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ABSTRACT From the viewpoint of physical-layer authentication, spoofing attacks can be foiled by
checking channel state information (CSI). Existing CSI-based authentication algorithms mostly require
a deep knowledge of the channel variation to deliver decent performance. In this paper, we investigate
CSI-based authenticators that can spare the effort to predetermine channel properties by utilizing deep
neural networks (DNNs). First, we propose a convolutional neural network (CNN)-enabled authenticator
that is able to extract the local features in CSI. Next, the recurrent neural network (RNN) is employed
to capture the dependencies between different frequencies in CSI. In addition, we propose to use the
convolutional recurrent neural network (CRNN)—a combination of the CNN and the RNN—to learn local
and contextual information in CSI for user authentication. Finally, experiments based on Universal Software
Radio Peripherals (USRPs) are conducted to demonstrate the performance of the proposed methods on real-
world channel estimates. According to the experimental results, the proposed DNNs-enabled schemes can
significantly outperform the dynamic time warping (DTW) technique and a heuristic Neyman-Pearson (NP)
test in the aspects of false alarm and miss detection. Besides, the hybrid of the CNN and the RNN can further
promote the authentication accuracy.

INDEX TERMS Physical layer authentication, CNN, RNN, CRNN, machine learning.

I. INTRODUCTION
A. PHYSICAL LAYER AUTHENTICATION
With the rapid development of wireless communication,
an enormous amount of private and confidential informa-
tion, e.g., financial data, medical records, and customer
files, will be transmitted via the wireless medium [1].
The sharp increase in demand for wireless security con-
tinuously requests more advanced authentication schemes.
Traditionally, authentication mechanisms are performed
above the physical layer by using secret keys to identify wire-
less transmitters. Despite their effectiveness, they are faced
with two main challenges: On the one hand, the high key
management overhead results in concerns such as excessive
latencies. On the other hand, the time required to crack a
key has been remarkably shortened with the growing pro-
cessing power; see a recent overview [2] and the refer-
ences therein. The idea of physical-layer authentication is
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to validate a wireless transmitter by verifying the physical-
layer attributes of the wireless transmission. In compari-
son to conventional secret key-based authentication schemes,
physical-layer authentication needs no key distribution and
management. Besides, it is extremely difficult to imperson-
ate a wireless transmission’s physical-layer features. Thanks
to these facts, physical-layer authentication is deemed as a
promising technique to make the unrivalled security service
a reality. Some of the existing physical-layer authentication
approaches rely on the analog front-end imperfections, which
are device-specific characteristics caused by manufacturing
variability [3]. Device-specific characteristics, such as in-
phase/quadrature imbalance [4], the power amplifier char-
acteristics [5], and the carrier frequency offset [6], have
relatively stable nature. However, the difference of the tar-
geted hardware features between devices is usually too small
in practice, which will be further influenced by noise and
interference [2]. Another class of physical-layer features used
for authentication purposes are channel-based characteristics,
like channel state information (CSI) [7]–[9] and received
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signal strength (RSS) [10]. CSI is hard to predict due to the
presence of rich scatters and reflectors in a general wireless
communication environment. Besides, it is safe to say that
users located at different places have uncorrelated channels.
These facts make CSI a location-specific characteristic that
has aroused great interest for user authentication.

Paper [7] studied CSI-based authentication in a
time-variant wireless environment, wherein the channel
variation was modeled with the assumption of a first-order
autoregressive model. The authors in [8] studied frequency-
selective channels, in which the terminal mobility-caused
channel variation was modeled as a first-order autoregressive
model, and the environment changes and the estimation errors
were modeled as independent complex Gaussian processes.
Moreover, a two-dimensional (the dimensions of channel
amplitude and path delay) quantization method was proposed
in [9] to preprocess the channel variations, wherein the tem-
poral processes were still modeled as autoregressive models.
To sum up, existing CSI-based approaches [7]–[9] formulated
the authentication process as binary hypothesis testing by
exploiting the correlation between CSI at adjacent times.
All these works designed algorithms that would look for
predetermined features in CSI. To do this, the system operator
needs to possess sufficient channel information such as the
channel model and the channel variation pattern. This kind of
authentication system will be vulnerable to small ambiguities
in the a priori messages.

