
Received July 25, 2019, accepted August 17, 2019, date of publication August 29, 2019, date of current version September 13, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2938443

Mist and Edge Storage: Fair Storage
Distribution in Sensor Networks
MARINO LINAJE 1, JAVIER BERROCAL 2, AND ALFONSO GALAN-BENITEZ3
1Department of Computer and Communication Technologies, Escuela Politécnica, University of Extremadura, 10003 Cáceres, Spain
2Department of Computer and Telematic Systems Engineering, Escuela Politécnica, University of Extremadura, 10003 Cáceres, Spain
3Telefónica Soluciones S.A.U, 28050 Madrid, Spain

Corresponding author: Marino Linaje (mlinaje@unex.es)

This work was supported in part by the 4IE+ Project through the Interreg V-A España-Portugal (POCTEP) 2014–2020 Program under
Grant 0499_4IE_PLUS_4_E, in part by the Spanish Ministry of Science, Innovation and Universities under Grant RTI2018-094591-B-I00
(MCIU/AEI/FEDER, UE) and Grant TIN2014-53986-REDT, in part by the Department of Economy and Infrastructure of the Government
of Extremadura under Grant GR18112 and Grant IB18030, and in part by the European Regional Development Fund. We thank Sergio
Laso for his testing work.

ABSTRACT Sensor/Actuator devices are currently being massively adopted, often as nodes of larger sensor
networks. These sensor networks are typically dedicated to context acquisition (e.g., get temperature) as well
as providing acting services (e.g., open the blinds). However, regarding their own data storage, data is usually
sent to Fog/Cloud servers. Fog/Cloud storage solutions provide several advantages over sensor network
storage solutions, but also some drawbacks. For instance, in Cloud environments, privacy and legal issues
may appear, while in Fog, additional costly hardwaremust be purchased andmaintained, at least a server with
redundant storage ormany servers when distributed data storage is required. Nowadays, sensor nodes count in
thousands around us, and they have significantly increased their storage and computational capabilities over
the past few years. Therefore, traditional Fog/Cloud storage solutions could be combined or even replaced
by Mist/Edge storage solutions for many use cases. A principal contribution of this paper is a novel data
distribution and replication storage solution for wireless sensor networks, the first to consider sensor node
heterogeneity to find the optimal storage replication according to node capabilities. The solution has been
carefully planned and implemented to run even in very low-end microcontrollers, that lives in many of our
surrounding smart devices. Other contributions include data comparing Mist/Edge and Amazon S3 regular
storage, showing that there remains plenty of room for research into Mist/Edge storage, as well as into the
industry itself.

INDEX TERMS Mist computing, edge computing, distributed storage, sensor networks.

I. INTRODUCTION
During the last decade, we have been observing a massive
adoption of sensor/actuation devices. Their size and cost
have shrunk significantly, while their storage and compu-
tational capabilities have grown as Moore predicted, but
maybe not strictly following Moore’s Law [1]. This mas-
sive adoption includes the public and private sectors, and is
related to ‘‘buzzwords’’ such as the Internet of Things (IoT),
Internet of Everything, SmartX, Industry 4.0, or Smart Man-
ufacturing, but also Ambient Intelligence, Pervasive Comput-
ing, or Ubiquitous Computing when there are various sensor
devices communicating to work together towards a common
goal.

The associate editor coordinating the review of this article and approving
it for publication was Abderrezak Rachedi.

Nowadays, these sensor networks are generally deployed
using acting devices to function in the environment (e.g., turn
on/off the A/C), sensing nodes to get contextual data (e.g., the
current temperature in a meeting room), and a central storage
point (i.e., server/s) to store the data generated. This central
server is also used to retrieve certain data when required
in traditional storage solutions. In such traditional storage
solutions, this server can be located in the Fog or in the Cloud,
using well-known storage techniques. When redundant dis-
tributed data storage is required, there has to be more than
one central server, increasing the purchasing andmaintenance
costs. Even though Fog environments are gaining in attraction
to improve system behaviour by reducing processing, com-
munication, and energy requirements [2], in this cases many
solutions rely on Cloud servers from third-parties, such as
Amazon or Google, just as a service to reduce costs.

123860 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0002-8291-7159
https://orcid.org/0000-0002-1007-2134

M. Linaje et al.: Mist and Edge Storage: FSD in Sensor Networks

At least initially, Cloud computing solutions reduce fail
tolerance. Cloud environments are intrinsically very reliable,
but every intermediate layer reduces this reliability [3], [4].
In order to counteract this effect, different algorithms and
frameworks (such as Hadoop [5]) replicate the same informa-
tion on different servers, increasing the fault tolerance. But
privacy issues are greater when the sensed data are outside
the organisation’s facilities. For privacy reasons, many organ-
isations and governments have specific regulations about the
data that can be stored externally, so that resources must be
located and maintained inside the organisation’s facilities,
requiring human resources to maintain them. Also, while
Cloud environments provide a large capacity for computing
and storage, the distances involved mean lower real-time
responsiveness and location awareness, and the cost and net-
work overhead are usually high [4], [6], [7].

The Fog Computing [8] paradigm partially overcomes this
waste of resources by adding the data plane to the Network,
thus partially or totally eliminating the currently common
approach which is to use Cloud environments outside of the
local area where the data is produced. There are various
approaches focused on different aspects of this data plane:
on defining the topology of the network for correct data
storage and replication [9], [10], on load balancing to deal
with the overload of the nodes and the network [9], [10], or on
providing robust distributed storage [11], [12]. Approaches
are also needed to replicate the sensed information so as to
increase fault tolerance and select the specific nodes in which
these replicates should be stored. These techniques should be
fair in selecting the nodes according to their capabilities.

Edge Computing is a promising paradigm for exploiting
the computing capabilities of low-end devices to improve
compliance with the applications’ requirements [13]. And
Mist Computing is a paradigm designed to take advantage
of the computing and storage capabilities of the nodes, hubs,
and gateways deployed in the intermediate layers between the
Fog/Cloud and the Edge environments. Some of the afore-
mentioned Fog/Cloud problems could be overcome using
Edge andMist computing and storage capabilities, improving
response time, location awareness, general network overhead,
and deployment costs [14].

There are so many different use cases, depending on the
concrete requirements of the project, using sensor networks
that there is as yet no universal computing/storage distri-
bution solution to solve all of them. Some layers can be
devoted to specific tasks such as data fusion, data/process
mining, machine learning, or business intelligence among
others. Therefore, one or more layers of the multi-layer Edge-
Mist-Fog-Cloud architecture shown in Figure 1 could well
not be used.

In this paper, we present a novel solution for distributed
persistent and redundant data storage within the sensor net-
work in the Mist and Edge environments. In this solution, the
reduced functionality of the heterogeneous (sensing/acting)
nodes is raised when possible, adding to them the possibility
of storing and retrieving data from a massive media storage

FIGURE 1. Multi-layer edge-mist-fog-cloud architecture.

device (e.g., their own flash storage or an additionally added
external SD memory card). In the worst case, an SD card
memory and reader are necessary but, as we shall show, it is
also really cheap to keep all the node information for several
years. We define our proposal as ‘‘fair’’ because the nodes
selected to store the information are chosen on the basis of
their features and capabilities. Therefore, a device with, for
instance, better storage capabilities would be more likely to
be selected to store information than others that otherwise
are similar. Node capabilities are dynamical and can change
during node lifetime, being the storage selection algorithm
affected by these changes. By distributing the data storage
fairly among the more capable nodes of the network, we
ensure keeping the nodes working as regular sensing devices
when possible even if they are battery-operated. As we shall
show, our proposal reduces the storage cost when compared
to typical Cloud solutions, does not overload the network of
messages, and adds location-awareness. It provides a high
level of privacy and customizable levels of redundancy and
fault tolerance, improving both the user and the developer
experience.

The proposal presented also includes data retrieval capabil-
ities. But the focus of this communication will be on data stor-
age rather than data retrieval so as to simplify the Evaluation
and Related Work sections in what is an already long paper.
The rest of the document is structured as follows. Section II
describes the motivation of the work. Section III details
the mathematical formulae of the Fair Storage Distribution
algorithm. Section IV is focused on the implementation of
the proposal. Then Section V presents the evaluation of the
proposal in different dimensions. The results are discussed
in Section VI and related works are analysed and compared
in Section VII. Finally, in Section VIII some conclusions are
detailed.

II. MOTIVATION AND INSPIRATION
On the one hand, most of the network computational and
storage hardware capabilities of Edge and Mist architecture
layers are currently wasted [15]. While on the other, we may
be paying too much to store information in third-party Clouds

VOLUME 7, 2019 123861

M. Linaje et al.: Mist and Edge Storage: FSD in Sensor Networks

FIGURE 2. HDFS workflow.

at the same time as losing control of our data and having to
deal with data privacy issues (information from a sensor can
be used to infer when John left his home or when Ann is away
on holiday).

