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ABSTRACT In this paper, we present a novel Transformation Optics based Finite-difference time-domain
(TO-FDTD) algorithm with Square Transformed Region, which is suitable for fast electromagnetic analysis
of small structures in a large computational domain. A small structure can be solved with coarse grids in a
transformed region, since it is enlarged by transformation optics. No fine grid is applied for the small structure
so that computational efficiency can be improved greatly. In addition, the TO-FDTD algorithm can also
avoid time-space field interpolations and the late-time instability of the subgridding algorithm. To eliminate
the staircasing errors introduced by curved boundaries of its transformed region, we propose the square
transformed region instead of the circular one. We parameterize the square boundary in polar coordinates
so that it is easy to be implemented. Through coordinate transformation, new anisotropic permittivity
and permeability can be obtained in the transformed region. Then we develop a stable anisotropic FDTD
algorithm to solve the transformed Maxwell’s Equations. Numerical results on diffraction and scattering
of small structures show that our proposed TO-FDTD algorithm has high computational efficiency and
accuracy.

INDEX TERMS Finite-difference time-domain (FDTD), staircasing errors, transformation optics.

I. INTRODUCTION
The finite-difference time-domain (FDTD) scheme [1] has
been well established for various electromagnetic simula-
tions. It has a number of advantages such as its simplicity,
ability to easily model complex geometric problem, and abil-
ity to handle dispersive materials. The geometrical optics
is suitable to simulate electrically large objects instead of
electrically small objects [2]. The transmission Line Theory
is suited for the reflection and transmission coefficients of
a multi-layer structure, but not for scattering of the com-
plex object [3]. In contrast, the FDTD algorithm is suitable
to simulate objects with arbitrary shapes and electrically
small objects. Compared with the Dyadic Green’s Function,
which is combined with numerical methods (e.g. Method of
Moment) to solve integral equations for complex targets [4],

The associate editor coordinating the review of this article and approving
it for publication was Chan Hwang See.

the FDTD algorithm has its merits in being simple and free of
a systemmatrix solution (matrix-free), ability to easily model
complex geometric, inhomogeneous and dispersive problem.
However, one of the major limitations of the FDTD algorithm
is huge computational burden of simulating small structures
in a large computational domain, i.e., the coexistence of
large-scale structures and small-scale structures or small tar-
gets in a deep underground site. This is because the spa-
tial grid must be small enough to accurately model small
structures. Meanwhile, the maximum time step is limited by
the minimum spatial grid size due to the Courant-Friedrich-
Levy (CFL) stability condition. Consequently, huge memory
requirement and CPU time consumption are required for
simulating small structures in a large computational domain.

One popular approach overcoming this problem is the sub-
gridding FDTD algorithm. Fine grids are used to model small
structures and coarse grids are used elsewhere. The main
difficulty of subgridding technique is the reduced accuracy
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and late-time instability due to the temporal and spatial inter-
polations, especially when a grid contrast ratio is large. The
large grid contrast ratio with high accuracy was achieved by
the Huygens subgridding algorithm [5], [6], but it usually
has fairly higher late-time instability. The FDTD subgridding
algorithm with separated temporal and spatial subgridding
interfaces [7] has higher late-time stability by using two
subgridding interfaces for temporal and spatial interpolations
separately, but has lower accuracy due to the electric andmag-
netic field are discontinuous at temporal subgridding inter-
face. Besides, the problem of material traversing subgridding
interfaces cannot be solved. To resolve these two problems,
a novel FDTD subgridding algorithm with improved sepa-
rated temporal and spatial interfaces was proposed in [8].
However, there is no universal weighed parameter to inter-
polate the electric/magnetic fields at the subgridding inter-
faces. For different simulation scenarios, they need to be
determined by different numerical experiments. In order to
improve the computational efficiency, the sub-gridded FDTD
algorithmswith the uniform coarse time step, such as a hybrid
sub-gridded scheme [9] and a spatially filtered sub-gridded
FDTD scheme [10], have been proposed by Wei et al..
An unsymmetric FDTD subgridding algorithm with uncon-
ditional stability proposed in [11] allows for an arbitrary
grid contrast ratio. However, the time step need to be found
by solving eigenvalues of the matrice. Moreover, the com-
mercial software CST Microwave Studio has been used for
electromagnetic analysis [2], [4], [12]. The core algorithm
of the CST is Finite Integral Theory (FIT), which has the
advantage of simulating electromagnetic phenomena in the
time domain, frequency domain and in statics. The subgrid-
ding scheme for the FIT [13] can improve the computational
efficiency of scattering and diffraction of an electrically small
target in a large domain, maintaining the late-time stability.
Due to the CFL stability criterion, however, the maximum
stable time step in the subgrid is limited by the spatial subgrid
size. The smaller time step is needed in the subgrid, thus more
CPU time consumption is required.