B. RELATED WORK
Given the significant efficiency of machine learning tech-
niques in objects recognition, it is straightforward to consider
the exploitation of machine learning for facilitating physical-
layer authentication. Recent years, huge strides have been
made in making the recognition of objects more accurate.
Current approaches to object identificationmake essential use
of neural networks.Deep neural networks (DNNs) have been
extensively studied and found to be very effective in learning
high-level features from raw data for objects identification
[11], [12]. The CNN was first proposed for digit recogni-
tion [13] and later became one of the most widely applied
DNNs. It usually utilizes multiple convolutional layers that
can successively generate deeper- level abstractions of the
input data. [14] improved the CNN-based attention models
by incorporating multi-level saliency predictions within a
single network. Through using continuous deep Q-learning,
a hyperparameter optimization algorithm is proposed in [15]
for object tracking. Reference [16] proposed a triplet loss that
can achieve more powerful feature than original logistic loss
in tracking object. Authors in [17] proposed the quadruplet
network, which is armed with multi-tuples for training so as
to accurately mine the potential connections among instances
and derive more robust representations for one-shot learning.
As a type of neural networks different from CNNs, recurrent
neural networks (RNNs) were mainly designed for sequence
modeling [18]. RNNs employ feedback loops which allow
connections from previous states to the subsequent ones and

thus are able to represent advanced patterns of dependencies
in the sequence. Convolutional recurrent neural networks
(CRNNs) [19], [20] are emerging deep models, which are
made up of multiple convolutional layers (together with pool-
ing layers) and a few recurrent layers so that they can exploit
not only the representation power of CNNs but also the
contextual information modeling ability of RNNs.

Recently, machine learning techniques have found their
applications in the realm of physical-layer authentication.
Particularly, authors in [21] investigated the RSS-based
authentication game in a dynamic environment, in which
reinforcement learning was utilized to achieve the optimal
test threshold in the hypothesis test. Paper [3] used time-
domain complex baseband error signals to train a CNN so
that user identities can be derived according to device-specific
imperfections. The logistic regression model was utilized
in [22] to exploit the received signal strength indicators mea-
sured at multiple landmarks for user identification. Although
the spatial resolution of the transmitter can be enhanced
through usingmultiple landmarks, their deployment will raise
the system overhead and more pressingly, the communi-
cation between the landmarks and the security agent will
be confronted with severe security threats. Thankfully, CSI
contains much more location-specific information than RSS
and can thus be reliable enough without assistances such as
landmarks.

C. OUR WORK
In this paper, we establish deep neural networks
(DNNs)-enabled authenticators that connect a transmitter’s
CSI to its estimated identity. The key of implementing
CSI-based authentication lies in the correlation between the
channel observations for the same user at different times.
However, this correlation can be weakened by factors such
as environment changes and practical imperfections. Fortu-
nately, the CNN can be invariant to the transformations of
the channel observations resulting from these factors; hence
we propose to exploit the CNN to extract the deep features
in CSI for user authentication. Also, we try to analyze CSI
from a sequential point of view. In this way, CSI is seen
as a data sequence and we utilize the RNN to model the
dependencies between different frequencies in CSI. As a
matter of fact, the CNN and the RNN possess different
modeling abilities. More concretely, the CNN is good at
representing locally invariant information while the RNN
is better at contextual information modeling [23]. Owing to
this observation, we propose to use the CRNN [19], [20] for
CSI-based authentication. Accordingly, it is expected that the
CRNN can have advantages over the CNN and the RNN
in modeling channel features for authentication, which is
confirmed by the simulation results (cf. Section IV).

