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ABSTRACT In this paper, a novel optimal control scheme for ground-granulated blast-furnace slag (GGBS)
production process is proposed by using the iterative adaptive dynamic programming (ADP) method and
dynamic optimization of desired values. To handle the characteristic of changing operation modes and to
obtain a practical optimal control result, this paper formulates the GGBS optimal control problem based
on an intensive study of the production technique, and constructs the optimal control scheme based on the
repetitive optimization strategy — ‘‘target optimization™ and ‘“process optimization” . To obtain the optimal
targets matching with changing operation modes, SVM modeling and multi-objective optimization method
are utilized to solve the multi-objective optimization problem. In order to minimize the performance index
function further and faster, iterative tuning technology is adopted to design the ADP based optimal control
method. Finally, simulation is conducted to verify the effectiveness of the proposed approach.

INDEX TERMS Iterative adaptive dynamic programming, GGBS production process, multi-objective

optimization.

I. INTRODUCTION

In the past decades, ground-granulated blast-furnace slag
(GGBS) production has been caused widely attention. On one
hand, derived from blast furnace slag — a kind of waste mate-
rial from steel and iron making, GGBS provides a friendly
and economic beneficial way to handle the waste. On the
other hand, thanks to its unique physical and chemical struc-
ture, GGBS can be a kind of supplementary material into
cement and improves many characteristics of concrete, such
as durability, strength and corrosion resistance [1], [2]. How-
ever, in spite of relative high production yield in industrial
field, due to the enclosed mill and changing operation modes,
it is still difficult to design a stable control process, and to
obtain uniform and high product quality.

The associate editor coordinating the review of this manuscript and
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Due to the characteristics of multiple variables, strong
coupling and highly nonlinear, it is a open and hard problem
to optimize and control the GGBS production. Typically, PID
method is adopted to control the mill differential pressure
to a desired value by tuning the feed material, so that the
production works stably [3]. In recent years, intelligent con-
trol methods are widely utilized [4]-[7]. Based on the iden-
tified mathematical model, expert system and fuzzy control
were combined to optimize the material layer thickness [5].
He et al introduced a domain adaptive random weight neural
network to solve the problem of soft sensor for wet ball mill
load parameters under multiple loading conditions [6], [7].
Though above methods realized stable control result of
GGBS production, further optimization is needed to explore
the ability of plant and obtain better quality and yields, at the
same time, more stable operations. Combing neural network,
dynamic programming, and reinforcement learning, adaptive
dynamic programming (ADP) can approximate the optimal
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control signal of nonlinear system, meanwhile, avoid ““curse
of dimensionality” problem. In recent years, many scholars
have conducted in-depth theoretical research and extensive
application of ADP. Using the ELM based heuristic dynamic
programming optimal control method, Li et al proposed a
raw meal fineness control system of vertical mill grinding
process [8]. Taking this strategy, material fitness can track
the desired value at the same time minimize the perfor-
mance index function. To explore the extreme production
capacity under control constrains, Wang [9] and Shen [10]
established and solved the multi-objective problem of GGBS
production, selected optimal solutions were considered as
the reference values to tune the procedure parameters by
workers. However, there are still three main problems that
need further consideration. First, it lacks an integrated scheme
from the optimization of control target to the optimization
of the production progress. Meanwhile, repetitive changes of
operation modes always lead to abrupt deterioration of the
control performance and quality of products. Last, through
paper [11] optimized the production process using online
ADP method, the performance index is not ideal and needs
further decreasing.

To solve these problems, an integrated ‘“‘target optimiza-
tion” and ‘“‘process optimization” scheme is developed. The
repetitive operation modes mechanism is studied by an inten-
sive analyze of the production technique. Then, the con-
strained multi-objective optimization problem is formulated
and solved, combing the optimization objective and the curve
of solution set, selected solution is considered as the control
target. Further, at each time interval, the performance index
function is iteratively reduced so that the ADP optimal control
method can track the optimized target with less control and
state energy consumption. The simulation studies are con-
ducted to show the effectiveness of the proposed method.

The rest of this paper is arranged as follows. Section II
describes the optimal control problem of GGBS production
process. In Section III, iterative ADP controller is designed
based on optimized target. Section IV provides the simulation
results and Section V concludes this paper.

Il. DESCRIPTION OF GGBS PRODUCTION PROCESS
OPTIMAL CONTROL

In this section, the main control variables and corresponding
constrains will be analysed. The multi-objective optimiza-
tion problem and optimal tracking control program are for-
mulated. Further, operation modes changing mechanism is
analysed.