During the last few years, different algorithms have been
developed to distribute and process large volumes of data,
primarily in the Cloud. Even though it has been overtaken
by other frameworks, one of the best known is the Hadoop
Distributed File System (HDFS) [5], [16] which was our ini-
tial inspiration for this work. HDFS provides a distributed file
system and a framework for the analysis and transformation
of very large data sets using the MapReduce [17] paradigm.
This framework relies on partitioning and distributing data
across thousands of servers to enable the storage capacity
to be economically increased by just adding new servers.
In addition, this algorithm brings data close to the final appli-
cations, reducing the bandwidth and being able to access and
compute those data in parallel. HDFS uses two different kinds
of servers: one to store the metadata, called NameNode, and
many others to store application data, called DataNodes. The
NameNode contains information about the files and directo-
ries, storing attributes like permissions, modifications, access
time, the mapping between files and DataNodes, etc. Each
file is divided into blocks which are replicated in multiple
DataNodes. The average number of replicates is three, but
the user can configure a different number of replicates per
file. The usual workflow (Figure 2) when data has to be read
is: first, the client contacts the NameNode to get information
on the servers storing the files, and then reads the file from
the closest server. To write data, the client has to first ask the
NameNode for a number of servers with enough capacity to
store the information, and then write the information to those
DataNodes [18].

HDFS focuses on the distribution of data on different
servers. This allows final applications to access data located
closer to them (in a nearby server located in the same region),
improving computation and response times. However, being
a Cloud environment, the times obtained in some cases do
not meet the requirements of IoT [19] applications. Analysing
the requirements and behaviour of the IoT applications, other
researchers have already stated that the scalability, latency,
and response times are very limited, and the cost is greater [9].
Furthermore, HDFS was implemented with large volumes of
data in mind (files, databases,. . .) but not the storage needs

of IoT (e.g. temperature information needs just few bytes of
data, but it is going to be stored many times per hour).

Different data management techniques have been imple-
mented to support these requirements in the Fog Computing
paradigm. Examples are Hierarchical Data Aggregation [20]
and Fog Storage. Fog Storage can even use virtualisation
technology to implement a local repository storing the data
in a non-volatile memory [21]. However, Fog solutions still
waste Edge and Mist Devices’ computing and storage capa-
bilities currently available.

In the sensor networks research field, different par-
tially or fully distributed data storage approaches have been
proposed. We shall cover them in some depth in Section VII.
As a brief summary of that section, none of these approaches
considers the resources and capabilities of each sensor node
so as to distribute the data on them fairly.

III. FAIR STORAGE DISTRIBUTION (FSD)
A. FSD FOUNDATIONS
Fair Storage Distribution (FSD) manages the distributed stor-
age and retrieval of information in the different nodes of
a sensor network, focusing on the Edge and Mist architec-
ture layers’ hardware capabilities. It can work with homoge-
neous or heterogeneous hardware as well as with wired or
wireless sensor nodes.

In order to maximize the potential usage of FSD, from
a communications perspective, FSD was conceived to work
with the currently most extensively used sensor network
architecture. This architecture use the traditional star network
topology in which the Edge nodes are connected to a central
hub or gateway. Also, one of the commonest communication
schemes used to cope with long battery-life sensor nodes is
public/subscribe, which we also have adopted to deal with the
data distribution while preserving when required the regular
wake-sleep periods in the low-end Edge devices.

Thus, in FSD a central communication device is required,
as in HDFS. It may belong to either the Mist or the Edge
layer and it also serves to temporarily store all the infor-
mation produced by an Edge node until this information is
distributed to the Edge nodes. It also maintain metadata about
the sensor nodes in order to apply the fair storage distribution.
When the different Edge nodes gather and transmit the data,
the FSD enabled node stores the metadata associated with
this information (timestamp, source, etc.) and the Edge nodes
in which it will be stored. It then distributes the information
to the Edge nodes depending on the capabilities of these
nodes and the number of replicates. The central node can
also be used optionally to store one of the replicates for any
of the sensor data that might be produced periodically (e.g.,
temperature) or not (e.g., smoke in the kitchen). Also, an Edge
node with sensing or acting capabilities producing or not
producing data can be used or discarded as a storage device,
perhaps just because the manufacturer decided to maximize
device autonomy.

When designing and implementing FSD central device,
it has been taking into account low spec hardware

123862 VOLUME 7, 2019

M. Linaje et al.: Mist and Edge Storage: FSD in Sensor Networks

FIGURE 3. Fair storage distribution use case example.

regarding FSD storage and computation requirements, as well
as reutilize hardware already typically presented in the sensor
network (e.g., hubs and gateways). Thus, this central node
continues to serve as a hub or gateway (also known as sink in
communications research) while also serving as the central
point to receive and distribute, according to the FSD algo-
rithm, all the information produced by the Edge nodes.

Figure 3 shows an example where the Mist node concen-
trates the data communication coming from the sensor nodes
(Temp. 23 from Edge node 1), and distributes it to other nodes
in the network to comply with the specified data replication
policy (in this case 2 copies/replicates). Among all the sensors
in the network, Edge nodes 2 and 3 were selected by FSD
according to their capabilities (e.g., node 1 has 2GB capacity
and still 1.5GB free) and constraints (e.g., nodes 2 and 3 are
battery powered).

Therefore, the storage in the network is fair with regard
to the sensor storage selection, while also compliant with
one or more objectives/requirements (as will be discussed
in Section IV-A) that developers may apply to the algorithm
using a set of weights in order to cope with preferences and/or
needs for certain projects (e.g., minimize latency).

B. FSD ALGORITHM
To support the fair persistent distributed data storage and
retrieval from the nodes, we envisioned an approach responsi-
ble formonitoring the features of the network’s nodes (includ-
ing resources and capabilities of interest), such as memory
and processing speed, battery levels, etc. Based on this set of
features for each node in the network which can be selected
to store some replicate, the algorithm selects dynamically,
in a very flexible way, the nodes for the common data storage
goal.

We tag the algorithm as ‘‘fair’’ because each node may or
may not be promoted as candidate according to the features it
shows, and the choice of the nodes for storage and processing
is not done randomly as in other Hadoop-like approaches, but
is dependent only on their features.

We tag the algorithm as ‘‘dynamic’’ because the central
node detects when nodes are added, eliminated or they just
changed their capabilities, recomputing the optimal data stor-
age nodes to be used when the next storage operation is

required. This dynamism allows any node at any time to re-
send its metadata showing that its capabilities have changed
over time (e.g., it has stored more information from its own
regular operations or has gained energy from a solar panel).

Finally, we tag the algorithm as ‘‘flexible’’ because devel-
opers can set a goal for the whole sensor network adapting
weights in the algorithm that are coupled to specific parame-
ters (as shown below) which can be set in accordance with the
project’s needs and constrains. E.g., in a project where some
battery-powered devices are embedded in the concrete of a
building to sense modifications in the structure, these devices
could be only used for sensing while avoiding storage in these
nodes to maximise their lifetime. However, for other nodes
in the network there could also offer storage capabilities to
their sensor network, including previous sensors embedded
in the concrete. The variability of use cases that we found
in the literature was so great that one of our premises was
to develop a flexible system able to cope optimally with the
specific requirements of quite different projects.

To formalise the FSD algorithm, let N = {n1, ..., n|N |} be
the set of nodes in the network. For instance, in a smart-home
network, n3 could be a sensor measuring the temperature.
For each ni(∀i ∈ N) a set of parameters P = {p1, ..., p|P|}

is specified. These parameters are used to assess each node’s
capability for storing data, and thus to identify the optimal
nodes for storage in the whole network. For the current
implementation, the parameters that are currently evaluated
are the available storage, the computing capability, the battery
capacity (only when appropriate), the latency with respect to
the main node, and the available RAM. All these parameters
are normalised as will be detailed below.

Each node in the network is a black box that sends informa-
tion on the properties that it has to themain node. Considering
these parameters, the main node decides which have the
best capabilities and conditions to store information from
the rest of the nodes of the network. The more information
provided by the nodes, the better will be the assessment
to identify the optimal ones. Those nodes not sending their
information, or sending fewer parameters, score lower in the
storage capability equation. The following equation details
how the storage capability (st) for one node (ni) is calculated
considering the importance (W) of each parameter for the
network designer:

nsti : WxP→ R (1)

The weight of each parameter has a value between 0 and 1,
and they sum to 1 (Equation 2). For instance, if only two
parameters p1 and p2 are available, one combination could be
w(p1) = 0.3 and w(p2) = 0.7. The weight of each parameter is
fixed by the designer of the network in accordance with the
data storage requirements for each deployment.

∀ pε P, ∃!w(0, 1) :
P∑
i=0

wpi = 1 (2)

VOLUME 7, 2019 123863

M. Linaje et al.: Mist and Edge Storage: FSD in Sensor Networks

A maximum number of replicates (r), i.e., nodes storing
simultaneously the same data, must be defined. This property
allows network designers to define the redundancy of the
system. It is a maximum because a developer might set, for
example, 5 replicates, but the sensor network may not even
have 5 sensor nodes at all so, that this maximum could not
be reached (i.e., the nodes can be selected for storage only
once). Therefore, r is a natural number between 1 and the
maximum number of nodes within the network (Equation 3).
Thus, one can guarantee that at least one node stores the data.
Obviously, the greater the number of replicates, the greater
the system’s redundancy and robustness.

r ε N : 1 ≤ r ≤ N (3)

Finally, we define vnj,pi as the element representing the
real value (v) of a specific property pi for a specific node nj.
Therefore, for each node-parameter pair, there exists a value
vnp detailing the real number that will be used to calculate the
storage capacity of the node.