To be more specific, this work considers a three-node
wireless system consisting of a service agent, a legitimate
user and a potential attacker. The agent aims to validate the
access right of the user via examining its CSI. Different
from existing works [7]–[9], we make no assumptions on the
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channel model or the channel variation pattern since our inter-
est lies on data driven self-adaptive algorithms. As a merit
of that, the proposed approaches apply where the channel
properties remain unknown. Our main contribution includes
the following aspects:

1) To begin with, we build a CNN-enabled classifier.
The main components of this classifier are convolu-
tional layers, which are able to generate deep-level fea-
ture maps through locally convolving small subregions
of its input. Also, the network employs pooling layers
to subsample the output of the convolutional layers so
as to reduce the computational complexity and avoid
over-fitting. At the end of the network, we use fully
connected layers, with one logistic layer on the top,
to collect the early extracted features and learn the user
identity.

2) Next, we establish a RNN-enabled authenticator that
analyzes CSI from a sequential perspective. This
authenticator is composed of several recurrent layers
and a few fully connected layers. The recurrent layers
use feedback loops to capture the spectral dependencies
in CSI, which are then input to the following fully
connected layers such that object recognition can be
implemented.

3) Further, we propose a CRNN-enabled approach that
works in the following way: The first part of the pro-
posed authenticator is a CNN, which is used for extract-
ing middle-level features. Then, the output features
of the CNN are fed into recurrent layers so that the
contextual information of CSI can be well captured.
Finally, fully connected layers are employed to perform
classification.

4) Last, the experimental results based on Universal
Software Radio Peripherals (USRPs) [24] show that
the proposed DNNs-enabled algorithms can achieve
significant performance gains over the dynamic time
warping (DTW) technique [25] and a heuristic
Neyman-Pearson (NP) test. In addition, the RNN-based
approach can achieve better accuracy when compared
with the CNN-enabled authenticator, while the CRNN-
enabled one owns the highest accuracy among the
proposed DNNs-enabled algorithms.

II. SYSTEM MODEL AND PROBLEM STATEMENT
Consider a typical ‘‘Alice-Bob-Eve’’ network shown
in Fig. 1, in which Bob is entasked with the job of providing
services for both Alice and Eve, while Eve is unauthorized
as far as the secure service intended for Alice is concerned.
We assume that Bob is equipped with MB antennas, both
Alice and Eve have MA antennas, and CSI is measured at N
tones. In our setup, Alice, Bob, and Eve are geographically
placed at different locations. Also, suppose that Alice, Bob,
and Eve stay stationary in a time-variant communication
environment. This is common in practical scenarios where
one may put one’s cellphone/laptop on the phone stand/desk

FIGURE 1. Illustration of our considered three-node communication
system.

while using it, and the service agent is stationary by nature.
As an untrusted user, Eve may impersonate Alice by forging
the digital credential of Alice, like the password, the IP
address, and the MAC address, in attempts to illegitimately
acquire confidential information intended for Alice or send
false messages to Bob. Once Eve successfully obtains the
illegal advantages, the following attacks will be devastating
so that the authentication process is of paramount importance
for the network security.

In our consideration, Bob aims to foil the spoofing
attacks launched by Eve through establishing a physical-layer
authenticationmechanism. Specifically, Bob intends to verify
whether the transmitter who uses Alice’s digital credential is
Alice or not by carefully checking its CSI according to the
historical CSI of Alice and Eve. To do this, it is supposed
that Bob can record historical CSI and the corresponding
user identities. This is possible when both Alice and Eve are
network users. Generally, device mobility and environment
changes are the factors that give rise to the channel variation.
Since all the communication nodes are assumed to be static
in this work, it is safe to say that environment changes are the
only reasons that bring about the channel variation. Environ-
ment changes such as the movement of objects can affect part
of the existing paths while other paths stay invariant. Take an
indoor environment for example, theremay bemoving people
and objects, but the ceiling, the floor, walls, and furniture will
always stay still. This fact indicates that the channel between
two static terminals has an invariant structure, which forms
the foundation of our application of deep learning into the
CSI-based authentication problem.

A CSI-based authenticator, which maps CSI to the
transmitter’s authenticated identity, can be written as

Ît = fa(H (t)), (1)

in which H (t) ∈ CMB×MA×N denotes the communication
channel observed at Bob in slot t , and fa(·) is the authenticator
whose output, i.e., Ît , is the estimated identity of the transmit-
ter at time t . In our settings, Ît = 1 indicates that the estimated
transmitter at time t is Eve, and Ît = 0 means that Alice is the
estimated transmitter at time t . Additionally, It = 1 denotes
that the transmitter at time t is Eve, and It = 0 represents that
Alice is the transmitter at time t . With no information about
the underlying channel properties, one can not predetermine
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a decent fa(·). Instead, we propose to model fa(·) with neural
networks, which are efficient models for statistical pattern
recognition.