A. INTRODUCTION OF GGBS PRODUCTION PROCESS

Workflow of GGBS production is shown in Fig. 1. This
production process consists of two parts, under the vertical
mill, wasted slag from iron and steel making is ground into
particles, the hot gas dries and blows up particles to the top
of mill for selection. In the selector, materials are classified
that particles with qualified size are transformed into the
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FIGURE 1. Workflow of GGBS production process.

warehouse, and particles with relative big size will drop back
onto the millstone for further grinding.

Stability is an essential consideration for GGBS produc-
tion. Over high mill outlet temperature will burn the filter bag.
Dramatically changing mill differential pressure or unappro-
priate material bed thickness will cause mill vibration. All
these factors will lead to production halts or even disasters.

1) MATERIAL BED THICKNESS

Material bed thickness (MBT) is the mean thickness of
materials on the grinding bed. MBT is the key factor for a
stable GGBS operation. Under the constant grinding pres-
sure, thicker or thinner MBT will increase the rigid contact
between grinding roller and grinding bed, leading to strenu-
ous vibration of mill and deterioration of product quality and
production effectiveness. In practice, MBT is limited between
Smm and 18mm.

2) MILL DIFFERENTIAL PRESSURE

Mill differential pressure (MDP) is the pressure difference
between the pressure at the outlet of mill and pressure at
the inlet of mill. MDP reveals the operation state of GGBS
production process. In normal cases, MDP is a stable value
which means the dynamic balance between the input and
output materials. Decreased MDP implies materials input
mill are less than that out of mill, and vice versa. In practice,
MDP is not only in related with feed material and classifier
motor speed, but also hot gas temperature. In engineering,
MDP is restricted from 20mbar to 30mbar.

3) MILL OUTLET TEMPERATURE

Mill outlet temperature (MOT) is the temperature at the outlet
of selector. Generated from the hot gas dove, hot gas flows
through hot gas valve, recirculation gas valve, goes into mill
from the bottom, dries the materials and blows them up to the
top for selection. Thus, MOT is directly related with the hot
gas generator temperature, rotary valve opening of hot gas,
and rotary valve opening of recirculation gas. At the same
time, it is decided by the materials go in and out of mill, i.e.
feed rate and classifier motor speed.
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TABLE 1. Admissible area of variables.

Name Variable Min  Max Unit
Feed Ul 0 115 T/Hr
Motor speed U 900 1250  r/min
Hot gas Temp. u3 550 750 °C
Valve opening I U4 40 80 %
Valve opening II us 90 100 %
MBT x1 5 18 mm
MDP x2 20 30 mbar
MOT T3 90 120 °C

MOT should be within a certain range. If MOT is too low,
GGBS particles can not be fully dried. Otherwise, if MOT is
too high, the filter bag is easily to be burnt down. Fitter bag
burn is a sever failure which may not only hurt the production
yield but also threaten the safety due to the increasing possi-
bility of causing fire disaster. In practical production, MOT
should be limited from 90°C to 120°C. Meanwhile, MOT
should be as close to the lower limit as possible.

4) SWITCHING OPERATION MODES

In the GGBS production process of Luxin mill line 3 as shown
in Fig. 1, except for normal operation mode, hot gas genera-
tors will alternate for maintenance, and the feeding materials
will change due to different slag sources. These kinds of
operation modes take place at 8:00 am on an unknown day.
Every time the operation mode changes, mismatch between
control signal and controlled plant will cause the abrupt
change of states and deteriorate the control performance. For
the repetitive changing at fixed time of the day, an effective
optimal method is needed to improve the control results.

B. FORMULATION OF GGBS OPTIMAL CONTROL
PROBLEM
From above analyse of the focused factors on stability,
we extract controlled variables: x; is material bed thickness,
x> is mill differential pressure, x3 is mill outlet temperature.
Control variables: u; is feed rate, u» is classifier motor speed,
u3 is the hot gas generator temperature, u4 is rotary valve
opening of recirculation gas, us is rotary valve opening of hot
gas. Admissible area of variables are listed as in Table 1.
Meanwhile, two optimization problems are formulated as
“target optimization” and ‘‘process optimization’, target
optimization provides the optimal set value for the control
process, process optimization realizes the optimization of
performance index.