Recently, transformation optics can be used to design
metamaterials to achieve many interesting applications,
such as wavelength-sized metastructure [14] capable of
solving integral equations, Near-zero-index waveguide [15]
that overcomes mode degeneration, attenuation/losses, and
energy dispersion of the traditional metallic ones, metama-
terial assemblies [16] for optical magnetic field enhance-
ment and chiral plasmonics, curvilinear metasurfaces [17]
for surface wave manipulation, graphene acoustic plas-
mon resonator [18] for ultrasensitive infrared spectroscopy,
nanoparticle-based electromagnetic devices [19] for sens-
ing and medical diagnostics, metasurface sensors [20],
ENZ-based sensor [21] and surface wave cloaking [22].
Besides, another simple yet useful local mesh refinement
algorithm is also based on the transformation optics [23].
Through coordinate transformation, small structures can
be enlarged in the transformed region. Therefore, we can
simulate the whole computational domain with uniform

coarse grids. In comparison to the subgridding algorithm,
it eliminates errors by interfaces between coarse and fine
grids and avoids the late-time instability problem. However,
the transformed region presented in [23] is a circular disk.
Due to the inherent drawback of the FDTD algorithm, there
are modeling errors between a real curved boundary and
its FDTD-modeled boundary. Therefore, staircasing errors
are introduced by curved boundaries of the transformed
region, using standard Yee grids [1] in regular Cartesian
lattices. And staircasing errors increase as the grid size
increases. The scattered and diffraction fields from electri-
cally small structures are usually small, so that staircasing
errors can lead to larger relative errors. Thus, they cannot
be neglected. One way to mitigate staircasing errors is to
use a conformal technique. The well-known Contour Path
FDTD algorithm (CPFDTD) [24], based on the integral
forms of Ampere and Faraday laws, is simple and efficient,
but it often leads to late-time instability. A modification of
classical CPFDTD algorithm proposed in [25] can elimi-
nate the late-time instability, and maintaining second-order
spatial convergence [26]. However, the time step need to
be decreased to meet the CFL stability condition, thus will
reduce computational efficiency. The Conformal Relaxed
Dey-Mittra (CRDM) method [27] enables direct control of
the time step reduction, but the time step is still smaller than
the standard FDTD time step. A robust conformal FDTD
algorithm [28] was proposed to remove the restriction of time
step. But it will reduce accuracy due to introducing an artifi-
cial magnetic medium in conformal grids. Another algorithm
improving the stability proposed in [29] is the Enlarged Cell
Technique (ECT). However, the updating equations are more
complicated depending on the configuration of the objects.

To eliminate staircasing errors caused by the boundaries of
the transformed domain, we present a novel TO-FDTD algo-
rithm in this paper. Instead of using a circular transformed
region applied in [23], we enlarge a small region by using
a square transformed region. Therefore, no staircasing error
is produced near the square boundaries of the transformed
region. We parameterize the square boundary in polar coor-
dinates, so that it is easy to be implemented in a simple
formulation. By applying Transformation Optics, we obtain
new Maxwell’s equations with anisotropic permittivity and
permeability in the transformed region. Then, according
to [30], [31], we develop a stable anisotropic FDTD algorithm
for solving electric and magnetic fields in transformed space.
The fields in original space can also be obtained by an inverse
transformation on corresponding fields in transformed space.
We restrict our analysis to two-dimensional (2D) case in
this paper. Numerical experiments including scattering and
diffraction of small structures have demonstrated accuracy
and efficiency of the proposed novel TO-FDTD algorithm.

