 2360–2372, Nov. 2013.

[39] M. Marcos, E. Estevez, F. Perez, and E. Van Der Wal, ‘‘XML exchange
of control programs,’’ IEEE Ind. Electron. Mag., vol. 3, no. 4, pp. 32–35,
Dec. 2009.

WENBIN DAI (GS’09–M’13–SM’16) received
the Bachelor of Engineering degree (Hons.) in
computer systems engineering from The Univer-
sity of Auckland, New Zealand, in 2006, and the
Ph.D. degree in electrical and electronic engineer-
ing from the Department of Electrical and Com-
puter Engineering, The University of Auckland,
in 2012. He was a Postdoctoral Fellow with the
Luleå University of Technology, Sweden, from
2013 to 2014. He was also a Software Engineer

for airport baggage handling system provider, from 2007 to 2013. He is
currently an Associate Professor with Shanghai Jiao Tong University, China.
His research interests include IEC 61131-3 PLC, IEC 61499 function blocks,
industrial cyber-physical systems, knowledge-drive industrial automation,
automatic code generation, and industrial edge computing.

PENG WANG received the bachelor’s degree in
aerospace engineering and the master’s degree in
electrical engineering from the Harbin Institute
of Technology, China, in 2011 and 2013, respec-
tively. He is currently pursuing the Ph.D. degree in
control theory and engineering with the Shenyang
Institute of Automation, Chinese Academy of Sci-
ences. His research interests include in the areas
of reconfigurable manufacturing system with spe-
cial focus on model-driven engineering of the
reconfigurable software.

WEIQI SUN received the B.E. degree in electrical
and electronic engineering from the Harbin Insti-
tute of Technology, China, in 2018. He is currently
pursuing the master’s degree with Shanghai Jiao
Tong University, China. His current research inter-
ests include automatic code generation for smart
manufacturing and AI in industry.

XIAN WU received the B.E. degree in electrical
and information engineering from Shanghai Jiao
Tong University, China, in 2019. She is currently
pursuing the master’s degree with Shanghai Jiao
Tong University, China. Her current research inter-
ests include automatic code generation for smart
manufacturing, requirement engineering, and data
analysis.

HUALIANG ZHANG was born in Beian, Hei-
longjiang, China, in 1976. He received the B.S.
and M.S. degrees in measuring and testing tech-
nologies and instruments from the Huazhong Uni-
versity of Science and Technology and Shenyang
University of Industry, respectively, and the Ph.D.
degree in mechatronic engineering from the Uni-
versity of Chinese Academy of Sciences, in 2010.
He is currently a Researcher with the Shenyang
Institute of Automation, Chinese Academy of
Sciences.

VALERIY VYATKIN (M’03–SM’04) received the
Ph.D. degree from the State University of Radio
Engineering, Taganrog, Russia, in 1992. He was
a Visiting Scholar with Cambridge University,
U.K., and had permanent academic appointments
with The University of Auckland, Auckland,
New Zealand; Martin Luther University of Halle-
Wittenberg, Halle, Germany, and in Japan and
Russia. He is on joint appointment as a Chaired
Professor of Dependable Computation and Com-

munication Systems, Luleå University of Technology, Luleå, Sweden; and a
Professor of Information and Computer Engineering in Automation at Aalto
University, Helsinki, Finland. His research interests include dependable
distributed automation and industrial informatics, software engineering for
industrial automation systems, and distributed architectures and multi-agent
systems applied in various industry sectors, including smart grid, material
handling, building management systems, and reconfigurable manufacturing.
Dr. Vyatkin was awarded the Andrew P. Sage Award for the best IEEE
Transactions article, in 2012.

GENKE YANG received the B.Sc. degree in
mathematics from the Shanxi University, China,
in 1984, the M.Sc. degree in mathematics from
Xinan Normal University, China, in 1987, and the
Ph.D. degree in systems engineering from Xi’an
Jiaotong University, China, in 1998. He is cur-
rently a full-time Professor with the Department
of Automation, Shanghai Jiao Tong University,
Shanghai, China. His research interests include
supply chain management, logistics, production

planning and scheduling, and discrete event dynamics systems.

125892 VOLUME 7, 2019

http://dx.doi.org/10.1049/PBCE095E