III. DEEP NEURAL NETWORKS-BASED AUTHENTICATOR
The kernel of CSI-based authentication lies in the correlation
between the channel observations for the same transmitter-
receiver pair at different times. Nevertheless, this correlation
can be terribly hurt by adverse factors like environment
changes and practical imperfections. Consequently, the pro-
posed neural networks should be insensitive to the signal
transformations brought by the adverse elements. Toward this
end, we introduce DNNs to construct CSI-based authenti-
cators that can capture the invariant channel structure from
varying historical CSI. Specifically, the introduced DNNs are
the CNN in Section III-A.1, the RNN in Section III-A.2, and
the CRNN in Section III-A.3. These DNNs count upon dif-
ferent mechanisms to model the underlying channel features.
The details will be elaborated in the following.

A. INTRODUCED NETWORK STRUCTURES
1) CONVOLUTIONAL NEURAL NETWORKS
Due to the fact that the channel observations for the same user
at different times can be seen as transformed versions of each
other, the ability to recognize the channel after complex trans-
formation is vital to an authenticator. Thankfully, the great
success of the CNN in digit recognition [13] suggests that the
CNN is able to be invariant to transformations like scaling and
shifting. Accordingly, the CNN is introduced to extract the
invariant channel features from varying channel observations.
As shown in Fig. 2, the architecture of our employed CNN is
consisted of convolutional layers, pooling layers, and fully
connected layers. Being the core components of the CNN,
convolutional layers utilize the following mechanisms:
• Local Receptive Fields - The input of the convolutional

layer is divided into local receptive fields (small subre-
gions), each of which is connected to a single neuron of
the next layer. As a benefit of this, the number of connec-
tions, as well as the number of parameters, is drastically
cut down in the convolutional layer.

• Weight Sharing - Each locally applied connection is
essentially a filter. A convolutional layer employs mul-
tiple filters, which are reused over all the local receptive
fields. The reuse of filters leads to the sharing of an
identical set of weights among different connections.

Invoking the above mechanisms, a convolutional layer
organizes its input units into feature maps, i.e.,

F = (f 1, f 2, . . . , f N ) = ff (s ∗ {φ1,φ2, . . . ,φd}), (2)

where f n ∈ Rd , n = 1, 2, . . . ,Q, represents a feature map,
ff (·) is an activation function, s is the input vector, ∗ denotes
a convolution, and {φ1,φ2, . . . ,φd} is a set of filters. Units
in a feature map take input from a local receptive field of s,
and different receptive fields share the same filters.

Notice that before feeding the network input into the
first convolutional layer, we organize it into 2MAMB

FIGURE 2. Illustration of our employed architecture of the CNN.

N-dimensional ‘‘channels’’,1 each of which corresponds to
the real or imaginary part of the channel between a pair of
transmitting and receiving antennas. To be specific, the set of
all the filters is repeatedly applied to all these ‘‘channels’’ and
the results for different ‘‘channels’’ are added before input to
the activation function ff (·). There are numerous nonlinear
activation functions applicable to the neural network frame-
work, such as the hyperbolic tangent function, the softmax,
and the ReLU, in which the ReLU is the most widely applied
in the CNN and thus is chosen to be the activation function
ff (·) in (2).
We perform pooling to summarize the feature maps cre-

ated in the convolutional layer. Specifically, each pooling
unit takes input from a region in the corresponding feature
map, which is called a pooling window. The commonly used
pooling operations are max pooling, average pooling, and
stochastic pooling. By utilizing pooling, the neural network
can achieve more compact representations that are more
robust to noise and interference. In our architecture, the size

1When a neural network is utilized to analyze an image, there will be three
input ‘‘channels’’ corresponding to the red, green, and blue elements of the
input image, respectively.
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FIGURE 3. The structure of a recurrent layer.

of the pooling window is set as 1 × 3, on which a max oper-
ation is implemented. One can see that the features extracted
by the convolutional layers and the pooling layers contain
multiple ‘‘channels’’, which are flattened before fed into the
fully connected layers, i.e., multiple ‘‘channels’’ are used in
series. The final layers of the CNN are fully connected layers
whose activation functions are chosen as rectified linear units
(ReLUs), with one logistic layer on the top producing the
authentication result.