II. THE TO-FDTD ALGORITHM WITH
SQUARE TRANSFORMED REGION
For the TO-FDTD analysis of scattering from a small struc-
ture, the staircasing errors introduced by boundaries of a
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FIGURE 1. Coordinate Transformation. (a) Original space. (b) Transformed
space.

circular transformed region cannot be neglected. To avoid
these errors, we replace the circular transformed region with
the square transformed region, so that the boundaries of the
transformed region are aligned with the structured grids.
Thus, staircasing errors cannot be introduced by boundaries
of the transformed region.

Transformation optics can be interpreted as inhomoge-
neous and anisotropic compression and stretching of the con-
stituent materials in original space. Based on the invariance
of the Maxwell’s equations after coordinate transformation,
existing FDTD codes can be easily implemented. Acquiring
the new anisotropic permittivity and permeability, we develop
a stable anisotropic FDTD algorithm for solving Maxwell’s
equations in the transformed region. Because the small struc-
ture is enlarged in the transformed region, uniform coarse grid
can be applied globally, and no fine grid needs to be applied
for the small structure. Thus, computational efficiency can
be improved greatly. Finally, the electromagnetic fields in
original space can be obtained by an inverse transformation.

A. TRANSFORMATION OPTICS WITH SQUARE
TRANSFORMED REGION
As shown in Figs. 1 (a) and (b), coordinate transformation
is applied to a square transformed region, which is divided
into a stretched inner square and a compressed outer square
annulus.

Boundaries Ri(θ ) of the inner and outer squares in Fig.1
(a) can be parameterized in polar coordinates

Ri (θ) = ri
/
cos

((
θ−π

/
4
)
mod (π

/
2)−π

/
4
)

(i = 1, 2)

(1)

where ri is the radius of the inscribed dotted circles of the
squares, as shown in Fig.1 (a). The indexes 1 and 2 refer
to the inner and outer boundaries, respectively. The inner
and outer square boundaries R′i

(
θ ′
)
in Fig.1 (b) have similar

formulations. Note that θ = θ ′ and R2 (θ) = R′2
(
θ ′
)
.

Through coordinate transformation, a small square (r <
R1 (θ)) in original space is transformed to a large one
(r ′ < R′1

(
θ ′
)
) in transformed space and the square annulus

(R1 (θ) < r < R2 (θ)) is compressed to a smaller square
annulus (R′1

(
θ ′
)
< r < R′2

(
θ ′
)
), by maintaining the outer

square boundary R2(θ ) (or R′2(θ
′)) unchanged. A small struc-

ture located in the square (r < R1 (θ)) can be stretched to a

larger one in the square (r ′ < R′1
(
θ ′
)
) by coordinate transfor-

mation so that it can be solved with coarse grids. Note that the
small structure cannot be enlarged arbitrarily. The trade-off
is the square annulus is less resolved due to its smaller area.
The arbitrarily enlarged square will result in the arbitrarily
compressed square annulus, since the outer boundary of the
transformed region is kept unchanged. Although more grids
are used to simulate the enlarged square, but less grids are
applied for the compressed square annulus. Thus the com-
putational accuracy of the compressed square annulus will
be decreased. However, we can obtain high computational
accuracy by controlling a low reduction ratio of the square
annulus.

Both stretched transformed region and compressed trans-
formed region have specific anisotropic permittivity and per-
meability. The transformed anisotropic Maxwell’s equations
can be obtained by coordinate transformation. We assume
that coordinate system (x, y, z) refers to the original space
and coordinate

(
x ′, y′, z′

)
represents the transformed space.

