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ABSTRACT Real-time and accurate short-term traffic prediction can effectively improve traffic efficiency,
reduce accidents, and facilitate relevant departments to take reasonable traffic guidance measures. Therefore,
we propose a two-level data driven model for short-term traffic prediction in an edge computing environment.
Firstly, a Deep Belief Network (DBN) is developed to extract the traffic characteristics between the road
occupancy and road flow collected by the deployed detectors. Then, we predict the developed future road
flow of each road segment based on the output of the DBN, which would be used as one of the inputs of
a Hidden Markov Model (HMM). Finally, a HMM is developed to predict the future road speed of each
road segment characterizing the statistical relationship between the road flow and road speed. To validate
the effectiveness of our proposed model, the data from the Performance Measurement System (PeMS) of the
California Department of Transportation is applied. Simulation results show that our proposed model has
better prediction performance in short-term traffic prediction than other models.

INDEX TERMS Short-term traffic prediction, deep belief network, hidden Markov model, edge computing.

I. INTRODUCTION

In recent years, the rapid development of urban traffic con-
struction, the increase in the number of motor vehicles
and unreasonable traffic guidance have made traffic conges-
tion increasingly serious and traffic accidents continue to
increase. To cope with these traffic problems, the concept of
Intelligent Transportation System (ITS) has been proposed as
a cutting-edge technology to improve the utilization of public
transportation resources [1]. ITS is a popular solution to solve
traffic problems. Specifically, ITS refers to the real-time data
communication among vehicles and Road Side Units (RSU),
and use of advanced data processing technologies for the
effective transportation management [2]. Emerging 5th gen-
eration and beyond (5GB) mobile wireless communications

The associate editor coordinating the review of this article and approving
it for publication was Markus Rupp.

VOLUME 7, 2019

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

are envisioned to provide vehicular mobile services with
massive connectivity, ultrahigh data-rate, ultra-low latency,
much improved security, very low energy consumption, and
high quality of experience [3]-[5]. Therefore, 5GB has been
emerging as a promising solution to improve the data com-
munication efficiency in ITS. Edge computing provides an
alternative to sending data to a centralized cloud for pro-
cessing [6]. Different from the cloud computing, the edge
computing enables the data processing at the edge network
close to connected vehicles. Considering the exponential
increase of traffic data, the edge commuting can be applied
as a promising solution to implement the low-latency as well
as reliable computing services for ITS. As a vital component
of ITS, the traffic prediction aims at effectively predicting the
road flow and road speed for a certain road segment, which
requires the communication and processing of a huge amount
of traffic data. The traffic prediction can not only alleviate
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the pressure of urban traffic, but also improve the efficiency
of urban transportation. It is noteworthy that the joint inte-
gration of 5GB and edge computing to ITS would play an
important role on operating the efficient traffic prediction.
Recently, some traffic prediction systems have been deployed
on actual roads, such as the Sydney Coordinated Adaptive
Transportation System (SCATS) [7].

According to the duration of the prediction period,
road traffic prediction can be divided into three cate-
gories: long-term prediction [8], medium-term prediction [9]
and short-term prediction [10]. The prediction period of
short-term traffic flow prediction is generally 5 minutes or
30 minutes [11]. The prediction period of several hours is
applied to the medium-term prediction, and more than one
day is applied to the long-term prediction. It implies that
aggregating a series of short-term prediction results over
a long-time window can be used as the prediction for the
long-term traffic condition. Traffic systems are in general
time-varying, non-stationary, nonlinear, and uncertain. This
makes the long-term traffic flow prediction difficult to play
a good role in the practical implementation [12]. The traffic
parameters that describe the state of the traffic flow cover
the road occupancy, road flow, and speed. Our prediction
period is 5 minutes, so this paper studies short-term traffic
flow prediction problems.