2) RECURRENT NEURAL NETWORKS
Because there exist spectral dependencies in the channel,
our goal in this subsection is to analyze the channel from a
sequential point of view. Towards this end, we use the RNN
to capture the contextual information in the channel for the
purpose of authentication. The RNN utilizes feedback loops
in its recurrent layers to connect the previous states with the
current ones [18]. A graphical illustration of a recurrent layer
is shown in Fig. 3. When a sequence is processed with length
L, its hidden feature hl and the predicted output zl at stage
l ∈ [1, . . . ,L] are derived as

hl = fh(Whhhl−1 +W yhyl), (3a)

zl = fz(Whzhl), (3b)

respectively, in which yl denotes the lth input, Whh, W yh,
and Whz are transformation matrices, and fh(·) and fz(·)
are activation functions. With the existence of feedback
loops, a recurrent layer is able to memorize the historical
information so that they can discover meaningful connec-
tions between a single data and its context. In our architec-
ture, the recursive function fh(·) and the activation function
fz(·) are chosen to be the hyperbolic tangent function and
the logistic sigmoid, respectively. It should be pointed out
that as a MB × MA × N complex channel, the network
input is flattened before it is fed into the first layer of the
RNN.

The RNN we use in this work first employs several
recurrent layers to capture spectral dependencies in its input.
Then, fully connected layers are utilized to implement classi-
fication based on the early extracted features that contain the
contextual information.

FIGURE 4. Illustration of our employed architecture of the CRNN.

3) CONVOLUTIONAL RECURRENT NEURAL NETWORKS
So far, we have introduced the CNN and the RNN for
CSI-based authentication. It is easy to notice that these two
DNNs have distinct modeling abilities since they rely on
different mechanisms. To be specific, the CNN is good at
capturing locally invariant features while the RNN is adept
at contextual information extraction [23]. In this subsection,
we propose to utilize a hybrid of the CNN and the RNN,
i.e., the CRNN, that combines the abilities of the CNN and the
RNN such that the deep features containing both the locally
invariant information of CSI and the contextual messages
between different frequencies in CSI can be well extracted
and further be exploited for user authentication.

As schematically illustrated in Fig. 4, our employed CRNN
is consisted of multiple convolutional layers (together with
pooling layers), several recurrent layers, and a few fully
connected layers. The mechanisms of these layers have been
discussed above. In the CRNN, the convolutional layers can
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capture middle-level features, which are useful for the depen-
dencies modeling at the recurrent layers. At the same time,
the contextual information learned by the recurrent layers
can lead to better representations at the convolutional layers
during backpropogation. The CRNN takes good advantage
of both the discriminative representation capability of the
CNN and the contextual information extraction power of the
RNN and is therefore expected to outperform both of them in
CSI-based authentication.

B. NETWORK TRAINING
So far, we have illustrated the architectures of the
introduced DNNs. For ease of the subsequent description,
define fd (H (t),w) as the network function of a DNN, where
all the weights and biases are grouped together into a vector
w andH (t) is the network input. Since the activation function
of the output layer is a logistic sigmoid, we have 0 ≤
fd (H (t),w) ≤ 1. One can interpret fd (H (t),w) as the con-
ditional probability p(It = 1|H (t),w), with p(It = 0|H (t))
derived as 1− fd (H (t),w). The conditional distribution of the
class label given the input channel is a Bernoulli distribution
[26], i.e.,

p(It |H (t),w) = fd (H (t),w)It [1− fd (H (t),w)]1−It . (4)