Through coordinate transformation, Maxwell’s equations
remain form-invariant. The transformation relations between
electric/magnetic field Ẽ / H̃ in transformed space and E / H
in original space are as follows.

Ẽ = 3TE (2a)

H̃ = 3TH (2b)

The permittivity tensor ε̃ and permeability tensor µ̃ in
the transformed coordinate system are related to the original
permittivity ε and permeability µ by the relationships

ε̃ = |3|3−1ε3-T (3a)

µ̃ = |3|3−1µ3-T (3b)

The Jacobian matrix 3 is described by

3 =
∂ (x, y, z)
∂ (x ′, y′, z′)

(4)

We transform the small square region (r < R1 (θ)) to a larger
one (r ′ < R′1

(
θ ′
)
) and compress the square annulus (R1 (θ) <

r < R2 (θ)) to a thinner one (R′1
(
θ ′
)
< r < R′2

(
θ ′
)
), by using

the following transformation functions

r
(
r ′, θ ′

)

=



R1 (θ)
R′1 (θ

′)
r ′, if r ′ < R′1

(
θ ′
)

R2 (θ)− R1 (θ)
R2 (θ)− R′1 (θ)(
r ′ − R′1 (θ)

)
+ R1 (θ) , if R′1

(
θ ′
)
< r ′ < R′2

(
θ ′
)

r ′, otherwise

(5)

There are three steps for transforming from the coordinate
(x, y, z) to the coordinate

(
x ′, y′, z′

)
:
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1. Transform from (x, y, z) to cylindrical coordinate
(r, θ, z) by the Jacobian matrix 31

31 =
∂ (x, y, z)
∂ (r, θ, z)

=

 cos θ −r sin θ 0

sin θ r cos θ 0

0 0 1

 (6)

2. Transform from (r, θ, z) in original space to
(
r ′, θ ′, z′

)
in transformed space by the Jacobian matrix 32

32 =
∂ (r, θ, z)
∂ (r ′, θ ′, z′)

=


∂r
∂r ′

∂r
∂θ ′

0

0
∂θ

∂θ ′
0

0 0
∂z
∂z′

 (7)

3. Transform from
(
r ′, θ ′, z′

)
to
(
x ′, y′, z′

)
by the Jacobian

matrix 33.

33 =
∂
(
r ′, θ ′, z′

)
∂ (x ′, y′, z′)

=


cos θ ′ sin θ ′ 0

−
sin θ ′

r ′
cos θ ′

r ′
0

0 0 1

 (8)

Finally, the Jacobian matrix3 can be regarded as the product
of 31, 32 and 33.

3 =

 cos θ −r sin θ 0

sin θ r cos θ 0

0 0 1



∂r
∂r ′

∂r
∂θ ′

0

0
∂θ

∂θ ′
0

0 0
∂z
∂z′



×


cos θ ′ sin θ ′ 0

−
sin θ ′

r ′
cos θ ′

r ′
0

0 0 1

 (9)

B. THE STABLE ANISOTROPIC FDTD ALGORITHM
Once the Jacobian matrix 3 is solved, we can obtain
anisotropic ε̃ and µ̃ in transformed space. For the TM mode,
the standard FDTD discretization of anisotropic Maxwell’s
equations is as follows:

Dn+1z(i,j) = Dnz(i,j) +1t ·

Hn+1/2
y(i+1/2,j) − H

n+1/2
y(i−1/2,j)

1x

−

Hn+1/2
x(i,j+1/2) − H

n+1/2
x(i,j−1/2)

1y


(10a)

En+1z(i,j) = ξzzD
n+1
z(i,j) (10b)

Bn+1/2x(i,j+1/2) = Bn−1/2x(i,j+1/2) +
1t
1y
·

(
En+1z(i,j+1) − E

n+1
z(i,j)

)
(11a)

Bn+1/2y(i+1/2,j) = Bn−1/2y(i+1/2,j) −
1t
1x
·

(
En+1z(i+1,j) − E

n+1
z(i,j)

)
(11b)

FIGURE 2. The locations of field components in the yee cell.