In practice, the data acquired by the road sensor poses the
strong temporal correlation. Therefore, the time series analy-
sis is based on the historical sensor data, and the short-term
traffic prediction for the road is realized by finding the law
how the traffic flow varies with time. In time series analysis,
Lee and Fambro [13] proposed an Auto-Regressive Integrated
Moving Average (ARIMA) model, which uses Akaike Infor-
mation Criterion (AIC) and conditional maximum likelihood
to determine model parameters and parameter estimations,
respectively. Comert and Bezuglov [14] proposed a Online
Change Point Based (OCPB) model to predict traffic param-
eters under abrupt changes based on change point models.
Peng et al. [15] proposed a new time series prediction method
based on the echo state network and multiplicative seasonal
ARIMA model. Xu et al. [16] proposed a real-time road traf-
fic state prediction algorithm based on ARIMA and Kalman
Filtering (KF), which can effectively estimate the trend of
traffic state. Lippi et al. [17] proposed two new Support Vec-
tor Regression (SVR) models based on SARIMA to measure
similarities between time series. Kumar and Vanajakshi [18]
used the limited input data to construct a new SARIMA model
for effectively overcome the shortcomings of the Box-Jenkins
ARIMA model. Most paper aforementioned predicted the
traffic flow based on the formulated traffic state models.

On the other hand, there are lots of data-driven methods
in the field of short-term traffic prediction. The goal of
data-driven methods is to mine the implied traffic information
through intelligent computing, and then realize the iterative
prediction of road traffic status. Hou et al. [19] developed
four short-term traffic prediction models based on traffic flow
in the work zone, including Random Forests (RF), regression
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trees, multi-layer feed-forward neural networks, and nonpara-
metric regression. Habtemichael and Cetin [10] proposed a
non-parametric and data-driven methodology to predict the
short-term traffic through identifying similar traffic patterns
using an enhanced K-Nearest Neighbor (K-NN) algorithm.
Yu et al. [20] proposed a multi-time-step prediction model
based on the KNN algorithm for extracted time-varying and
continuous characteristic of traffic flow. Su et al. [21] pro-
posed a traffic state prediction method, in which the adap-
tive neighborhood selection based on expansion strategy was
used to search manifold neighbors to get higher precision.
Liu et al. [22] proposed a Traffic State Forecasting based on
Manifold Similarity (TSFMS) model in which the manifold
distance between multi-segment traffic flow data points is
calculated through converting the time series of highway
traffic flow into the distance series containing manifold char-
acteristics. Oh et al. [23] proposed an urban traffic flow
prediction system using a multi-factor pattern recognition
model, which combines Gaussian mixture model clustering
with an artificial neural network. Zhang et al. [24] presented
a novel hybrid prediction framework based on SVR, and an
enhanced genetic algorithm (GA) with chaotic characteris-
tics to identify the optimal forecasting model parameters.
Cheng et al. [25] proposed a multiple sources and multiple
measures based traffic flow prediction algorithm by the chaos
theory and SVR. Chen et al. [26] proposed multiple Least
Squares Support Vector Regression (LSSVR) models based
on Gaussian kernel functions, each of which has different
time lag and performance. Hu et al. [27] proposed a hybrid
Particle Swarm Optimization (PSO)-SVR traffic flow pre-
diction model which can effectively process data containing
noises and reduce model learning time. The above paper
extracted the hidden characteristics of traffic flow through
machine learning, and then applied them for short-term traffic
prediction.

With the advent of the era of big data, deep learning
has developed rapidly in recent years. With the rapid devel-
opment of Internet of Things technology [28] and vehicle
networking technology [29], annual road traffic data has
grown exponentially. Traffic science researchers have there-
fore applied the deep learning theory to solve traffic prob-
lems. Lv et al. [30] proposed a deep learning traffic flow
prediction method based on the Stacked Auto-Encode (SAE)
model, which can successfully discover the latent traffic
flow characteristic. Yang et al. [31] proposed a SAE model
based on Levenberg-Marquardt, which using the Taguchi
method to develop an optimized structure and extract traf-
fic flow characteristics through layer-by-layer characteris-
tic granulation. Duan et al. [32] proposed an effective deep
hybrid neural network based on Convolutional Neural Net-
work (CNN) and Long Short Term Memory (LSTM) struc-
tures to improve urban traffic flow prediction and taxi GPS
tracking. Zhao et al. [33] proposed a cascaded LSTM model
in which the spatio-temporal correlation of traffic flows is
characterized by an Origin Destination Correlation (ODC)
matrix of a two-dimensional network of multiple memories.
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FIGURE 1. Traffic prediction system model in the 5G-enabled edge computing environment.