Accordingly, a DNN-enabled authenticator can be written
as

fa(H (t)) = dfd (H (t),w)− 1/2e , (5)

in which dxe denotes the ceiling function that maps x to the
least integer greater than or equal to x. Now, the structure of
our authenticator fa(·) has been specified.
Given a training set of channels {H (t)}Tt=1, together with

a corresponding set of labels {It }Tt=1, where T denotes the
number of training samples, we train the network to minimize
the error function, which is defined as a cross-entropy error
function of the form

E(w) = −
T∑
t=1

{It ln fd (H (t),w)}

−

T∑
t=1

{(1− It ) ln[1− fd (H (t),w)]}. (6)

To train the network, we exploit the stochastic gradient
descent (SGD) method. The gradients in the convolutional
layers and the recurrent layers are calculated by the back-
propagation algorithm and the backpropagation through
time (BPTT) algorithm, respectively. To reduce the error
fluctuation, our implementation utilizes amini-batch strategy,
that is, the gradients are calculated based on mini-batches. w
will be iteratively updated until the training and validation
loss converges. After the training process, the CSI-based
authenticator fa(·) can be fully derived. The DNNs-based
authentication process is summarized in Algorithm 1.

Algorithm 1 DNN-Based Authentication Algorithm
1: Initialize: fa(·) with w
2: Record historical channel estimations {H (t)}Tt=1 and the

corresponding labels {It }Tt=1
3: repeat
4: Update w to minimize E(w)
5: until convergence achieved
6: Obtain the trained network f̂a(·)
7: Receive a signal claimed to be Alice at time T + 1
8: Estimate the channel to derive H (T + 1)
9: Calculate ÎT+1 as ÎT+1 = f̂a(HT+1)

10: if ÎT+1 = 0 then
11: Accept the current transmitter
12: Else
13: Send spoofing alarm
14: End if

FIGURE 5. Network topology of the experiments.

IV. EXPERIMENTS
In our study, experiments on USRPs are conducted in
an office so as to obtain real-world channel estimates.
The real-world dataset is used to validate the performance of
the proposed methods and other benchmark designs.

A. TESTBED SETUP
As illustrated in Fig. 5, the testbeds are deployed in a
7.4 × 7 × 5m3 office room, wherein there are two trans-
mitters, i.e., Alice and Eve, and one receiver, namely, Bob.
Specifically, we utilize a USRP-2955, a USRP-2954R, and
a USRP-2944R to work as Bob, Alice, and Eve, respec-
tively. Every USRP is connected to a computer through
a Peripheral Component Interconnect Express (PCIE) bus.
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TABLE 1. Summary of the network configurations.

In such way, Laboratory Virtual Instrumentation Engineering
Workbench [27] can be employed on the computer to gen-
erate the digital baseband transmission signal. With the
digital baseband transmission signal received via the PCIE
bus, the USRP-2954R and the USRP-2944R can perform
digital-to-analog conversion and frequency upconversion on
it and then send the converted signal via an omnidirec-
tional antenna. After receiving the radio frequency signal,
the USRP-2955 will downconvert it to baseband and do
analog-to-digital conversion on the received baseband signal.
Last, the channel is estimated by the least squares method
at N = 128 tones. The experimental settings are as fol-
lows: Each USRP employs a single antenna. The transmit
power is equal to 0.6mW for both the USRP-2954R and the
USRP-2944R. 1000 channel observations are obtained at bob,
500 of which correspond to the legitimate user, while the rest
of which is relevant to the illegitimate channel.