∀ nj ε N , ∃ pi ε P : vnj,pi ε R (4)

These parameters are sent by each node to the main node.
For instance, node 5 (n5) could publish that its storage capac-
ity (p3) is vn5,p3 = 500 MB. Once this information has
been sent to the main node, the algorithm normalises every
property so as to be able to identify the storage capability of
every node. The following matrix represents the real value for
every node-parameter pair.

n0 · · · nn
p0
...

pp

vn0,p0 · · · vnn,p0
...

. . .
...

vn0,pp · · · vnn,pp

 (5)

In order to be able to perform the comparison between
nodes, it is necessary to normalise (x) for every parameter
of each node. To this end, each parameter is normalised to a
value between 0 and 1 in relation to the maximum value of
the subset of the values belonging to a single parameter.

∀ nj ε N , ∃ pp ε P : xnj,pi =
vnj,pi

Max
(
vn0, pp , vnn, pp

) (6)

In matrix form, the equation would be:xn0, p0 · · · xnn, p0
...

. . .
...

xn0, pp · · · xnn, pp

=

vn0, p0

Max
(
vn0, p0 ,vnn, p0

) · · ·
vnn, p0

Max
(
vn0, p0 ,vnn, p0

)
...

. . .
...

vn0, pp
Max

(
vn0, pp , vnn, pp

) · · ·
vnn, pp

Max
(
vn0, pp , vnn, pp

)

(7)

Once all the parameters have been normalised, the previ-
ously defined weights come into play to identify the storage

capability of each node.

∀ nj ε N , ∃ pi ε P : ynj,pi = xnj,pi .wpi (8)

Again, the matrix form of this equation would be:yn0, p0 · · · ynn, p0
...

. . .
...

yn0, pp · · · ynn, pp

=

xn0, p0 .wp0 · · · xnn, p0 .wp0
...

. . .
...

xn0, pp .wpp · · · xnn, pp .wpp

 (9)

The storage capability of a node (nstj) is calculated using
the following equation:

∀ nj ε N , ∃!nstj ε R : n
st
j =

P∑
p=0

ynp (10)

Finally, depending on the defined number of replicates (r),
the r nodes with the greatest storage capability are selected.

IV. FSD IMPLEMENTATION
The theoretical definition of the distribution system defined
above has also been implemented. To that end, we set some
specific requirements for the system being developed, the
parameters that would be monitored for each node to assess
its storage capacity, and the technologies that would be used
to implement the system.

The fully developed code, including the code for some
hardware prototyping platforms used in the tests, can be
found in the shared and public GitHub repository1.

A. REQUIREMENTS
Table 1 presents the full set of system requirements that we
set nearly two years ago when starting the project.

The proposed solution must deal with constrained low-end
devices that typically appear in sensor networks (R1), where:
• Each node may have a different power source. They may
use batteries, power-line, Power over Ethernet (PoE),
inductive or wireless power transfer, to name just a
few. Power could be a limitation for some nodes of the
network to store data since data storage consumes extra
power. So it is essential for the proposed solution to take
into account power consumption so as to minimise it in
those nodes using batteries so as to prolong their life
(R12). Another key factor during the implementation
was optimising the processes, so that the data transmis-
sion would be performed as efficiently as possible.

• There is a wide range of microcontrollers (MCUs) for
sensor nodes sold by different vendors exhibiting dif-
ferent processing power and communication capabilities
(the capabilities most interesting for the present work).
While many of them do not excel in computing perfor-
mance, others are capable of quite complex computing.

1https://github.com/algalanb/EM-Project

123864 VOLUME 7, 2019

M. Linaje et al.: Mist and Edge Storage: FSD in Sensor Networks

TABLE 1. System requirements.

To select the optimal nodes for data storage, we used
benchmarks for MCUs and microprocessors to set the
properties of each node, such as those of [21]. Any-
way, for new MCUs or those not available in those
lists, the engineers responsible for the deployment can
set these parameters according to their knowledge and
experience.

• It is rare for constrained MCUs and microprocessors to
include ‘‘massive’’ storage within their IP core. Anyway,
the existence of modules and SD cards makes it easy and
inexpensive to add massive storage to any node as we
will show in Section 5.

• Latency must be as short as possible since a node’s
power consumption is much greater in RX/TX mode
than in idle/sleep mode.

Additionally, the system must support a heterogeneous
network of sensors, as may occur in real environments (R1).
The current implementation supports many Edge nodes.

Currently, at the implementation level, both wired and
wireless devices are supported (R5 and R6). The system
developed also requires IP capable devices, so that, among
others, CoAP or Zigbee sensor networks lie outside the
scope of the implementation, although the proposed algo-
rithm would still be valid. The current implementation
relies on a message broker supporting a publish/subscribe
mechanism.

B. PARAMETERS MONITORED
The algorithm monitors a set of parameters as metadata indi-
vidually for each node. We decided to keep this set short to
avoid computational complexity (requisite R1 of our system).
These parameters are updated periodically by the sensor node
and sent to the central node as part of the metadata. The
developer can adjust the periodicity of the metadata messages
for each sensor node. The set of parameters for FSD are:
• Processing, corresponding to the set of features that
make a microprocessor or MCU computationally more

powerful than another. Sources such as CoreMark [22]
can be used for this classification. In addition, the opin-
ion of the development and deployment engineers
should also be relevant in providing details about this
parameter since not all the processors are presently
available in this and other lists.

• Available/Free Disk, corresponding to the remaining
‘‘massive’’ storage capacity.

• Battery, comprising two sub-parameters, one to specify
whether the node uses a battery (limited power source),
and another to indicate the remaining battery. Again, this
is a dynamic value that is sent as metadata.

• Latency, defined as the time that the node takes to
respond to an external request. This includes an inter-
esting implicit feature – the frequency at which each
sensor node wakes up. Thus, they will be able to
reply to any data retrieval request before sleeping
again.

• Memory, defined as the free main RAM memory of the
node.

C. IMPLEMENTATION TECHNOLOGIES
On the one hand, we tested FSD sensor/actuator node
implementation on various ESP8266-based (Lolin nodemcu
and wemos), stm32 ARMs (STM32F103C8), and Atmel
(ATMega328, ATmega32U4, ATmega2560) development
boards. The source code repository also includes the weight
of different parameters for some Atmel MCUs as well as
for ESP8266. For the FSDfirmware implementation to be run
on the low-end devices, we chose to support Arduino (which
is a set of C and C++ libraries for hardware abstraction and
some main function re-modeling) to ensure support for the
largest number of 8 to 32 bit MCUs from different vendors.
So, any Edge node able to run Arduino code would be instan-
taneously added with minimal or no effort (R5) as well as any
MCU running C.

VOLUME 7, 2019 123865

M. Linaje et al.: Mist and Edge Storage: FSD in Sensor Networks

On the other hand, for the central node a larger MCU or a
simple microprocessor is required, since it must be able to run
a software stack composed by node.js, the mosquito broker
(publish/subscribe is based on MQTT due to its wide-spread
adoption), and mongodb. We tested FSD on cheap Intel
Atom processors (including intel Edison and Galileo Gen 2),
Raspberry Pi 2 and 3 as well as on a commercial home router
(Linksys WRT AC1200) with a custom Linux-based openwrt
firmware augmente with FSD. All the platforms tested were
running Linux.

With respect to the software technologies used, node.js,
mosquito, and mongodb have official implementations for
different operating systems. As they are also lightweight,
we selected them for the development of this project.
We checked the best-known c10k [23] capable servers
for deployment on these constrained systems, and selected
node.js [24] due to its development community and
capacities. A no-SQL DBMS was preferred for its flexibility
and ability to deal with the adaptivity requirement [25]. Thus,
MongoDB [26] was selected in view of its nice integration
with node.js. The data format selected was JSON for being
lightweight, and coupling not only perfectly with node.js
but also with low-end 8-bit MCUs via light-weight C JSON
parsers [27].

The communications selection required more effort.
We compared AMQP [28], CoAP [29], DDS [30],
XMPP [31], and MQTT [32], matching them with the system
requirements. We ended up choosing MQTT for being a
lightweight publish-subscribe protocol capable of satisfying
our security (R9), privacy (R11), extensibility (R14), and
traffic shaping (R15) requirements. MQTT includes many
Quality of Services levels, making it also suitable for low-
end MCUs. It also may includes encryption (TLS/SSL) that
can be used natively by some 32-bit MCUs.

A set of communication channels was defined to sat-
isfy requisites R2 (Redundant and Distributed), R3 (Self-
managed), and R5 (Scalable), and to keep the systemmodular
to satisfy the maintenance requirement (R7).