Fu et al. [34] first used Gated Recurrent Unit (GRU) neu-
ral networks in traffic flow prediction and predicted bet-
ter performance than LSTM and ARIMA. Ma ef al. [35]
proposed a deep RNN-RBM architecture to model and pre-
dict traffic congestion evolution based on Global Position-
ing System (GPS) data from taxi.. Kuremoto et al. [36]
proposed a DBN composed by two Restricted Boltzmann
Machines (RBM) which the structure of RBM was optimized
by a classical PSO algorithm. Huang et al. [37] proposed a
deep architecture that consists of two parts, i.e., a DBN at the
bottom and a multi-task regression layer at the top. The above
papers demonstrated that the deep learning can extract more
traffic flow characteristics and improve prediction accuracy.

In some previous work on the traffic prediction [38] [39],

predicting road traffic based on the origin-destination method
was proven to be very effective. And the HMM has proposed
to extract the hidden state of vehicle speed [40]. Considering
that some traffic flow states are unobservable, while HMM
can be learned it from historical data. On the other hand,
short-term traffic flow predictions accumulate errors with the
length of the predicted time, so the accuracy of the short-term
prediction model must be guaranteed. Therefore, we propose
a two-level data-driven short-term traffic prediction model
referred to as DBN-HMM model in 5G-enabled edge com-
puting environment. The main contributions of this paper are
summarized as follows:

e In the first level of model, we use DBN to effec-
tively extract the traffic characteristics between the
road occupancy and road flow, and use the prediction
results as the input data of the second-level network.
In the second-level of model, the statistical relationship
between the road flow and road speed can be effectively
established through HMM, and the future road speed
prediction of each road segment can be predicted.

« We use a weighted average method to solve the problem
that road detectors often collect wrong or abnormal data.
There are two different patterns in road data on week-
days and weekends. Considering the data correlations,
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we conduct detailed analysis of road data on weekdays
and weekends.

« Extensive simulations are conducted to evaluate the
advantages of the DBN-HMM model. The results show
that DBN-HMM model has higher prediction accuracy
than SAES, LSTM, and GRU models in short-term traf-
fic prediction.

The rest of this paper is organized as follows. In Section II,
we present the short-term traffic prediction model in the
5G-enabled edge computing environment. In Section III,
we propose the DBN-HMM model to realize the short-term
traffic prediction. In the Section IV, we provide some simula-
tions to evaluate the performance of our proposed traffic pre-
diction model. Finally, we conclude this paper in Section V.

Il. SYSTEM DESCRIPTION

As shown in Figure 1, vehicles on the road which consider
short-term traffic prediction services are associated together
through on-board unit communication with the RSU in 5G-
enabled edge computing environment. The loop detector is
an induction coil that is pre-bundled on the highway wire,
and the detectors are installed on each road line in each
road segment. The inductance of the detector itself changes
accordingly as the vehicle passes through the induction coil.
The loop detector can calculates the total number of vehi-
cles passing through the unit time and the average time the
detector is turned on based on the change time of the inductor
and the length of the detector open time. The Loop Detection
Station (LDS) at the roadside is a physical entity on the
highway that stores the detector data for each lane on the same
segment of the road and records them at equal intervals. The
RSU often uploads historical road information in the loop
detector to the edge computing server via the optical fiber
communication, and also downloads the prediction informa-
tion from the edge server. In addition, the OBU communicates
with the RSU through Long-Term Evolution-Vehicle(LTE-V)
technology in 5GB to obtain historical road information and
road traffic prediction results.
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FIGURE 2. The two-level short-term traffic prediction model in the 5G-enabled edge computing environment.

With the rapid advancement of smart cities and self-driving
cars, data processing cannot be performed only in cloud com-
puting platforms due to the requirements on the low-latency
data transmission and computation. Since 5G edge nodes are
generally close to the moving vehicles, these nodes can be
used to offload the computation-intensive and delay-sensitive
data tasks from the cloud platform to reduce the data trans-
mission latency. Using machine learning on the edge nodes
can further improve the precision accuracy and reduce the
data computation latency. The training time of machine learn-
ing algorithms is generally long, but when the model training
is completed, the updating and prediction of model parame-
ters can be completed in a short time, which can be approx-
imated as the real-time prediction. Therefore, deploying a
machine learning model on a 5G edge node is of practical
meaning.