Hn+1/2
x

Hn+1/2
y

 = ( ζxx ζxy

ζyx ζyy

)Bn+1/2x

Bn+1/2y

 (11c)

where ξzz is the reciprocal of the permittivity ε̃zz, and ζ is the
inverse of the 2×2 permeability tensor µ̃.
The locations of field components in the Yee cell is illus-

trated in Fig. 2. The ξ and ζ are located at the center of
the cell. We develop a stable anisotropic FDTD algorithm
for solving the transformed anisotropic Maxwell’s equations.
To maintain computational stability, Ez, ξzz and Dz should
be evaluated at the same position by the arithmetic average.
We first resolveDz by (10a). Then we solve Ez by the follow-
ing formula

En+1z(i,j) =
1
4

[
ξzz(i−1/2,j+1/2) + ξzz(i+1/2,j+1/2)

+ξzz(i+1/2,j−1/2) + ξzz(i−1/2,j−1/2)
]
Dn+1z(i,j) (12)

Subsequently, we solve Bx and By by (11a) and (11b). Then,
applying the similar averaging algorithm mentioned above,
we can solve Hx and Hy by

Hn+1/2
x(i,j+1/2)

=
1
2
·
(
ζxx(i+1/2,j+1/2) + ζxx(i−1/2,j+1/2)

)
Bn+1/2x(i,j+1/2)

+
1
4
·

 ζxy(i+1/2,j+1/2)
(
Bn+1/2y(i+1/2,j) +B

n+1/2
y(i+1/2,j+1)

)
+ζxy(i−1/2,j+1/2)

(
Bn+1/2y(i−1/2,j) +B

n+1/2
y(i−1/2,j+1)

)


(13a)

Hn+1/2
y(i+1/2,j)

=
1
2
·
(
ζyy(i+1/2,j+1/2) + ζyy(i+1/2,j−1/2)

)
Bn+1/2y(i+1/2,j)

+
1
4
·

 ζyx(i+1/2,j+1/2)
(
Bn+1/2x(i,j+1/2) +B

n+1/2
x(i+1,j+1/2)

)
+ζyx(i+1/2,j−1/2)

(
Bn+1/2x(i,j−1/2) +B

n+1/2
x(i+1,j−1/2)

)


(13b)
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After solving the field Ẽ and H̃ , we can obtain the field E
andH in original space by applying an inverse transformation
of (2a) and (2b).

III. NUMERICAL RESULTS
The proposed algorithm is suited for the scenario of a
small target in a large domain. The whole computational
domain is a multi-scale geometry. However, the proposed
algorithm is not suitable for a multi-scale target. If a
multi-scale target is enlarged by our transformation method,
not only the small-scale part of the target is enlarged,
but also the large-scale part of the target is enlarged. The
computational domain will be increased as a whole so
that the efficiency cannot be improved. Thus, numerical
experiments of single-slit diffraction and scattering of a
small structure are simulated in this section to demon-
strate the computational accuracy advantage of our proposed
TO-FDTD with Square Transformed Region (TO-FDTD
with STR) algorithm over the original TO-FDTD with Cir-
cular Transformed Region (TO-FDTD with CTR) algo-
rithm, The uniform FDTD grid size is applied in the
whole computational domain, which is truncated by Con-
volution Perfectly Matched Layer (CPML) boundaries. The
Total-Field-Scattered-Field (TF-SF) approach is used to
excite a uniform incident plane wave with the wavelength
of 800 nanometers (nm). The horizontally polarized incident
wave propagates along the positive x-axis. All calculations
have been performed on an Intel Core i5 at 2.7-GHz mac OS
with 8-GB RAM.