D. A SPECIFIC FSD IMPLEMENTATION
For the sake of simplicity, in this subsection we shall explain
a specific concrete implementation. We start with the set of
nodes that belong (i.e., are connected) to the sensor network.
During this first step, each node must register with the central
node, sending information about its storage capacity, the
information it senses, how that information is transmitted,
and so on. To that end, different channels or data flows are
defined in order to share different kinds of information with
the central node. These channels are implemented as topics
(since we are using MQTT) in which a node can publish
specific information and to which other nodes can subscribe
in order to get that information. The topics defined are:model
(to share the data model of the information sensed by a node),
model_req (to request the data model from a specific node),
meta (to share the FSD parameters of each node), istate (to
share the sensed data), query (to request the central node

to send data, e.g., from an external website), response (to
reply to requests), and ctrl (to share control data between
nodes, e.g., for an acting node to open a window). Therefore,
as Figure 4 shows, for a node to register in the Fog Network,
it has to open an MQTT connection and subscribe to the
different topics in which it is interested (at leastmeta in order
to share its features with the central node, and, if it is a sensor
node, model in order to share its data model).
In the second phase, once a node has subscribed to different

topics, the algorithm must calculate its storage possibilities.
Each node in the network sends its features to the central node
as a numeric set representing the aforementioned parameters.
Figure 5 shows the different features used to calculate the
storage capacity of each node, and how each parameter is
converted before sending it to the central node.

During this second phase, the central node normalises
each node’s parameters according to the rest of the values
of the same parameter for the different nodes. Parameters
not specified by the node are counted as null, decreasing the
probability of the node’s selection for storage. As will be
detailed below, this normalisation consists of dividing each
parameter value by the maximum value of that parameter
among all the nodes in the network.

In the third phase, each parameter value from the second
phase is multiplied by this parameter’s generic weight. The
weights are in the range 0 to 1 in accordance with the objec-
tives or goals of the whole sensor network, and must sum to 1.
The sum of all these parameter values is the corresponding
node’s score.

In the final phase, these scores and the number of replicates
configured in the algorithm are used to select the optimal
number of nodes. The number of replicates are configurable
in the algorithm to a value between 1 and the number of
nodes of the network, since flexibility is one of the approach’s
requirements.

A video of a laboratory demo testing a collection of het-
erogeneous hardware is available2. It shows the adaptive hot-
plugging capacity of the system connecting, disconnecting,
and reconnecting devices, changing or leaving unchanged
their storage and processing capabilities. The demo video
includes a screen recording showing data monitoring and
querying using the API that we had developed. Currently,
a fork of this implementation is being used in SPILab to
manage all the information from the custom sensors and
actuators we are running in the Lab as a testbed. This dataset
is the only one not shared for privacy reasons.

V. EVALUATION
The present implementation was evaluated in five of its
aspects: memory use and cost, fault tolerance, network over-
load, battery or energy consumption and latency. These five
aspects are keys to assessing the feasibility of deploying the
proposed distributed storage framework in complex sensor

2https://youtu.be/9JbE2f-RJ_U

123866 VOLUME 7, 2019

M. Linaje et al.: Mist and Edge Storage: FSD in Sensor Networks

FIGURE 4. Registering and sharing information in a fog network.

network scenarios. The datasets obtained from this evaluation
are available as supplementary material to this paper3.

A. MEMORY USE AND COST
Memory use and cost of data storage is crucial for many IoT
applications. As noted in the Introduction, nowadays most
solutions are Cloud-based in order to avoid the costs of hard-
ware acquisition and maintenance. We evaluated memory
use, regarding disk space and the associated cost, that would
be required if the same information were stored in the Cloud
environment (using Amazon services, being one of the most
common storage options) instead of using FSD in Edge and
Mist environments. In this evaluation, we assumed that one
wants to store information from a sensor of a room’s humidity

3downloadable material (300KB size) available at IEEE Dataport,
http://dx.doi.org/10.21227/maqf-3p48

TABLE 2. Storage needs.

(percentage) and temperature (to 1 decimal place). The space
required to store the sensed information is detailed in Table 2,
including some metadata (Node identification and timestamp
of the measurements).

If a developer/user configures the sensor to acquire infor-
mation every minute, 43 200 entries per month would be
generated (525 600 per year). If, however, the Edge node
senses the environment more frequently, more entries would

VOLUME 7, 2019 123867

M. Linaje et al.: Mist and Edge Storage: FSD in Sensor Networks

FIGURE 5. Sending the features of each node to the central node.

TABLE 3. Time required to fill a 8GB memory storing the information
detailed in table 2.

be generated. For instance, a smoke sensor usually senses the
environment every second, generating 2 592 000 entries per
month (31 536 000 entries per year). E.g., If an Edge node
has an 8 GB micro SD, Table 3 gives estimates of the time
that would be required to completely fill the memories with
data sensed by other different 9 Edge nodes. Obviously, this
estimate may depend on the size of the information obtained.
Therefore, Table 2 data has been used for this estimation, with
a period of one data unit stored every minute from each of the
9 sensors. As can be seen, the memory would be completely
full in 202 years. This estimate shows that it seems feasible
to store the sensed information in the network itself with-
out any storage capacity issues arising. Even the worst case
showed in Table 2 shows 3 years without storage capacity
issues. It is also easy and cheap to double the capacity of the
SD memories.

Comparing the above estimates with storing the informa-
tion on Amazon S3, one could identify which architecture has
lower cost. To that end, let us assume that on average the node
senses just once per minute, that there will be 5 replicates,
and that the associated costs are those listed in Table 4. These
costs correspond to the prices of Amazon S3 standard [33].

The number of replicas is set to 5 in order to have the fairest
possible comparison regarding fault tolerance between FSD
and the Amazon cloud storage service as we will discuss
during this Section.

Therefore, the cost of Edge storing 5 replicates of the
sensed information would be $26.50, since 5 SD cards and
SD card reading/writing modules (to access the SD card from
a MCU) would be needed.

Figure 6 shows the accumulated cost of the two archi-
tectural styles. As can be seen, using the Edge/Mist FSD
solution there is a greater cost during the first months. This
is because of the need to purchase the extra SD memory
cards and modules to handle the proposed FSD algorithm.
But, in implementing a Cloud architecture, the system would
have to face accumulated costs from the 14th month onwards
that are greater than the cost of the Edge solution. It must be
taken into account that when one stores e.g., 1GB of data in
a third-party server in one month, and then another 1GB the
next month, in the second month one must pay for the 2GB
total storage used. Also, these storage systems are focused
on the transfer of large volumes of data for storage, not on
frequent periodic transfers of just a few data that many IoT
devices exhibit, as in Table 2 and Table 3. With the price tiers
of S3 and similar Cloud services, the major initial cost is the
price every 100 entries (Table 4).

The above numbers are for an average frequency of one
read per minute. Other sensors may have a higher frequency.
For those casesm Table 5 also presents the accumulated costs
for the two architectures (Cloud Computing and Edge/Mist
Computing) for two frequencies of the sensors reading
and sending their state – 1 entry per minute, and 1 entry

123868 VOLUME 7, 2019

M. Linaje et al.: Mist and Edge Storage: FSD in Sensor Networks

TABLE 4. Cost of storing the sensed information for the example.

TABLE 5. Accumulated cost for different frequencies.

FIGURE 6. Comparison of accumulated costs of Edge/Mist versus Cloud
storage for the example.

per second). While FSD requires to replicate the data, Cloud
services do not charge us for this replication, that it is per-
formed in the background and related to the fault tolerance
that the Cloud storage service offers.

B. FAULT TOLERANCE
One of the main advantages of a Cloud environment is the
reliability of the system. Informally, services such as Amazon
S3 claim a fault probability of 10−9 [34], while for an SD
card, as a hardware component, this probability is only 10−2.
However, with defining only 5 replicates per sensed datum,
the probability of getting a fault is 10−2∗r = 10−10. There-
fore, the presented algorithm not only allows to get a system
that is reliable but, flexible (since the number of replicas
is adjustable). Figure 7 shows the relationship between the
number of replicates in the Edge environment and the fault
probability. A lower fault probability implies a higher fault
tolerance.

C. NETWORK OVERLOAD
With FSD, the distributed storage implies an increase in the
amount of data communicated among the sensor nodes and
the central node. In this subsection, we shall compare the

FIGURE 7. Relationship between the number of replicates and the fault
tolerance.

network overload produced by FSD with that of a Cloud-
based solution.

A Cloud-based solution has many possible ways in which
its services might be distributed. In a Cloud infrastruc-
ture, the three services (the message broker, the application
server, and the DBMS) might be in the same or in different
physical/virtual machines, in the latter case, possibly sep-
arated by thousands of kilometres. We shall therefore
compare FSD with the best and the worst Cloud-based sce-
narios with respect to the number of messages required.
In the best Cloud-based scenario, all the services run in the
same physical/virtual machine, while in the worst they run in
different ones.

In the best Cloud-based scenario and using the same tech-
nology stack described in Section IV-C, the Edge nodes
would send their data (message 1) to the message broker. The
application’s server gets this information and sends it to the
mongodb service for storage. If the developer also wants a
data schema/model of the information sent by each of the
Edge nodes, an initial message from the sensor node to the
MQTT broker (message 2) would need to be generated. This
model is also useful for the ease of searching and filtering
information in an unstructured DBMS such as mongodb.

VOLUME 7, 2019 123869

M. Linaje et al.: Mist and Edge Storage: FSD in Sensor Networks

FIGURE 8. Network overload of replication in the cloud and FSD for
9 nodes.

The main network overload problem appears in the worst
Cloud environment case. In this case, the three services run on
different machines, so that new communications are needed
to send the information from onemachine to another – for this
particular example, a new message from the MQTT broker
to node.js (message 3), another from node.js to mondodb to
store the sensed data (message 4), and one from the MQTT
broker to node.js (messages 5).