1) OPTIMIZATION PROBLEM OF SET VALUES FOR
DIFFERENT OPERATING MODES

The objectives are to drive the MBT as close to x{" = 11 as
possible, drive MOT close to xé from the right side, at the
same time, all variables should be within admissible ranges.

[

min |x; —x{"[, X3 —x3
X <xi<xf
I« < i

s.t. uj < uj < u; (1)
(x1,x2,x3) = F (u1, uz, - - - , us)
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where i = 1,2,3,j =1,2,---,5, xf and u! are the lower
bounds of x; and u;, x}' and u]” are the upper bounds of x; and
uj, I is the static model.

2) OPTIMIZATION PROBLEM OF THE CONTROL PROCESS
Given desired trajectories x4, the optimal control objective of
GGBS production process is to track the x; in the optimal
way with control input varying in admissible range.

X —> X4

X <xi<axl

1 u
I/lJ I/lJ l/l]

@)

s.t. :
u = arg, minJ

x(k + 1) = f (x(k), u(k))

where J is the performance index function about u and x, f is
the dynamic model.

Ill. ITERATIVE ADP TRACKING CONTROL BASED ON
DYNAMIC OPTIMIZATION OF SET VALUES

To optimize the GGBS production process, optimal target
is obtained by solving the multi-objective problem. Mean-
while, an iterative ADP method is designed to optimize the
control process further. Finally, the adaptive control scheme
is constructed to deal with the repetitive changing working
conditions.

A. DYNAMIC OPTIMIZATION OF SET VALUES
For the multi-objective problem in the form of (1), the static
model F should be established first. In this paper, we adopt
the PSO-based LS-SVM algorithm to model the three output
variables.

For a given sample set {1, x/ }jﬁi 1> model output by
LS-SVM can be obtained as

M
Riw) = ) AjK (i) + b 3)
=1
where i = 1, 2, 3, the kernel function is given as the radial
basis function

K(u, W) = exp(|ju — #||*/0?) 4

Parameters A; and b can be calculated by solving the
following optimization problem

1 -
P 2 - 2
mmin = 2IIwII + 2)/;:9

stxl =o' K@) +b+¢, j=1,--.M (5

Combining PSO and SVM, parameter ¢ and ¢ are opti-
mized and corresponding models (3) of MBT, MDP and
MOT can be obtained. Detailed PSO-SVM method can be
referred from [9]. Evolutionary algorithms are regarded as
effective method to solve multiple competitive objectives in
(1), NSGA-II algorithm is adopted to obtain the optimal solu-
tion set, where no one solution is better alone with both two
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objectives than other solutions. It is necessary to select one
optimal solution as the set value or control target. Detailed
selection mechanism is described in the experiment section.

B. ITERATIVE ADAPTIVE DYNAMIC PROGRAMMING
DESIGN

To establish the dynamic model in the optimization problem
of the control process described as in (2), following recurrent
neural network (RNN) is utilized.

R+ =AR )+ W ()¢ (f/l(k)x (k))
+ W o (Vatox @)t ©)

where A € R™" is the design matrixes, Wy e RV ¢
R Wz € R™" are the estimated weight matrix. Function
q)(Vl (k)x (k)) € R" is a vector with the elements increas-
ing monotonically. The matrix function o(Vax) € R
is defined as ¢(Vax) = (¢1(Va1x), -+, ¢n(Vaux))T, where
Vo € Rmxn, @; is nondecreasing function. We assume Vi and
V, are given constant matrix, and only the output weights Wi
and Wl are tuned.
Update RNN weights according to the following law

Witk +1) = Wi(k) — a1 ¢(Vix(k))x, (k + 1) — e $(@(k))
Walk + 1) = Wa(k) — azw(Vgx(k))u(k)x;r(k +1)

Xe = X(k) — x(k) )

After a period of tuning, neural network weights come

to be convergent, and the GGBS production process can be
described by the following dynamic [12]

x (k4 1) = Ax (k) + Wl (Vix (k)
+ Wi (Vax (k) u (k) (8)

Given the dynamically optimized states x;(k), desired con-
trol input can be derived as

ug(k) = B(xa (k + 1) — Axg (k) = W'¢p (Vixg (5))) (9)

where B = (W2T (p(szd(k)))T is the pseudo inverse. Define
the state error e(k) and control input error v(k)

e(k) = x(k) — xq(k) (10)
v(k) = u(k) — uq(k) (11)
One can obtain
ext1 = Aex + WEo(Vixe) — Wlo(Vixa)
+ WZT o(Voxp)ux — WzT o(Voxar ) uax
= Aex + WTp(Vi(ex + xar)) + Wy o(Valer +xar)uak
- W1T¢(V1xdk) - W2T¢(V2Xdk)udk
+ WY o(Valer + xar))uk (12)

which can be rewritten as the following dynamic about state
error and control error

ex+1 = f(ex) + gler)uk (13)
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where f(ex) = Aex + W p(Viex + xa)) + W, p(Valex +
Xauge — WIe(Vixa) — Wlo(Voxaua, glexr) =
W3 p(Valex + xa)).