The long-term traffic flow prediction is more concerned
with the overall trend of change in the future, while the
short-term traffic flow prediction is more inclined to improve
the prediction accuracy of each sampling period in a cer-
tain day. In the short-term traffic flow prediction, the road
occupancy, road flow, and road speed are the main impacts
on the road traffic, which should be extracted, modeled, and
predicted with appropriate methods. On the one hand, since
there is a positive correlation between the road occupancy
and road flow, the future road flow on each segment through
the DBN based on road occupancy can be more effectively
predicted. On the other hand, the road speed is affected
by the road flow and the driving habits of drivers. The
drivers’ driving habits and some road traffic conditions are
unobservable, and thus we can choose the HMM model as the
statistical model to characterize the correlation between the
road flow and road speed. Therefore, we design a two-level
prediction model to decouple and design short-term traffic
predictions in the 5G-enabled edge computing environment,
as illustrated in Figure 2. The proposed design is mainly
effective to deal with unobservable conditions on the road
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by HMM, improve the accuracy of prediction, and reduce the
time spent on prediction.

We will introduce the two-level short-term traffic predic-
tion model in the following section.

Ill. SHORT-TERM TRAFFIC PREDICTION MODEL DESIGN
As shown in Figure 2, our proposed DBN-HMM model is
customized based on the correlation between the road occu-
pancy, road flow, and road speed. Specifically, the edge server
stores the collected road data in a 5G-enabled edge computing
environment, and can predict the future road traffic and future
road speed on each segment through DBN and HMM respec-
tively. The DBN-HMM model parameters are periodically
updated based on real-time data. Then, this model can quickly
deliver the prediction results to the RSU through the edge
server when the vehicle requests short-term traffic prediction.
In rest of this section, we elaborate on the two-level
prediction model design based on DBN and HMM.

A. ROAD SPEED PREDICTION WITH DBN
The DBN is composed of multiple RBM models from bottom

to top. To better interpret the DBN, we firstly briefly intro-
duce RBM model.

1) RESTRICTED BOLTZMANN MACHINE

RBM model is a particular type of Markov Random
Fields (MRFs) and a two-layer network model that can prop-
agate in both directions. The two layers of the RBM are the
visible layer applying the training data (i.e., historical road
occupancy and historical road flow) and the hidden layer as
the characteristic extractor. The vectors v = {vy, va, ..., v}
and h = {hy, hy, ..., hyjrepresent the states of the visible
layer and the hidden layer, where v; and h; represent the
states of the i-th visible layer unit and the j-th hidden unit,
respectively. Since the input data is not binary in the first layer
network, we use GBRBM (Gaussian-Bernoulli RBM) model
instead of the traditional RBM model, and the remaining
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networks still use traditional RBM model.Given the state
(v, h), the energy function of the RBM model is given by the
following equation:

E(v, h|§)= Z(“‘ i)

IS 3l

i=1 j=1

where 6 = {wj;, a;, b;} is expressed as the vector of parameter
of GBRBM model, which reveals the characteristics between
the historical road occupancy and historical road flow. For
specific, a; and b; represent the offset of the i-th visible unit
and the j-th hidden unit, w;; is the weight connecting, ¢; is the
standard deviation associated with visible units. In addition, 0
can be effectively obtained by K-step Contrastive Divergence
(CD-K) algorithm [41]. The associated probability distribu-
tion function can be derived from the energy function, and
thus the joint probability distribution for the state (v, &) is as
follows:

1
P, h|0) = Te)exp( E(v, h|0)), 2)
Z©) =) Y exp(=E(v, hlo)), 3)
v h

here, Z(0) is defined as a partition function and is also
interpreted as a normalization coefficient. It is used to elim-
inate dimensional differences between different variables
and to improve the speed and accuracy of the calculation.
In the short-term traffic prediction problem, we are most
concerned about the solution of the probability distribution
P(v|6) between the road flow and road occupancy in the
visible layer. P(v|6) is the edge distribution of P(v, h|6), and
thus can be calculated as follows given by

P(6) = Zexp( E(v, h|6)), €

Z(9)
Therefore, when the state of the visible layer is fixed,
the probability that the hidden unit 7; has a state of 1 is
given by
v,w,]

P(hj = 1|v,0) = o (b; +Z 5)

where the function o(x) means o(x) = 7 Tox p( o) . On the
contrary, when the state of the hidden layer is fixed, the prob-
ability that the state of the visible unit v; has a state of 1 is:

P(vi = 11h,0) = N(ai + ¢ y_ wiihj, $), 6)
J
where N(-) is gaussian distribution. In addition, when the
visible unit or hidden unit state is 0, both P(v; = 0|k, 6) and
P(hj = 0Olv, 6) are both equal to 0.