When using FSD over Edge/Mist, each sensor node ini-
tially sends its model (message 1) to the model channel. Sub-
sequently, the sensor node periodically sends the sensed data
(message 2) using the istate channel and a message with the
Edge node FSD parameters (message 3) to the meta channel.
Only the first is sent internally to mongodb for storage. The
major differences arise when replicates are required in order
to support distributed storage. For a real comparison, one
must consider all the additional messages required to store
the replicates on different computing devices. Comparing,
for instance, FSD again with Amazon S3 regular storage
Cloud service, the latter always uses 2 replicates [34] for
each datum sent to be stored. Thus, one can imagine Amazon
periodically sending messages with the sensed data to the 2
servers containing the replicates (messages 9 and 10). For
FSD to get a slightly better fault tolerance than Amazon S3,
5 replicates are required as explained above, but the system
only needs to send the sensed data for replication, not themeta
information which is only relevant for the central node to be
able to run the FSD selection algorithm. Thus, each sensed
data is sent to 5 node channels for storage (messages 4, 5, 6,
7, and 8, let us say).

Figure 8 shows a comparison of how these different storage
solutions evolve for a constant number of 9 nodes in the
sensor network, a sampling rate of 1 message per minute,
and a number of replicates increasing from 1 to 10. One
observes in the figure that FSD always leads to more net-
work overload (i.e., it generates more messages) than the
best Cloud scenario. Since the S3 solution always stores two
replicates, a parameter which we cannot alter, although the
worst Cloud scenario produces more network overload than

FIGURE 9. Network overload of replication in the cloud and FSD with
5 replicates.

FSD from 1 to 5 replicates, there is then a cross-over point
and it produces less overload for 7 replicates or more. Also,
above 9 replicates, FSD has a limitation in this scenario since
it is only able to store the same replicate in the same node
once (i.e., the number of replicates cannot be greater than
the number of nodes in FSD). Thus, even if the specification
of 10 replicates is given to FSD, if there are just 9 nodes
available, the maximum number of replicates (and messages)
that would be generated would also be 9. This is the why the
FSD line in Figure 8 finishes horizontal in parallel with the
Cloud service lines.

Figure 9 plots another interesting comparison as the num-
ber of nodes increases from 1 to 10, again for a sampling rate
of 1 message per minute, but nowwith a constant number of 5
replicates (to get a slightly better fault tolerance than S3 as
explained above). One observes that, with a small number of
nodes (from 1 to the number of FSD replicates which is 5 in
this case), the FSD line goes up as a series of steps. The reason
is as was noted in the previous paragraph, since the number of
replicates in FSD cannot be greater than the number of nodes.
FSD always generates more messages than the best Cloud
scenario but, fewer messages than the worst Cloud scenario.
Also, above 5 nodes, its growth on the plot becomes linear but
not quite as steep as that of the worst Cloud case. Indeed, we
have also estimated other scenarios with thousands of nodes,
finding that FSD continues to separate from the worst Cloud
scenario, demonstrating its validity for the future predicted
growth of IoT.

D. ENERGY CONSUMPTION
The deployment of this algorithm has an impact in terms
of energy consumption, since the MCUs need to do more
tasks than the regular sensing and transmission ones. Many
IoT devices are battery powered and the deployment of any
proposal that impacts negatively on it can lead to shortening
their lifetime and impact on the behaviour of the whole
system. Therefore, we have performed an analysis of the
energy consumed by the FSD algorithm. To that end, we have
executed the algorithm at a sampling rate of 60Hz during

123870 VOLUME 7, 2019

M. Linaje et al.: Mist and Edge Storage: FSD in Sensor Networks

FIGURE 10. Energy consumption at a sampling rate of 60Hz.

10 minutes. For these tests we selected an bare-mounted
ESP8266.

As can be seen in Figure 10, we have measured, first,
the consumption when the node is idle (blue line). In this
mode, the MCU wakes up every minute because it is using
a e DTIM beacon interval of 1 minute (DTIM1 according to
the MCU datasheet) having a residual consumption around
7.88mA. The red line represent this MCU punctual power
consumption while continuously sampling the required sen-
sor, storing and/or sending the sensed data, as well as com-
puting the received requests. This process entails an average
consumption around 81.05 mA (291.79 Ah). Finally, we have
also measured the consumption when the device is receiv-
ing and transmitting extra information from different MQTT
channels as well as storing data in the SD to cope with FSD
(orange line). This normal node operations plus the extra FSD
process entails an average consumption around 83.50 mA
(300.61 Ah).

For this test, we assumed that the node is always awaken,
avoiding the differences we notice between the different
power consumption modes that exhibit different MCUs.
Obviously, in a real environment the device will be idle
some time to reduce this excessive and unnecessary energy
consumption. As can be seen, the consumption is similar in
both cases. The FSD algorithm is not power-hungry for the
sensor nodes and consumes a small extra amount of energy
(around 9.7%).

This increase can better be seen in the accumulative lines
drawn in Figure 10 (note that there are two Y axis, one at
the left and one at the right). The yellow line depicts the
accumulative power consumption when the node does not
store any replicates and the blue line depicts the accumu-
lative consumption when the node stores them. In order to
better compare these lines, a second left Y-axis was included

for these lines. As can be seen, the consumption slightly
increases more sharply when the device stores replicates.

The very small difference in the sensor nodes between
using or not FSD is because most of the power consumption
occurs during the standard connection phase (e.g., getting
an IP from the DHCP, connecting to a DNS,...). Due to
this phase is already performed by sensor nodes not using
FSD, the only extra amount of energy/time required is to
send/receive to/from an additional set of channels and store
very little information when required. This operations are
performed really fast (less than 100ms in average) with the
tested MCU 80MHz clock speed.

E. LATENCY
Finally, another dimension that is affected by the FSD algo-
rithm is latency. One of the main advantages of the Fog,
Mist and Edge Computing paradigms is the responsiveness,
specially in the latter. The presented approach allows devel-
oper to store the sensed information in Edge or Mist devices,
reducing the responsiveness.

Figure 11 shows the latency obtained for storing a datum
in the Cloud environment or in the Edge/Mist using FSD.
For evaluating the latency of storing a datum in a Cloud
environment, we firstly invoked a Cloud endpoint (deployed
in Amazon) for storing the datum. That endpoint was invoked
1 000 times in order to get the average latency. On average it
required 83.48 ms to store the datum.

Secondly, we evaluated the time required to store a datum
using FSD with different configurations (from 2 to 7 repli-
cates). As can be seen in Figure 11 (blue line), as the
number of replicates increases, the latency also increases.
Again, in order to get the average latency, the same data
was stored 1 000 times. With two nodes, the obtained latency
was 13.61 ms, while with seven nodes the average latency

VOLUME 7, 2019 123871

M. Linaje et al.: Mist and Edge Storage: FSD in Sensor Networks

FIGURE 11. RXTX message latency.

was 58.35 ms because of the network overload and the time
required for creating and storing every replica. Nevertheless,
the obtained latency is always lower than the latency obtained
with the Cloud environment. Obviously, with a higher num-
ber of replicates, the latency would be higher than the one
obtained using a cloud environment. However, we have also
discussed before than even with 5 replicas the fault tolerance
is slightly better than the Amazon S3 one.

VI. DISCUSSION
In the previous section, we evaluated what in our opinion
were the most interesting aspects with which to compare
the FSD approach with the state-of-the-art Cloud solutions
(currently, maybe the most extensively used development
option to store data from sensors). Tomake a comparisonwith
a real storage system, we chose Amazon S3 regular storage as
currently being one of the most used Cloud storage services.
Since this service is not in our full control, some details are
difficult or impossible to find and/or contrast. We were able
to find the parameters required for the evaluation section in
the Amazon S3 documentation pages as well as other some
informal sites.

Regarding memory usage, Section V-A showed that any
Edge/Mist storage approach could be valid for real-world
implementations. This is because of the capacity of the SD
card memories available nowadays, and the small footprint
that produces each datum from a sensor node. If a sensor
samples and sends information to the network every second,
a regular 8GB memory could store its own information for
decades. Even in a scenario with 5 distributed replicates, this
SD card could store all the information produced by 5 nodes
each second for 6 years. Just doubling the memory to 16GB,
quite common storage capacity nowadays, would also easily
double this capacity with no further change.

Regarding cost, Section V-A also described a plausible
scenario with certain number of replicates, applying the cur-
rent cost of SD memory cards and the costs associated with
Amazon S3 storage. The result was that for the first months
it is cheaper to use the Cloud services, but after the 14th
month the recurrent costs of the Amazon services surpass
the FSD costs. Thus, we can state that for prototypes as well

as short-term deployments it is cheaper to use Amazon S3,
but for long-term deployment FSD is definitely cheaper. This
is logical since memory cards are getting cheaper, and in
Amazon as in other third-party Cloud storage solutions one
must pay for the accumulative storage as well as for the data
transmissions.