Define the following performance index function

T(e k), v (k) =Y Ulen), v(n) (14)

n=k

where U(e(k), v(k)) = e(k)TQe(k) + v(k)TRu(k), Q and
R are diagonal positive definite matrix of corresponding
dimension. To handle the control constraints, we define the
following state feedback control,

v(x) = U tanh(U ~'v(x)) (15)
where U =diag {t1, -, Ti, "+, Tm}
7; = min(u} — mlflx U, n}(in Ugy — uf)
System dynamic (13) can be rewritten as
exy1 =f(er) + glex)U tanh(T " vy) (16)
and the performance index function (14) can be rewritten as
o0
J(ek),v (k)= Z U(e(n), v(n)) (17)
n=k

where U(e(k), v(k)) = e(k)TQe(k) + tanh™(U~1v)UT x
RU tanh(U~'v;). Thus, regulating problem (8) with con-
strained control input has been turned into the tracking
problem (16) with unconstrained control signal v. The ideal
optimal control is defined as

v¥(k) = arg H}}(I)I{J (e (k). v (k))} (18)

According to Bellman optimal principle, optimal perfor-
mance index function satisfies the following HIB function

J*(e(k)) = r\f}}'{l)l{U(e(k), v(k) +J* etk + 1)} (19)

Optimal control v*(k) satisfies

v¥(k) = arg IVI}ikf)l{U(E(k), v(k)) + J*(e(k + 1))} (20)

Let the partial derivative of J*(e(k)) with respect to v(k) be
Zero,

8J*(ex) U (ex, w) dey | § oI (exr1)
vk dVk vk dert1
TR - - aJ*
— 2TIOTR tanh(D~"vg) + MT 0T x 27 Ckrl)
deg+1
=0 1)

where
1 = U~ (Lysm — tanh(U ™ vy) tanh ™ (T~ vy))
Optimal control signal vj is obtained as

1.T 8J*(ek+1)

_ 1 -
v = —Uartanh(=(UR)™ g ) (22)
2 der11
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C. ADP PRINCIPE
The ADP scheme is implemented by iterating between the
control function

vi(k) = arg Ig%ikl)l{U(e(k), v(k)) + Jile(k + 1))} (23)

and performance index function
Jir1(e(k)) = Ule(k), vi(k)) + Ji(e(k + 1)) (24)

where i indicates the iteration number.

1) CRITIC NETWORK
Critic network is designed to approximate the performance
index function,

Ji(e(k)) = WE(k)p(VIe(k)) (25)

For simplification, assume that the weight V. between the
input layer and hidden layer is a constant matrix and the
weight W,; between the hidden layer and the output layer is
tuned online.

Objective function of the critic function is

Jip1(e(k)) = U(e(k), vi(k)) + Ji(e(k + 1)) (26)
Error function of critic network is defined as
eci(k) = Ji(e(k)) — Ji(e(k)) (27

where J;(e(k)) is calculated by (24). The destination of critic
network is to minimize the following function
lr
E.i(k) = zec,-(k)eci(k) (28)
According to the gradient decent method, update law of
critic network can be derived as

A ~

oE. (k)
Wci+1 = Wc,- —ac( CAI )

Ci

We, — acpe(Ve(k))ei(k) (29)

where « is the learning rate of critic network.

2) ACTOR NETWORK

To approximate the optimal control law, following actor net-
work is designed

Dik) = WE(K)pa(V.Ne(k)) (30
Error function of actor network is defined as

eailk) = Di(e(k)) — vilk)
WXtk pa(V.e(k))

_ 1 - T (VT .
+ Uartanh(—(UR)_lgT—¢c( ¢ eh+1)
2 de +

Wei(k + 1))
(3D
where

I, (VYiers1)

= Vellnxm — tanh(V ex 41) tanh" (V. ex1.1))
derr1
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FIGURE 2. Control structure based on target optimization and iterative
ADP.