2) DEEP BELIEF NETWORK

In this paper, we adopt DBN as the first-level of the model for
road flow prediction, which can effectively extract the charac-
teristics between the road occupancy and road flow. It outputs
the flow of each segment in the future and participates in the
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prediction of the road speed. Therefore, we firstly explain the
structure and training process of the DBN, and then describe
the mathematical expression of the road flow prediction of
the DBN.

As shown in Figure 3, the DBN is a probability gen-
eration model which is composed of a plurality of RBM
and a BPNN superposition. Meanwhile, the training process
of the DBN can be divided into two processes: 1) layer-
by-layer unsupervised pre-training process and 2) super-
vised fine-tuning process. During the pre-training process,
the parameters of GBRBM and RBM are trained through
unsupervised learning. Specifically, we firstly initialize the
parameters of GBRBM model and use the normalized orig-
inal road traffic and road occupancy data as visible units
by (5) of the GBRBM model. The CD-1 algorithm determines
the state of the hidden units based on the model input, then
calculates the visible units state by (6) based on the state
of the hidden units, and finally updates the parameters of
GBRBM according to the visible units and hidden units sta-
tus. The parameters of GBRBM model are updated through
the CD-1 algorithm, and the output of this model is used as the
input to the next traditional RBM model. The parameter train-
ing in the traditional of RBM model is similar to the GBRBM
model, and thus is not introduced here. The DBN fine-tunes
the parameters until all RBM models have been trained. In the
fine-tuning process, we firstly random initialize the BPNN
parameters, and then calculate the model error by comparing
with the labeled data, then adjust the entire DBN parameters
by back propagation, and finally minimize the model error.
The advantage of the DBN is that it sets the initial value of
the model to a range that is most likely to achieve the global
optimality via an unsupervised pre-training process. Then,
the optimal model parameters are obtained via the process
of supervised fine tuning.

Then, we describe the mathematical expression of road
flow prediction. The future road flow prediction of any seg-
ment can be performed by current and historical data of
itself and its adjacent segments. For a given road segment,
we denote At as the period in which the detector samples the
road data, and denote p as the number of other road segment.
The temporal and spatial correlation between the road flow
of each segment should also be considered. Thus, at time 7,
the road flow of the i-th segment in the future n-th period is
to be predicted by the nonlinear function R;(-):

fitt + At) = Ri({x;(®), ..., xip(®)}, ..., {xi(t — dAb),
- Xiop(t — dAD)Y) (7
xie(t —nAt) = ({1t — nAr), 0i(t —nAD)), ...,
M — nar), o (r — nAr)))
kefi,....i—p}, nef{0,....d}, 8

where each segment is assumed with the same road line M,
and {fk1 (t—nAv), 0,1((t —nAt)} means the flow and occupancy
on the 1-st road line at the k-th segment at time ¢t — nAt.
Correspondingly, xx(t — nAt) means all road occupancy and
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FIGURE 4. The left to right HMM for two-level short-term traffic
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road flow. The data set {x;(?),...,x;—p(t)} represents the road
data of all segments at time ¢.

B. TRAFFIC SPEED PREDICTION WITH HMM

In the previous section, we used the DBN to predict the
future road flow based on a large amount of road data.In
what follows,, we introduce how predict the future road speed
by HMM.

First, the HMM is a random signal model used to
describe a Markov process with implicit unknown param-
eters. As shown in Figure 4, the HMM is designed with
a left-to-right structure for vehicles’ driving route from its
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start point to its destination. The basic state sequence of the
left to right HMM has the characteristic of increasing (or
maintaining the same) state index over time. Clearly, this
HMM has characteristics that can easily modeling the signals
model that change overtime. The freeway is divided into
multiple segments, each of which has multiple hidden states
(i.e., acircle represents a hidden state). The hidden state in the
HMM characterizes the joint probability distribution between
the road flow and road speed on each segment, and the
observations for each hidden state are subject to a emission
probability distribution B. We denote g; and [ as the hidden
state and the maximum state index on the k-th segment,
respectively. The g is in the state set {S;|Ly—1 + 1 < i < Ly}
where Ly = I1 + b + ... + ;. The parameters of HMM are
represented by three parameters, i.e., A = {A, B, 7}, where A
means the state transition distribution, and 7 is the initial state
distribution. Specifically, A = {a;;} is defined as follows:

ajj = P(qx = Sjlgr—1 = Si) 9

where Ly_1 +1 <i < Ly, Ly +1 < j < Lgy1. Here, agjj is
the transition probability from state i on the k — 1-th segment
to state j on the k-th segment. The fundamental property of
the state transition in HMM has the characteristic that the
state can only be transferred to the state that are increased to
a segment sequence, but state inversion is not allowed (i.e.,
aj = 0,< 7). Then, we define o; as the observation of
HMM on the k-th segment, which consists of flow and speed
with M road lines. When the k-the road segment needs to be
predicted, the sequence of observations of the previous k-1-th
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segments can be represented by Ox—1 = {01, 02, ..., 0k—1}.
The observations in the road data are continuous vari-
ables, and thus we use the mixed gaussian model to define
B = 1;(Oy) as the conditional joint probability probability
density in the given state i is given by

H
> G, UnlOr), (10)

h=1

7i(Or) =

where H is the number of gaussian mixture components. jj,
is the weighting factor of the A-th component in state i where
27:1 ¢in = 1. G(in, Uiplox) is a gaussian density with mean
vector w;, and covariance matrix Uj,. In addition, we define
mo = {m;, 1 <i < L;} as the probability of the initial hidden
state in the first segment.

We can use the Baum-Welch algorithm to learn an approx-
imate HMM and solve our problem under the given sequence
of observations. This algorithm first makes an initial esti-
mation of the parameters of HMM. Then, the parameters
of HMM are updated by evaluating the validity of these
parameters and reducing the errors, then the training data
is not decreasing. We define two basic variables in order
to explain the Baum-Welch algorithm better. We indicate
ap-1@d) = Plgr = SilOx-1,A) and Br_1()) = P(ox,
Ok+1, - --,0T|qr—1 = Si, A) as forward probability and back-
ward probability, respectively. Both of the two parameters can
be calculated by the Baum-Welch algorithm. Our goal is to
adjust the parameters of HMM and maximize P(Ox_1]|}).

Ik Ik
P(Or-11M)=)  POr—1, qr-1=5i11) =) _ a1 ()Br—100)
i=1 i=1
(11)

When state i on the k-1-th segment and state j on the k-th
segment, we define the probability & _1(i, j) as follows:

&—1(i,)) = P(qk—1 = Si, qk = Sj|Ok—1, 1)
_ ag—1(DaijBr()T(Ok-1)
YL Yl a1 Dagh DT (Or—1)

where T is the number of observation sequences. When state i
on the k-1-th road segment, we define the probability yx_1(S;)
as follows:

(12)

. ax—1DB (D)
Ye—1(8) =P(qr-1 = |Ok—1, 1) = —F —  (13)
> izt @—1(D Pk (D)
then, the probability of the #-th Gaussian mixture component
is given by

itG(ir, Uir|Ok—
Vee1(Sis 1) = Hé-lt (it Uir|Ok—1) ’ (14)
> n=1 8inG(tin, Uin|Ok—1)
finally, the re-evaluated of the parameters of HMM is calcu-
lated as follows:

Ao=y1(0), 1<i<h (15)
ajj= Zk ! gk(l ]) 1<i<l 1<j<hsu (16)
Zk 1 Vk(l)

VOLUME 7, 2019

T .
Lk
b= =Ry <y, am)
Doi=1 2oh=1 ViU, h)

Y inG o %o

fjk = : <k<H,1<j<l (8
S v k)
T : RS
N _ Lk — U
Ujx = 2= y’;’ )(0.’ Fi) l<k<H, 1<j<l
Y =1 Vi k)

19)

After the parameters of HMM are re-evaluated, we denote
fi as the future road flow prediction in the k-th segment by
the DBN. The probability that the k-th road segment’s state
is j shown as follows:

lg—1

Pl = $j|0k—1, 1) = Y agye1(t) (20)

we define f (v, fk|0k_ 1, 1) to represent the conditional joint
probability density function between the road speed and road
flow.
. 1
J Ok, fiel Ok—1, K)=Z 5, (Ok—)P(qe =5/|0k—1, 2)  (21)
=1
In summary, the road speed V¢ in the k-th segment can be
obtained by calculating the expectations of f (¥, fk |Ok—1, A).