Regarding fault tolerance, Section V-B showed that in
FSD one has control over the number of replicates, so that
fault tolerance can easily be fitted to satisfy specific project
requirements. This is not the case for Amazon S3 which has
a fixed fault tolerance of 10−9. Section V-B also included the
number of replicates that are needed to get this same fault
tolerance in FSD. The result was between 4 (to get 10−8

fault tolerance) and 5 (to get 10−10 fault tolerance). Nonethe-
less, the delocalization of Cloud solutions has another
advantage – less possibility of suffering a disaster in two
locations at the same time. Due to the data locality of FSD,
a disaster at the place where the sensor network is located
could physically affect all the devices. To mitigate this prob-
lem, we think that FSD could be combined with other layer
architecture storage solutions (e.g., just to back up). To avoid
privacy issues in this situation, a clear advantage when using
FSD over Amazon, FSD could be extended in the future to
support federation, to store data of one sensor network in
other Edge/Mist devices of the same organisation but in some
other location. As we have shown, storage capacity and cost
should not be a problem.

Regarding network overload (addressed in Section V-C),
the evaluation showed that the number of messages is not
excessive in our opinion. With FSD, one can flexibly adapt
the fault tolerance for a specific project or deployment, bal-
ancing the network overload and fault tolerance as required.
Summarising, we could say that FSD requires an intermedi-
ate number of messages when compared with the best and
worst Cloud-based scenarios as the number of nodes grows
(Figure 9). This statement concerning relationships can also
be maintained when replicates are increased.

Energy consumption (Section V-D) is one of the key
aspects affecting the deployment of FSD. Many IoT devices
shaping the sensor network are battery-powered and any
increase in the energy consumption can reduce the applica-
bility of the system. Concretely, we have identified that using
the sensor node also to receive and store replicates lead to an
increase of 9.7% in the battery consumption. This increase,
although it is significant, can be perfectly assumed by many
nodes in order to reduce the operational Cloud cost or even
to increase the fault tolerance.

Regarding the latency, one of the assumptions of using
an Edge/Mist solution is the increase in the responsiveness.
The evaluation showed that the latency for storing a sensed
data increases as the number of nodes and replicates growth.
This fact makes sense since the task, the network overloads,
etc. also increase. The results showed that the latency when
7 replicates is still lower that the average latency of storing
that same data in a Cloud environment. In addition, with just
5 replicates the reliability of the system would be similar

123872 VOLUME 7, 2019

M. Linaje et al.: Mist and Edge Storage: FSD in Sensor Networks

to a cloud environment (see Section V-B) while the average
latency would be the half.

Finally, regarding the implementation, some of the exam-
ples provided generate even more messages because they use
some FSD features that are beyond the scope of this paper,
whose focus has been on the storage capabilities of FSD for
Edge and Mist environments. An example of these additional
features is a timestamp channel updated by the central node
in order to support a common clock for all the Edge nodes
when the project requires it.

VII. RELATED WORK
In this section, we shall summarise the main storage tech-
niques applied to sensor networks (Edge and/or Mist layers).
We want to highlight that the Edge devices comprise in the
literature a wide range of devices, from low-end devices,
such as the focus of this paper, to computer servers at the
Edge layer. Therefore, not all the research works have the
same target devices. Anyway, storage in sensor networks
can be categorised as centralised or distributed [35], [36].
In those networks using centralised storage, data is sent to
a single node responsible for storing data or is sent outside
the network. In those networks using distributed storage,
the node keeps the information after sensing the data and
sends it to another node or to a set of them to replicate
the information.We discarded centralised storage approaches
for this Related Work section, since our proposal is a fully
distributed data storage solution. Distributed storage can be
classified into two categories: fully distributed storage and
partially distributed storage.

A. FULLY DISTRIBUTED DATA STORAGE
In the fully distributed category, all nodes contribute equi-
tably to generate and store information. All nodes attempt
to store the values taken from sensors locally, and if their
memory is full, the task of storing the new values is delegated
to another node.

ProFlex [9] and SUPPLE [37] require a tree or mesh topol-
ogy to work with. ProFlex supports heterogeneous networks
with a central mobile node. It is a flexible storage scheme that
builds multiple data replication structures. Firstly, it creates
several storage structures in a tree where master nodes are the
ones with the best features. Secondly, it sends to the central
node of each tree the importance factor of each node for data
storage. Finally, the central node receives the node informa-
tion and sends it to the storage nodes. Its main disadvantage
is its problem in ensuring data security. SUPPLE consists
of three phases. In the first, it creates a logical structure in
the form of a tree, where the central node is responsible for
receiving data from and replicating it to the network. In the
second, it assigns weights to the nodes representing their
probability of storing data. And in the third, data is sent to
the central node. Its main drawbacks are the central node’s
high power consumption and the high message overhead.

C&R-DS [38] and S&D-DS [39] are approaches with
an emphasis on data security and privacy. The goal of

C&R-DS is to prevent attacks stealing information produced
by sensors. This type of network consists of three types of
nodes: sensor, storage, and master nodes. Communications
are encrypted, so that storage nodes need at least a certain
good level of computing power and main memory capacity.
The sensors periodically send data to the storage nodes. The
main disadvantages of this approach are related to data loss
and storage node failures. S&D-DS security is based on the
use of a shared secret key and Reed-Solomon code [40]. This
approach is resistant to the existence of compromised nodes,
and uses a technique to verify the integrity of the distributed
data. Drawbacks are related to the storage, communications,
and computing overhead.

C-Storage [9] and DSforIOT [41] are focused on load
balancing, improving the problem of low memory capacity
in sensor nodes. C-Storage uses data compression techniques
to store information. It employs fewer transmissions than
other algorithms. Its main disadvantage is related to secu-
rity issues when a node is compromised. DSforIOT’s main
contribution is in providing a low complexity mechanism for
data replication in a distributed manner. However, control
over the number of replicates is lost so that it has a low data
availability.

TinyDSM [11] and DSforCDA [42] focus on reliability,
providing robust distributed storage so that data can always be
recovered despite possible node failures. TinyDSM ensures
data availability by introducing data redundancy. Its main
disadvantages are security problems and load balancing.
DSforCDA introduces sufficient redundancy at minimal net-
work cost to make it possible to recover data after a failure.
The replicate management system presented in this solution
brings with it high data availability. Its main disadvantage is
that it needs intensive computational processing, hindering
its use in constrained embedded nodes and in environments
requiring instantaneous results.

DDAS4AN [43] is an approach defining an scheme for
selecting the data that should be stored locally in the IoT
nodes. With this scheme, nodes collect data from their envi-
ronment in the form of multidimensional streams and decide,
in real time, which data should be stored locally for further
processing. To efficiently store the data, first, this approach
identifieswhether the sensed datum is an outlier by applying a
consensus scheme. If the datum is not an outlier, the approach
identifies the nodes where it should be replicated by using a
heuristic model to identify the top-k nodes where the datum
should be replicated taking into account the correlation with
the data already stored by each node. Again, in order to
identify the outliers and the correlated nodes to store the
sensed information, the required computational capabilities
are higher.

RBCNS [44] defines a local dissemination and a region-
based reconstruction algorithm. This approach focuses on
those situations in which users may only need information
stored in regions where the monitoring events are sensed,
and recovering the global data field is actually not necessary.
To that end, the authors use a t-hop local dissemination

VOLUME 7, 2019 123873

M. Linaje et al.: Mist and Edge Storage: FSD in Sensor Networks

TABLE 6. Comparison of the approaches analysed against the FSD requirements.

strategy in which each sensor reading is only transmitted
by t hops, and does not have to be disseminated throughout
the network. To increase the algorithm efficiency, a lazy-
encoding algorithm to exploit the correlation among sensor
readings is proposed, avoiding the encoding of the readings
from irrelevant regions. This approach limit the network over-
head and the data encoding, but although an inter-region data
recovery algorithm is proposed the complexity of recovering
this information is increased.

ElfStore [45] is a low overhead distributed/federated stor-
age for the Edge and Fog layers. For comparison with our
approach, it stores not unique measurements from a sensor
but streams of data blocks instead of single measurements.
It also select the appropriate nodes for replicates storage
automatically according to their reliability. Two virtual test
have been performed to see the behaviour of the framework
but, no real ones. For the scope of ElfStore a device like a
Raspberry Pi, with 4 IP cores, is an Edge node. The same
device using FSD could be used at the Edge or Mist layers
(as a sensor/actuator node or as a hub/gateway with extended
capabilities). Thus, no low-end microcontrollers inside most
IoT products are the focus of this proposal, that requires more
computation capabilities.

B. PARTIALLY DISTRIBUTED DATA STORAGE
In the partially distributed category, some nodes handle the
storage of certain information while the rest only acquire
information and send it to its destination.

SDS [2] and KDDCS [46] require a tree-based node topol-
ogy. The SDS storage algorithm is based on spatiotemporal
data similarity, providing a search service. It distributes the
events so that the inverse of the distance between neighbours
stands for the similarity of the data stored on them. However,
there is an important lack of security, and the algorithm causes

delays. KDDCS is a K-D tree refinement with the number
of sensors on each side of the partition being approximately
equal. This avoids there being any hot spots caused by an
uneven distribution of sensors or events. The disadvantages
are a longer delay when making queries, insecurity, and poor
behaviour in large networks.

The focus of PDCS [47] and DS-FBA [48] is on security
and privacy. PDCS encrypts every communication between
nodes, needing computation with the keys to decrypt the data
stored in a node. It assumes that the sensor network is divided
into cells, with each pair of nodes in neighbouring cells being
able to communicate with each other. It provides efficient
processing of queries, but its main disadvantage is low data
availability. DS-FBA tries to ensure that an attacker could not
relate encrypted and original data. It has low overload and
computational cost at the expense of increased overall system
complexity, but it is quite limited in other required features.