Using the gradient decent method, tuning law of the actor
network is obtained as

dapa(V5e(k)el.
dL(VIe(k)pa(VEe(k)) + 1

where o, is the learning rate of the actor network.

Given initial state error, initial weights of critic and actor
network, and maximum iteration times iy, for the ith itera-
tion, flow chart of iterative ADP algorithm is as follows,

Wity (k) = Wai(k) —

(32)

1) Calculate the estimated control ;(k) according to the
actor network (30). Obtain the estimated performance
index function Ji(e(k)) by (25).

2) Substitute v;(k) for v;(k) in (16) to obtain the next state
error e(k + 1).

3) According to critic network I (25), obtain ji(e(k + 1))
and transfer it to the actor network, update Wa(i+ (k)
by (32).

4) Update the critic network II’s weight Wc,» (k) by (29),
gnd assign it to the critic network I (25) to obtain
Jir1(e)).

After the ith iteration, i = i 4+ 1, goto step 1) if i < ipax-

Otherwise, end the iteration.

D. CONTROL STRUCTURE FOR GGBS PRODUCTION
PROCESS

As the operation modes change at 8:00 of some unknown day,
once the production process changes, control performance
deteriorates due to the mismatch between controlled plant and
the controller. In this paper, we adopt the “target optimization
& modeling” and ““process optimization” scheme as shown
in Fig. 2. To decrease the effect of changing modes and
improve the control performance, from 8:00 to 8:30 of each
day, data of the first thirty minutes are utilized to establish
static and dynamic models, and obtain the optimal targets
in accordance with current operation mode. Then, based on
the targets and dynamic models, iterative ADP controller is
applied for 24 hours from 8:30 to next 8:30. It should be
noted that it will cause mismatch between plant and con-
troller if modes change at 8:00. However, as the control
signal is strictly constrained in given range as (15), above
mismatch for thirty minutes is acceptable and will not cause
big overshoot.

IV. EXPERIMENTAL RESULTS
A. SIMULATION PLATFORM AND MODELING

As the GGBS production process runs among three typical
operation modes, it is necessary to model the three operation
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FIGURE 3. Modellng and prediction result by PSO-SVM.

modes and to establish the simulation platform before the
proposed scheme is applied into real production process.

According to the experience of engineering, we abstract
data from three operation modes, and assume that the modes
run and change in the following way

mode 1, e [0—90)
Operation mode = { mode 2, ¢ € [90 — 180) (33)
mode 3, t € [180 —270)

As explained in Fig. 2, the first 30 minutes are utilized to
establish system model. Practical production demands a fast
convergence time, thus, to simulate the real system, every half
and an hour is regarded as a running period, we assume that
system change happens every 90 minutes. As the control input
only change within given constraints, mismatch between con-
trol input and the real system will not cause the output change
abruptly in a short time. For each period, during the first half
an hour the system operates with the control signal inherited
from the former period, so that enough data can be obtained
to model current system. After the modeling performance is
satisfied, proposed iterative ADP control method is applied
to obtain good control performance.

For each operation modes, three SVM models in respect
with the essential state variables MBT, MDP and MOT
are established. Modeling and prediction error represented
by mean square (MSE) and squared correlation coeffi-
cient (SCC) are listed in Table 2. Due to the limit of
space, only the modeling and prediction result of MBT in
mode 1 is illustrated in Fig. 3. As in above mentioned table
and figure, the PSO-SVM method shows satisfying perfor-
mance to establish the static models of GGBS production
process.

Using the RNN method, dynamic models of the three
considered state are built for each operation mode. Modeling
result of mode 1 is shown in Fig. 4. Given the same design
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TABLE 2. Modeling and prediction error by PSO-SVM.

modeling error Prediction error
Mode | Model —rep—T"5ccMSE | SCC
MBT |0.01050 | 0.80425] 0.01394 | 0.73095
Mode 1 | MDP | 0.00068 | 0.98145 | 0.00237 | 0.86290
MOT | 0.00436 | 0.85145| 0.00720 | 0.79168
MBT | 0.00809 | 0.84792 | 0.01050 | 0.77526
Mode 2 | MDP | 0.00074 | 0.97963 | 0.00284 | 0.82457
MOT | 0.00586 | 0.79685 | 0.00757 | 0.79115
MBT |0.01076 | 0.77728 | 0.01307 | 0.68844
Mode 3 | MDP | 0.00068 | 0.98145 | 0.00286 | 0.80058
MOT |0.00310| 0.86516 | 0.00634 | 0.80062