IV. SIMULATION

A. SIMULATION SETUP

The experimental data in this paper is from the PeMS
database of the California Department of Transportation [42].
Our road data is from the I5-N highway(with M = 4), and the
data sampling interval is 5 minutes. As shown in Figure 5, ten
detectors indexed as 1115314, 1115323, 1119960, 1119972,
1119984, 1119990, 1121692, 1121707, 1121724, 1121731,
which are deployed in the I5-N highway to collect the road
data. The duration of our road data is from April to May 2017.
Specifically, the road data from April 3, 2017 to May 14,
2017 is used for training model, and the road data form
May 15, 2017 to May 28, 2017 is used for evaluating the
model performance. Road data is re-grouped and numbered
because of their different regularities on weekdays and week-
ends. Therefore, we have 8640 training data and 2880 test
data on weekdays. Correspondingly, we can get 3456 training
data and 1152 test data on weekends.

Road detectors are affected by various factors such as
weather, noise interference, communication failures and self-
faults, resulting in abnormal, error, and loss of various road
detection data. If these data are directly for prediction,
it will inevitably have a great impact on the prediction
results. Therefore, the collected road traffic data must be
pre-processed before it can be used. In the deep learning
training process, the tolerance for incomplete historical data
is very high, and thus we choose the simple weighted aver-
age algorithm to repair the data set. The weighted average
algorithm is as follows:

i) =aY_1(t — 1)+ (1 —a)Yi(2) (22)
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where in Yj(¢) is the repair data at the time 7 in the k-th
segment, and « is the weight coefficient. Y;_1(¢) and Y (r —1)
are the road traffic data for the k — 1-th segment at time ¢
and the k-th segment at time ¢+ — 1. In addition, abnormal or
erroneous data can be judged by comparing with data at the
same time. If the data at a certain moment is too large or too
small, it means that the data is faulty and needs to be repaired.
The method of repairing still uses the weighted average
method. The repaired road traffic data must be normalized
before being input to the DBN or HMM. Normalization is to
map all data between 0-1 and speed up the model training.
We use the widely used Min-Max Normalization as follows:

5= X — Xmin (23)
Xmax — Xmin
where x and X denote traffic raw sample data and normal-
ized data, respectively. Xy,q, and x,;, are the maximum and
minimum value of the sample data, respectively.

In order to evaluate the effects of short-term traffic pre-
dictions fairly, The size of the error indicator is usually
used to estimate and analyze the performance of the model.
We choose the Root Mean Square Error (RMSE) and the
Mean Absolute Percentage Error (MAPE) as the error indi-
cators. The calculation expressions of these errors are as
follows:

RMSE =

N
LS wi- i 24)
N t=1

A

Yi—Y;
Y;

x 100% (25)

1 N
MAPE = —
VL
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FIGURE 6. Data repair results of detector 1119990 on may 7.

where Y; represents the actual value, Y; corresponds to the
predicted value, and N is the sample size.

In the proposed DBN-HMM model, the DBN is designed
with three hidden layers, each of which has 250 neurons.
The output layer has 2 neurons, which represent road traf-
fic prediction and road occupancy prediction. The number
of iterations of the pre-training process and the fine-tuning
process are set to 100 times. We assume that each segment has
the same number of hidden states to reduce the complexity
of the model and increase the training speed. The number of
Gaussian mixture components in each hidden state is consid-
ered as the same. Specifically, the number of hidden states and
Gaussian mixture components are set to 3 and 7, respectively.
Finally, our experimental environment is Intel(R) Core(TM)
i5-8400, and 16GB RAM.

B. SIMULATION RESULTS

First of all, we use the cluster analysis to quickly filter
out the abnormal or erroneous data collected by detectors
and repair these data accordingly. For example, the detector
1119990 shows some abnormal road flow data on May 7,
which covers the data loss in three time durations. Meantime,
we find that the road flow slowly changing between 6 and
16 o’clock by comparing historical data, and we perform data
repair where « is set to 0.5. The results of the data repair are
shown in Figure 6.

Then, we randomly select a road segment and evaluate
the prediction performance during the weekday first. On the
I5-N highway every weekday, road flow fluctuates around
120 vehicles/5Smin for most of the time, while the road speeds
fluctuate around 66mph throughout the day. Figure 7 shows
the prediction results of road flow and road speed during
weekday in segment 1121692. From Figure 7(a), we can see
that the prediction result of road flow with RMSE and MAPE
are 2.9500 and 4.4650%, respectively. From Figure 7(b),
we can see that the prediction result of road speed with
RMSE and MAPE are 1.5714 and 2.3086%, respectively.
Therefore, the road flow have a larger RMSE and MAPE than
road speed.