A. SINGLE-SLIT DIFFRACTION
We first consider the problem of single-slit diffraction. The
simulated model is illustrated in Fig.3 (a). Two metal strips
face each other with 10 nm slit near the tips. The grid
size should be fine enough to accurately model the tiny
slit by the standard FDTD algorithm. Therefore, we choose
the computational grid size of 1 = 2nm. By apply-
ing transformation optics, we enlarge the inner square
region (40nm×40nm) 10 times and maintain the outer
square region (1200nm×1200nm) unchanged. Accordingly,
the square annulus between the square (1200nm×1200nm)
and the square (40nm×40nm) is shrunk 1.45 times (thick-
ness changed from 580 nm to 400 nm). The 10 nm slit in
original space is transformed to a 100 nm one in transformed
space. Consequently, the 100 nm slit can be simulated by the
TO-FDTD algorithm with coarse grid size of 1 = 20nm.
We use the results of the standard FDTD with fine grid size
of1 = 2nm as reference to compare the computational accu-
racy of our TO-FDTDwith STR algorithm and the TO-FDTD
with CTR algorithm.

Figs.3 (b), (d) and (f) show the distributions of electric
fields Ez near the slit solved by the standard FDTD algorithm,
the TO-FDTD with CTR algorithm and the TO-FDTD with
STR algorithm, respectively. It can be seen that the total
fields (including incident fields and scattering fields of metal
strips) is within the left region of the slit and diffraction fields

FIGURE 3. Simulation of single-slit diffraction. (a) Structure details.
(b) Ez solved by the standard FDTD algorithm with 1 = 2nm.
(c) Diffraction fields Ez of Fig.2 (b). (d) Ez solved by theTO-FDTD with CTR
algorithm with 1 = 20nm. (e) Diffraction fields Ez of Fig.2 (d). (f) Ez
solved by the TO-FDTD with STR algorithm with 1 = 20nm. (g) Diffraction
fields Ez of Fig.2 (f). (h) Amplitudes of diffraction fields Ez at x = 2000nm.
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only exist within the right region of the slit. In Fig.3 (d),
the circular region with radius 600 nm is the transformed
region for the TO-FDTD with CTR algorithm. As shown
in Fig. 3 (f), the square region (1200nm×1200nm) is the
transformed region for the TO-FDTD with STR algorithm.
The intensity of diffraction fields in Figs.3 (b), (d and (f)
are very low since the slit is so narrow that the energy of
the incident wave passing through it is very weak. Thus,
we display single-slit diffraction fieldsmore clearly, as shown
in Figs. 3 (c), (e), and (f) by adjusting the color bar. The
waves are bent around the corner of the slit and continue
to propagate into the region behind the metal trips rather
than propagating along a straight line. It can be seen that the
slit diffracts the incident plane wave into a series of circular
waves. It can be seen that both electric fields Ez outside of the
transformed regions, as shown in Figs. 3 (d-g), are the same
as corresponding fields in Figs. 3 (b) and (c), although they
are different in the transformed regions.

As for the CPU time, the standard FDTD algorithm
requires 126407.6 s to finish the entire simulation and the
subgridding FDTD algorithm [8] takes 1842.6 s, while the
proposed TO-FDTD with STR algorithm only takes 144.5 s
and the TO-FDTD with CTR algorithm needs 144.1 s. A sig-
nificant speedup is achieved by the TO-FDTD algorithm. Fur-
ther, we take results of the standard FDTD with fine grid size
of1 = 2nm as reference to compare the computational accu-
racy of the TO-FDTDwith STR algorithm and the TO-FDTD
with CTR algorithm. The amplitudes of diffraction fields Ez
at x = 2000 nm solved by three aforementioned algorithms
are plotted in Fig.3 (h). The results of the TO-FDTD with
STR algorithm with coarse grid size of 1 = 20 nm agree
well with those of the standard FDTD algorithmwith fine grid
size of1 = 2nm. However, the results of the TO-FDTD with
CTR algorithm with grid size of 1 = 20nm deviates from
those of the standard FDTD algorithm with fine grid size of
1 = 2nm. As a result, our TO-FDTD with STR algorithm
shows higher computational accuracy than the TO-FDTD
with CTR algorithm.