120

100 -

MOT (°C)

80 - T2 |

60 -

40 -

MDP (mbar)

20

MBT (mm)

20+ |

-40

. . . .
0 5 10 15 20 25 30
Time (min)

FIGURE 4. Modeling result by RNN.

matrix A = —diag([0.8, 0.8]), constant random V; and V>,
RNN models (8) of three operation modes are obtained

X1 = Axg + Wk (Vixe) + Waio (Vax) u— (34)

where i = 1, 2, 3, convergent weights of different models are

[—0.2786  —0.0068  0.2843 ]
Wi =| 05547 02372 —0.4996
| —0.1734  —0.0721  0.3785 |
(00062 —0.5725  0.3540 ]
Wa = | —0.1324  0.8883  —0.2263
| 01182 —0.3240  —0.1686 |
[—0.2992  —0.0465  0.2427 ]
Wip=| 05341 01974  —0.5412
| —0.1940  —0.1118  0.3369 |
00122 —0.5604  0.3663 ]
Wy = | —0.1263 09004  —0.2141
| 01243 —0.3118  —0.1564 |
[-0.2384  0.0221 03332 ]
Wis = | 05949 02661  —0.4507
| —0.1332  —0.0432  0.4274 |
[—0.0053 —0.5811  0.3410 ]
Was = | —0.1439  0.8797  —0.2393
| 0.1067  —0.3325  —0.1817 |
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B. APPLICATION RESULT

Based on the PSO-SVM models, the constrained multi-
objective optimization problems (1) of different modes are
solved by the NSGA-II method, corresponding Pareto sets are
shown in Fig. 5.

Due to control constraints, each optimal solution consists
of curves of two parts—the left part and the right part. As the
production process demands the material bed thickness to be
as close to 11mm as possible and the mill outlet temperature
to be as close to 90°C as possible, no point can beat all
the other solutions towards both objectives in corresponding
optimal set. However, considering the two adjacent points of
two parts, for example, A and A’, the temperature increases
slightly but the thickness rises greatly from A to A’. That is,
great thickness improvement can be achieved with small loss
of temperature. By this means, solutions at point A, B and
C are selected as optimal solutions of three modes, and the
desired set values x;1, x42, and x43 are obtained as

xq1 = [9.9863 25.2169 98.5031]T
xq2 = [9.3052 253912 97.9022]"
xq3 = [9.5428 253688 98.7536]" (35)

From Fig. 6, it can be seen that due to operation mode
change, the output states deteriorate in the first 30 minutes
and then track the desired trajectories in the next hour. Fig. 7
shows the control signals which all fall within given con-
straints as listed in Table 1.

Comparative result of proposed iterative ADP and online
ADP applied to GGBS production process in [11] is shown
in Table 3. For above three time intervals, maximum perfor-
mance index calculated by (14), convergence time when the
performance index is less than le=3, and simulation time of
both methods are listed. It can be seen that by taking the iter-
ative learning scheme, proposed iterative ADP obtains better
control performance and less convergence time. However,
because of the iterative calculation at each time k, running
time increases greatly from about 0.1s to more than 7s. From
the respective of engineering, calculating in 7s satisfies the
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FIGURE 7. Optimal control input.

TABLE 3. Compare of online ADP and proposed iterative ADP.

Index Interval 1 | Interval 2 | Interval 3
OADP max index 0.3386 0.2275 0.9587
TADP max index 0.2855 0.1088 0.1453
OADP convergence time 48 41 47
IADP convergence time 42 39 42
OADP running time 0.011 0.011 0.013
IADP running time 7.401 7.759 8.601

real-time requirement as the system runs for an hour. At the
same time, with the rapid progress of computer technology,
computation ability will be further improved.

V. CONCLUSION

In this paper, combing iterative ADP and dynamic target
optimization, an effective optimal control scheme for GGBS
production process is proposed. Considering the repetitive
operation modes change, a repetitive ‘“‘target optimization”
and “‘process optimization” scheme is constructed. At the
beginning of each day, control target is optimized by solving
multi-objective problem, during the rest time, an iterative
ADP strategy is applied to track the control target in the
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optimal way. Combing iterative calculation at every interval,
the iterative ADP reduces the performance index and makes it
converge faster. By using this optimization method, the oper-
ational stability of GGBS production is greatly improved.
In the future, to further decrease the optimal index and
reduce the calculation caused by iterative calculation, appro-
priate ceasing condition based on the convergent error can be
introduced.
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