DLB [10] and ASR-DCS [49] focus on load balancing.
DLB provides a grid-based solution that dynamically sets the
number of storage nodes. It also presents a set of thresholds
for each grid so that the load is shared between all nodes.
However, it has lower data availability and less security
than other solutions. ASR-DCS provides the network with
scalability at the same time as the ability to auto-adapt to
network conditions. It replicates the data in multiple storage
nodes. Its disadvantages are poor security and that it does not
completely solve the problem of hot spots.

ADCS [50] and D-DCS [12] focus on reliability to pro-
vide a robust system and increase data availability. ADCS
applies a hybridmethod that dynamically determines network
conditions. Based on these conditions, the parent node infor-
mation will be stored where events are sent. It uses decision
methods to select the most appropriate way to store data
(centralised or distributed). The approach has been reported

123874 VOLUME 7, 2019

M. Linaje et al.: Mist and Edge Storage: FSD in Sensor Networks

to cause security and availability problems as well as having
problems with primary node failures. D-DCS provides dis-
tributed storage, periodically changing storage nodes. This
allows querying the storage nodes prior to the consultation
of past events because the data of a storage node is not
overwritten until this node has been chosen several times
and in different time windows, thus increasing the tempo-
ral availability. The main problems include high cost and
loss of information resulting from poor management of the
windows.

Table 6 presents our conclusions in matching the FSD
system requirements with the current proposals described
above. No approach covers a full column as FSD does.
C-Storage is the one which covers most requirements, but
even then, only 10 out of the 15 are covered, leaving 1/3 of
them uncovered.

VIII. CONCLUSION AND FUTURE WORK
The combination of the technologies selected for the imple-
mentation, including a heterogeneity of constrained devices,
presented a level of performance that surprised us pleasantly.
Even though this is an ongoing project, we consider it mature
enough to be shared with the developer and research com-
munity to help advance Edge/Mist Computing distributed
storage with low-end/constrained devices.

We currently work on improving the current synchronisa-
tion system and API, and the security aspects of the system.
We have also thought about deploying a rule service like
Drools to add alarms and improve the general management
of the system. In addition, we are evaluating how to inte-
grate FSD with in a Edge, Fog and Cloud infrastructure in
order to provide support to projects that have certain specific
requirements or potential problems due to excessive locality
and, also, to get the maximum benefit from each paradigm.

Many issues remain open, such as locality problems that
could affect fault tolerance of the whole system, and should
be addressed in the future by the research community.

REFERENCES
[1] G. E. Moore, ‘‘Cramming more components onto integrated circuits,

reprinted from electronics, volume 38, number 8, April 19, 1965, pp. 114
ff,’’ IEEE Solid-State Circuits Soc. Newslett., vol. 11, no. 3, pp. 33–35,
Sep. 2006.

[2] H. Shen, L. Zhao, and Z. Li, ‘‘A distributed spatial-temporal similarity
data storage scheme in wireless sensor networks,’’ IEEE Trans. Mobile
Comput., vol. 10, no. 7, pp. 982–996, Jul. 2011.

[3] A. Rahmani, P. Liljeberg, J.-S. Preden, and A. Jantsch, Eds.,
Fog Computing in the Internet of Things: Intelligence at the
Edge. Cham, Switzerland: Springer, 2018. [Online]. Available:
https://www.springer.com/gp/book/9783319576381

[4] H. Madsen, B. Burtschy, G. Albeanu, and F. Popentiu-Vladicescu, ‘‘Reli-
ability in the utility computing era: Towards reliable fog computing,’’ in
Proc. 20th Int. Conf. Syst., Signals Image Process. (IWSSIP), Jul. 2013,
pp. 43–46.

[5] T. White, Hadoop: The Definitive Guide. Newton, MA, USA:
O’Reilly Media, 2009. [Online]. Available: http://shop.oreilly.com/
product/0636920033448.do

[6] A. V. Dastjerdi and R. Buyya, ‘‘Fog computing: Helping the Internet
of Things realize its potential,’’ Computer, vol. 49, no. 8, pp. 112–116,
Aug. 2016.

[7] P. Bellavista, J. Berrocal, A. Corradi, S. K. Das, L. Foschini, and A. Zanni,
‘‘A survey on fog computing for the Internet of Things,’’ Pervasive
Mobile Comput., vol. 52, pp. 71–99, Jan. 2019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1574119218301111

[8] OpenFog Consortium. (Feb. 2019). OpenFog Reference Architecture for
Fog Computing. [Online]. Available: https://www.openfogconsortium.org/
wp-content/uploads/OpenFog_Reference_Architecture_2_09_17-
FINAL.pdf

[9] A. Talari and N. Rahnavard, ‘‘CStorage: Distributed data storage in wire-
less sensor networks employing compressive sensing,’’ in Proc. IEEE
Global Telecommun. Conf. (GLOBECOM), Dec. 2011, pp. 1–5.

[10] W.-H. Liao, K.-P. Shih, andW.-C.Wu, ‘‘A grid-based dynamic load balanc-
ing approach for data-centric storage in wireless sensor networks,’’ Com-
put. Elect. Eng., vol. 36, no. 1, pp. 19–30, Jan. 2010. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0045790609000573

[11] K. Piotrowski, P. Langendoerfer, and S. Peter, ‘‘tinyDSM:A highly reliable
cooperative data storage for wireless sensor networks,’’ in Proc. IEEE
Conf. Publication, May 2019, pp. 225–232. [Online]. Available: https://
ieeexplore.ieee.org/abstract/document/5067485

[12] N. Cuevas,M. Uruena, G. de Veciana, R. Cuevas, andN. Crespi, ‘‘Dynamic
data-centric storage for long-term storage in wireless sensor and actor
networks,’’ Wireless Netw., vol. 20, no. 1, pp. 141–153, Jan. 2014.
doi: 10.1007/s11276-013-0598-5.

[13] P. G. Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino,
A. Iamnitchi, M. Barcellos, P. Felber, and E. Riviere, ‘‘Edge-centric
computing: Vision and challenges,’’ ACM SIGCOMM Comput. Commun.
Rev., vol. 45, no. 5, pp. 37–42, 2015. [Online]. Available: http://doi.
acm.org/10.1145/2831347.2831354

[14] M. Uehara, ‘‘Mist computing: Linking cloudlet to fogs,’’ in Computa-
tional Science/Intelligence & Applied Informatics (Studies in Compu-
tational Intelligence), R. Lee, Ed. Cham, Switzerland: Springer, 2018,
pp. 201–213. doi: 10.1007/978-3-319-63618-4_15.

[15] P. Hu, S. Dhelim, H. Ning, and T. Qiu, ‘‘Survey on fog computing: Archi-
tecture, key technologies, applications and open issues,’’ J. Netw. Comput.
Appl., vol. 98, pp. 27–42, Nov. 2017. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S1084804517302953

[16] J. Venner, Pro Hadoop. New York, NY, USA: Apress, 2009.
[17] J. Dean and S. Ghemawat, ‘‘MapReduce: Simplified data processing on

large clusters,’’ in Proc. 6th Conf. Symp. Opear. Syst. Design Imple-
ment. (OSDI), vol. 6, 2004, p. 10. [Online]. Available: http://dl.acm.org/
citation.cfm?id=1251254.1251264

[18] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, ‘‘The Hadoop dis-
tributed file system,’’ in Proc. IEEE 26th Symp. Mass Storage Syst. Tech-
nol. (MSST), May 2010, pp. 1–10.

[19] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash,
‘‘Internet of Things: A survey on enabling technologies, protocols, and
applications,’’ IEEECommun. Surveys Tuts., vol. 17, no. 4, pp. 2347–2376,
4th Quart., 2015.

[20] K. Vatanparvar and M. A. Al Faruque, ‘‘Control-as-a-service in cyber-
physical energy systems over fog computing,’’ in Fog Computing in the
Internet of Things. Cham, Switzerland: Springer, 2018, pp. 123–144.
[Online]. Available: https://link.springer.com/chapter/10.1007/978-3-319-
57639-8_7

[21] (Feb. 2019).OpenStackOpen Source CloudComputing Software. [Online].
Available: https://www.openstack.org/

[22] Embedded Microprocessor Benchmark Consortium. (2019). CPU Bench-
mark MCU Benchmark CoreMark EEMBC. Accessed: Jan. 4, 2019.
[Online]. Available: https://www.eembc.org/coremark/

[23] D. Kegel, ‘‘The C10K problem,’’ Tech. Rep., 2006. [Online]. Available:
http://www.kegel.com/c10k.html

[24] (2019). Node.js Foundation. [Online]. Available: https://nodejs.org/en/
[25] T. Li, Y. Liu, Y. Tian, S. Shen, andW.Mao, ‘‘A storage solution for massive

IoT data based on NoSQL,’’ in Proc. IEEE Int. Conf. Green Comput.
Commun. (GreenCom), Nov. 2012, pp. 50–57.

[26] (2019). Open Source Document Database. Accessed: Jan. 4, 2019.
[Online]. Available: https://www.mongodb.com/index

[27] K. Maeda, ‘‘Performance evaluation of object serialization libraries in
XML, JSON and binary formats,’’ in Proc. 2nd Int. Conf. Digit. Inf.
Commun. Technol. Appl. (DICTAP), May 2012, pp. 177–182.