B. SCATTERING OF A SMALL DIELECTRIC
SQUARE CYLINDER
In the second example, we simulate scattering of a 2D
small dielectric cylinder with the radius of 50 nm and rel-
ative permittivity εr = 12, which is located at the cen-
ter of the computational domain, as illustrated in Fig.4 (a).
Through transformation optics, we transform the inner square
region (300nm × 300nm) to a larger one (600nm × 600nm)
and maintain the outer square region (1200nm×1200nm)
unchanged. Consequently, the square annulus between the
square (300nm× 300nm) and the square (1200nm×1200nm)
is compressed 1.5 times (thickness changed from 450 nm to
300 nm). Accordingly, the small cylinder is enlarged twice in
transformed space.

Figs.4 (b-d) show the amplitude distribution of electric
field Ez near the cylinder resolved by the standard FDTD
algorithm with 1 = 10nm, the TO-FDTD with CTR

FIGURE 4. Simulation of a 2D cylinder. (a) Structure details. (b) Ez solved
by the standard FDTD algorithm with 1 = 10nm. (c) Ez solved by the
TO-FDTD with CTR algorithm with 1 = 20nm. (d) Ez solved by the TO-FDTD
with STR algorithm with 1 = 20nm.

algorithmwith1 = 20nm and the TO-FDTDwith STR algo-
rithm with 1 = 20nm, respectively. The total-field domain,
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which includes both incident fields and scattered fields,
is confined within the square region (−800nm < x < 800nm,
−800nm < y < 800nm). And the scattered-field domain
is outside of the total-field domain, which only contains the
scattered fields.

As shown in Fig.4 (c), the circular region (r < 600nm)
is the transformed region. Fig.4 (d) shows that the square
region (−600nm < x < 600nm, −600nm < y < 600nm)
is the transformed region. It can be seen that electric fields
Ez outside of the transformed region in Figs.4 (c) and (d) are
almost identical to corresponding Ez in Fig.4 (b). Although
the coarser grid size of1 = 20nm is applied in the TO-FDTD
with CTR and the TO-FDTD with STR algorithms, they can
provide the similar simulation results as the standard FDTD
algorithm with the fine grid size of1 = 10nm. The standard
FDTD algorithm takes 60.7 s to finish the entire simulation
and the subgridding FDTD algorithm [8] takes 17.1 s, while
the proposed TO-FDTD with STR algorithm only requires
9.37 s and the TO-FDTD with CTR algorithm needs 9.22 s.

For further computational accuracy comparison of our
TO-FDTD with STR algorithm and the TO-FDTD with CTR
algorithm, the amplitudes of scattered fields Ez at x =
−900nm are plotted in Fig. 5 (a). As shown in Fig. 5 (a),
the results of the TO-FDTD with STR algorithm are more
consistent with those of the standard FDTD algorithm than
those of the TO-FDTD with CTR algorithm. It demonstrates
that our proposed TO-FDTD with STR algorithm has higher
computational accuracy.

Then we obtain the bistatic RCS of the small cylin-
der by the near-to-far field transformation. As shown
in Fig. 5 (b), we compare the results solved by these three
algorithms, respectively. Good agreement between our pro-
posed TO-FDTDwith STR algorithm and the standard FDTD
algorithm can be observed even though the grid size of
our proposed algorithm is twice that of the standard FDTD
algorithm. However, the results of the TO-FDTD with CTR
algorithm deviate from those of the standard FDTD algorithm
greatly. It also can be seen from the Fig. 5 (b) that the results
of our proposed algorithm are well matched with those of the
commercial Software Comsol.

Relative errors of the RCS of the small cylinder solved by
the TO-FDTD with SRT and the TO-FDTD with CRT are
compared in Fig. 5 (c). It can be seen that the TO-FDTD
with SRT algorithm proposed in this paper is superior
to the TO-FDTD with CRT algorithm in terms of the
accuracy.