B. EXPERIMENTAL SETUP
Weemploy aworkstationwith two 1.7-GHz Intel(R)Xeon(R)
E5-2603 v4 CPUs to perform experiments, in which the
neural networks are implemented based on the TensorFlow
framework [28]. We carry out the 20-fold Stratified cross
validation to test the performance of the proposed machine
learning schemes. After a careful grid search, our employed
CNN has one convolutional layer, one pooling layer, and
one fully connected layers. The RNN utilizes two recurrent
layers and two fully connected layers. Besides, the CRNN
has one convolutional layer, one pooling layer, one recur-
rent layer and one fully connected layers. The configura-
tions of these networks are summarized in Table 1, in which
‘‘conv1× 3-n1’’ denotes a convolutional layer with a recep-
tive field size of 1× 3 and n1 filters, ‘‘maxpooling’’ is a
maxpooling layer, ‘‘recur-n2’’ represents a recurrent layer
whose feature dimension is n2, and ‘‘FC-n3-n4’’ denotes a
fully connected layer with n3 input units and n4 output units.
The number of network parameters can be derived according
to the settings in Table 1. To avoid overfitting, the recurrent
layers in the RNN and the CRNN are applied with dropout
rate [29] of 0.8 and 0.6, respectively. Z-score normalization
is performed on the input data before it is feeded into the
network. At the beginning of the training process, the network
weights are randomly chosen, and the learning rate is set to
be 10−3. Then, we run the SGD algorithm for 100 epoches to
update the network parameters, where each epoch utilizes all
the training data in the mini-batch manner with a batch size
of 256 and the learning rate halves every 20 epoches.

TABLE 2. Performance for Different Methods on Real-World Data.

C. BENCHMARK DESIGNS
To make a comparison, we also consider the usage of a
heuristic NP test, and the dynamic time warping (DTW)
technique [25] for comparison. The NP test we consider is
given by

L , ||H − H̄A|| ≷ γ, (7)

wherein ||X || is the Frobenius norm of the matrix X , H
denotes the to-be-authenticated channel observation, H̄A is
the mean of the historical Alice-to-Bob channels, and γ
represents a specially chosen threshold. The estimated
identity will be Eve if L > γ , otherwise the transmitter will
be authenticated as Alice. It needs to be mentioned that the
authentication accuracy varies with γ and the authentication
performance given in Table 2 is obtained with the optimal γ .

D. EXPERIMENTAL RESULTS
Table 2 presents the authentication accuracy, the false alarm
rate andmiss detection rate for differentmethodsNote that for
each method, the accuracy presented is obtained according
to the authentication results on the whole test set. As shown
in the table, there are huge performance gaps between the
NP test and the machine learning-based methods. This is
because one may need precise channel variation information
to design a NP test-based algorithm that can deliver decent
performance, while the machine learning-based algorithms
can analyze the invariant channel structure intelligently from
historical CSI. Also, Table 2 shows that DTW is no match
for the proposed neural networks in dealing with the signal
transformations existed in the channel observations. The sig-
nificant performance gains achieved by the proposed schemes
are attributed to the fact that our adopted DNNs not only
have remarkable modeling abilities but also apply to the
CSI-based authentication problem. As seen, the RNN yields
lower false alarm rate and miss detection rate than the CNN.
In addition, the CRNN-enabled method can achieve the low-
est false alarm rate and miss detection rate among the propose
DNNs-enabled algorithms. This is expected since the CRNN
possesses both the representation ability of the CNN and the
sequence modeling power of the RNN.

According to the suggestions of the reviewers, we try to
further enhance the authentication performance by incorpo-
rating late deep networks [30], [31]. Fortunately, we find that
the authentication performance of the CNN can be improved
by utilizing the skip-layer architecture, the result of which
is also presented in Table 2. The network configuration and
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FIGURE 6. The architecture of the skip-layer CNN.

architecture of the skip-layer CNN are presented in Table 1
and Fig 6, respectively.

V. CONCLUSION
This work studied CSI-based authentication algorithms in
a time-variant communication environment. Without knowl-
edge of the underlying channel variation pattern, the DNNs
were introduced to build authenticators that connect CSI to its
authenticated identity. Regarding the innovation of this work,
we first pointed out that the channel observations between
two nodes at different time slots are transformed versions of
each other, based upon which the CNN is proposed to extract
the authentication features that are insensitive to transfor-
mations such as scaling and shifting. Next, we noticed the
spectral dependencies as a natural characteristic of the CSI
and accordingly, we propose to employ the RNN to exploit
the dependencies in the CSI so as to achieve reliable authen-
tication bases. Last but not least, we propose a combinatorial
network, i.e., CRNN, which can harvest both of the above
merits. According to the experimental results, the proposed
DNNs-enabled authenticators can have significant perfor-
mance gains over the benchmark schemes, while the com-
bination of the CNN and the RNN can further enhance the
authentication accuracy.
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