[28] Oasis. (Feb. 2019). AMQP—Advanced Message Queuing Protocol.
Accessed: Apr. 24, 2019. [Online]. Available: https://www.amqp.org/

[29] CoAP. (Feb. 2019). CoAP—Constrained Application Protocol.
Accessed: Apr. 24, 2019. [Online]. Available: http://coap.technology/

VOLUME 7, 2019 123875

http://dx.doi.org/10.1007/s11276-013-0598-5
http://dx.doi.org/10.1007/978-3-319-63618-4_15

M. Linaje et al.: Mist and Edge Storage: FSD in Sensor Networks

[30] DDS. (Feb. 2019). DDS Portal—Data Distribution Services. Accessed:
Apr. 24, 2019. [Online]. Available: http://portals.omg.org/dds/

[31] P. Saint-Andre, Extensible Messaging and Presence Protocol (XMPP):
Core, document RFC 3920, 2011. [Online]. Available: http://www.rfc-
editor.org/info/rfc6120

[32] MQTT. (Feb. 2019). MQTT—Message Queue Telemetry Transport.
Accessed: Apr. 24, 2019. [Online]. Available: http://mqtt.org/

[33] Amazon Simple Storage Service. (2019). Cloud Storage Pricing S3
Pricing by Region. Accessed: Jan. 9, 2019. [Online]. Available:
https://aws.amazon.com/s3/pricing/

[34] (2019). Amazon S3 Reduced Redundancy Storage. Accessed:
Jan. 15, 2019. [Online]. Available: https://aws.amazon.com/s3/reduced-
redundancy/

[35] N. M. Nair. (2013). Survey on Distributed Data Storage Schemes in
Wireless Sensor Networks. [Online]. Available: https://paper/survey-on-
Distributed-Data-Storage-Schemes-in-Nair/9f24a56bcdcb9b8b336ecea59
f2a65337433d2db

[36] X. Ma, J. Liang, R. Liu, W. Ni, Y. Li, R. Li, W. Ma, and C. Qi, ‘‘A survey
on data storage and information discovery in the WSANs-based edge
computing systems,’’ Sensors, vol. 18, no. 2, p. 546, Feb. 2018. [Online].
Available: https://www.mdpi.com/1424-8220/18/2/546

[37] A. C. Viana, T. Herault, T. Largillier, S. Peyronnet, and F. Zaïdi, ‘‘Supple:
A flexible probabilistic data dissemination protocol for wireless sensor
networks,’’ in Proc. 13th ACM Int. Conf. Modeling, Anal., Simulation
Wireless Mobile Syst. (MSWIM), 2010, pp. 385–392. [Online]. Available:
http://doi.acm.org/10.1145/1868521.1868586

[38] K. V. Kusuma and M. R. Prasad, ‘‘Confidential and reliable data stor-
age in WSN,’’ Int. J. Adv. Res. Comput. Sci. Softw. Eng., vol. 3, no. 4,
pp. 148–151, Apr. 2013.

[39] W. Ren, Y. Ren, andH. Zhang, ‘‘Secure, dependable and publicly verifiable
distributed data storage in unattended wireless sensor networks,’’ Sci.
China Inf. Sci., vol. 53, no. 5, pp. 964–979, 2010. [Online]. Available:
https://link.springer.com/article/10.1007/s11432-010-0096-7

[40] S. B. Wicker and V. K. Bhargava, Reed-Solomon Codes and Their Appli-
cations. Hoboken, NJ, USA: Wiley, 1999.

[41] P. Gonizzi, G. Ferrari, V. Gay, and J. Leguay, ‘‘Data dissemination
scheme for distributed storage for IoT observation systems at large
scale,’’ Inf. Fusion, vol. 22, pp. 16–25, Mar. 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1566253513000444

[42] S. Yulong, X. Ning, P. Qingqi, M. Jianfeng, X. Qijian, and W. Zuoshun,
‘‘Distributed storage schemes for controlling data availability in wire-
less sensor networks,’’ in Proc. 11th Int. Conf. Comput. Intell. Secur.,
Dec. 2011, pp. 545–549.

[43] K. Kolomvatsos, P. Oikonomou, M. G. Koziri, and T. Loukopoulos,
‘‘A distributed data allocation scheme for autonomous nodes,’’ in Proc.
IEEE SmartWorld, Ubiquitous Intell. Comput., Adv. Trusted Comput., Scal-
able Comput. Commun., Cloud Big Data Comput., Internet People Smart
City Innov. (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI),
Oct. 2018, pp. 1651–1658.

[44] S. Zhou, Y. He, S. Xiang, K. Li, and Y. Liu, ‘‘Region-based compressive
networked storagewith lazy encoding,’’ IEEETrans. Parallel Distrib. Syst.,
vol. 30, no. 6, pp. 1390–1402, Jun. 2019.

[45] S. K. Monga and Y. Simmhan, ‘‘ElfStore: A resilient data storage service
for federated edge and fog resources,’’ 2019, arXiv:1905.08932. [Online].
Available: https://arxiv.org/abs/1905.08932

[46] M. Aly, K. Pruhs, and P. K. Chrysanthis, ‘‘KDDCS: A load-balanced in-
network data-centric storage scheme for sensor networks,’’ in Proc. 15th
ACM Int. Conf. Inf. Knowl. Manage. (CIKM), 2006, pp. 317–326. [Online].
Available: http://doi.acm.org/10.1145/1183614.1183662

[47] M. Shao, S. Zhu, W. Zhang, G. Cao, and Y. Yang, ‘‘PDCS: Security and
privacy support for data-centric sensor networks,’’ IEEE Trans. Mobile
Comput., vol. 8, no. 8, pp. 1023–1038, Aug. 2009.

[48] H. Liu, H. Wang, and Y. Chen, ‘‘Ensuring data storage security against
frequency-based attacks in wireless networks,’’ in Distributed Computing
in Sensor Systems (Lecture Notes in Computer Science), R. Rajaraman,
T. Moscibroda, A. Dunkels, and A. Scaglione, Eds. Berlin, Germany:
Springer, 2010, pp. 201–215.

[49] P. Hejazi and H. H. Amin, ‘‘An adaptive method for structured replication
data-centric storage in wireless sensor networks,’’ in Proc. 5th Int. Conf.
Inf. Technol. Multimedia (ICIMU), Nov. 2011, pp. 1–5.

[50] S. Babaei and M. Sabaei, ‘‘Adaptive data-centric storage in wireless sen-
sor networks,’’ in Proc. 3rd Int. Conf. Comput. Res. Develop., vol. 1,
Mar. 2011, pp. 163–167.

MARINO LINAJE received the Ph.D. degree in
computer science, in 2009. He is currently a
Teacher and a Researcher with the University of
Extremadura. He is also the Co-Founder of two
companies (MultipleCaracter and Homeria Open
Solutions). Since 2010, he has been researching
and teaching Ubiquitous Computing, including
trending topics, such as the Internet of Things,
wearable computing, ambient intelligent, crowd-
sensing, and close related ones. He has published

several articles related to these topics in top level conferences as well as
international journals, since 2004. The aim of his research is to automatize
process, including the creation and deployment of complex systems and
systems of systems.

JAVIER BERROCAL received the Ph.D. degree
in computer science from the University of
Extremadura, Spain, in 2014. From 2010 to 2016,
he was an Assistant Professor with the Depart-
ment of Informatics and Telematics System Engi-
neering, University of Extremadura, where he
obtained an associate position, in 2016. He is also
the Co-Founder of the software consulting com-
pany Global Process and Product Improvement
S.L. (Gloin), in 2010. He has coauthored numerous

peer-reviewed articles in international journals, workshops, and conferences.
His research interests include mobile computing, context awareness, perva-
sive systems, crowd sensing, the Internet of Things, and fog computing.

ALFONSO GALAN-BENITEZ received the bach-
elor’s and master’s degree in telecommunications
engineering from the University of Extremadura.
He is currently serving services with the Secu-
rity Operation Center (SOC) of Telefónica Solu-
ciones S.A.U. Their job is to provide cyber secu-
rity solutions for large companies, doing network
planning and deployment of security equipment
(firewalls, proxies, correlators, and so on). On the
other hand, it is passionate about innovative tech-

nologies, focused on the Internet of Things (IoT).

123876 VOLUME 7, 2019

	INTRODUCTION
	MOTIVATION AND INSPIRATION
	FAIR STORAGE DISTRIBUTION (FSD)
	FSD FOUNDATIONS
	FSD ALGORITHM

	FSD IMPLEMENTATION
	REQUIREMENTS
	PARAMETERS MONITORED
	IMPLEMENTATION TECHNOLOGIES
	A SPECIFIC FSD IMPLEMENTATION

	EVALUATION
	MEMORY USE AND COST
	FAULT TOLERANCE
	NETWORK OVERLOAD
	ENERGY CONSUMPTION
	LATENCY

	DISCUSSION
	RELATED WORK
	FULLY DISTRIBUTED DATA STORAGE
	PARTIALLY DISTRIBUTED DATA STORAGE

	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	MARINO LINAJE
	JAVIER BERROCAL
	ALFONSO GALAN-BENITEZ