C. GPR B-SCAN IMAGE OF BURIED CYLINDERS
To demonstrate one of the applications of the proposed
algorithm in ground penetrating radar (GPR). We simu-
late GPR B-Scan [32] image of targets buried in the sand.
Fig. 6 (1) shows that the computational domain is 0.8 m and
0.5 m along the x- and y-direction, respectively. The center of
the conducting cylinder with the radius of 0.02 m is located
0.3 m under the surface. The radius of the other conducting

FIGURE 5. (a) Amplitude of scattered electric field Ez at x = −900nm.
(b) Bistatic RCS versus scattering angle θs. (c) Relative errors of RCS
solved by the TO-FDTD with SRT and the TO-FDTD with CRT.

cylinder is 0.002 m and its center is located 0.25 m under
the surface. The relative permittivity of the sand is εr = 6.
The transmitting (Tx) antenna and the receiving (Rx) antenna
are initially placed at (0.08 m, 0.4 m) and (0.12 m, 0.4 m),
respectively. Both the Tx and Rx antennas are considered
to be point sources, exciting the current density Jz with the
Ricker pulse as follows

Jz (t) = −

2π2f 2
(
t −

√
2
f

)2

− 1

 e
−π2f 2

(
t−
√
2
f

)2
(14)

where f = 0.9 GHz.
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FIGURE 6. GPR B-scan images of buried targets. (a) Structure details.
(b) The standard FDTD algorithm with 1 = 0.006 m. (c) The TO-FDTD with
STR algorithm with 1 = 0.006 m.

By moving the pair of Tx and Rx antennas along the
x-direction with the interval 0.01 m, we can obtain the GPR
B-Scan image of the buried targets. The B-scan image, show-
ing the time response of scattering from the buried target,
is hyperbolic. For the purpose of comparison, two simula-
tions are run: the standard FDTD with 1 = 0.006 m and
the TO-FDTD with STR algorithm with 1 = 0.006 m.

The B-scan images by the two algorithms are illustrated
in Figs. 6 (2) and (3), respectively.

As shown in Fig. 6 (b), only the scattering response of the
big cylinder can be observed, but that of the small cylinder
cannot be found. This is because the small cylinder cannot
be simulated by the standard FDTD algorithm when its size
is less than the grid size. However, as shown in Fig. 6 (c),
the responses of both the small and the big cylinder are
very clear. The small cylinder can still be simulated by the
proposed algorithm, although the used grid size is larger than
the size of small cylinder.

IV. CONCLUSION
In this paper, a novel TO-FDTD algorithm is developed for
electromagnetic simulation of electrically small structures
in a large computational domain. To eliminate staircasing
errors caused by curved boundaries of the transformed region,
a square transformed region is presented in our TO-FDTD
algorithm. The square boundary is parameterized in polar
coordinates, so it is easy to be implemented. There are a
stretched inner square and a compressed outer square annulus
in the transformed region. Through coordinate transforma-
tion, a small structure can be enlarged with the stretched inner
square. So it can be solved by uniform coarse grids globally,
which can improve computational efficiency greatly. How-
ever, the stretched region cannot be enlarged arbitrarily. The
trade-off is that the compressed square annulus is less solved
because of its smaller area. Fortunately, we can adjust the size
of the transformed region to obtain acceptable accuracy. In the
transformed region, new anisotropic permittivity and per-
meability are obtained by coordinate transformation. Then,
the stable anisotropic FDTD algorithm is developed to solve
anisotropic Maxwell’s equations in the transformed region.
Numerical results show that our proposed TO-FDTD with
STR algorithm has higher computational accuracy than the
original TO-FDTD algorithmwith the same grid size, and has
obvious advantages in computational efficiency compared
with the standard FDTD algorithm with fine grids. However,
the proposed algorithm is only efficient for the multi-scale
scenario of an electrically small target in a large computa-
tional domain, but not for the multi-scale target. In the future,
we will extend the transformation optics based algorithm to
solve scattering of a multi-scale target, such as an object with
thin coating.
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