Road flow and road speeds on weekends are reduced and
stabilized compared to the weekdays. Figure 8 shows the
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FIGURE 7. Short-term traffic prediction result during weekday.

prediction result of road flow and road speed during weekday
in segment 1121692. From Figure 8(a), we can see that the
prediction result of road flow with RMSE and MAPE are
2.0632 and 3.5604%, respectively. From Figure 8(b), we can
see that the prediction result of road speed with RMSE and
MAPE are 1.1315 and 1.7587%, respectively.

Also, we randomly select 1000 prediction results to show
the prediction error distribution for segment 1121692 during
weekday and segment 1121692 during weekend, respectively.
In particular, the probability of prediction absolute error is
plotted in Figure 9, in which the absolute error is equal to
the RMSE average of the road flow and the road speed.
From Figure 9, we can see that 95 percentage of the predicted
absolute error below 4.12 in segment 1121692 during week-
day, and below 2.87 in segment 1121692 during weekend.
It implies that the confidence intervals of 95% are [0, 4.12]
and [0, 2.87] in segment 1121692 during weekday and
weekend, respectively.

Finally, we compare our proposed DBN-HMM model with
the other three models, i.e., SAES, LSTM, and GRU in deep
learning. SAES model is similar to the DBN that minimizes
the reconstruction error of each layer’s self-encoder per-
forms the implementing short-term traffic prediction through
top-level regression models. The LSTM model is composed
of four gates, which can effectively deal with non-linear
traffic data with taking into account the time dependence.
The GRU model is similar to LSTM model, but with lower
computational complexity. We average the predicted results
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1121692.

of road flow and road speed to better analyze the performance
of these models during weekday. The RMSE and MAPE
of these models are shown in Table 1. We can find that
DBN-HMM has the smallest RMSE and MAPE, in com-
parison with the other three models. Specifically, we have
that the average RMSE of DBN-HMM, GRU, LSTM, and
SAES are 2.4597, 2.9235, 3.0329, and 3.7651 in segment
1121692, respectively. The average MAPE of these models
were 3.8943%, 4.6287%, 4.82020%, and 5.96112%, respec-
tively. Besides, we want to compare the computational cost of
the proposed DBN-HMM model with the other three models
in terms of training time and prediction time. Table 2 shows
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TABLE 1. Prediction performance of SAES, LSTM, GRU, and DBN-HMM.

Model SAES LSTM GRU DBN-HMM
Road segment RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE
1115314 29894  4.7332% | 3.1105 4.9248% | 2.9611 4.6884% | 2.3308  3.6902%
1115323 3.5056  5.5500% | 2.4905 3.9434% | 2.5298 4.0051% | 2.2877  3.6219%
1119960 3.1037 49143% | 2.5319 4.0089% | 2.4387 3.8613% | 2.2330  3.5354%
1119972 38786  6.1411% | 27371 4.3334% | 277931 4.4223% | 2.5723  4.0725%
1119984 39946  6.3248% | 2.9394  4.6540% | 3.1010 4.9099% | 2.6889  4.2574%
1119990 47522 7.5235% | 3.6856  5.8354% | 3.5852 5.6765% | 2.8922  4.5788%
1121692 43548 6.8951% | 3.8857 6.1523% | 3.6685 5.8084% | 2.7939  4.4232%
1121707 4.0501 6.4120% | 3.8672  6.1232% | 3.5097 5.5569% | 2.6406  4.1809%
1121724 3.6110 5.7175% | 2.8142  4.4557% | 2.4935 3.9477% | 21119  3.3439%
1121731 34109 5.4005% | 2.2664 3.5885% | 2.1542 3.4108% | 2.0456  3.2388%

TABLE 2. The computational cost of SAES, LSTM, GRU, and DBN-HMM.

SAES LSTM GRU DBN-HMM
training time | 585.03 s 804.77 s 869.07 s 631.15s
prediction time | 0.707 s 0.949 s 1.058 s 0.734 s

the computational cost needed by SAES, LSTM, GRU, and
DBN-HMM. From Table 2, we can find that our model
requires more computational cost in comparison with SAES,
it outperforms the other three models in the prediction accu-
racy. It implies that if the high prediction accuracy is our
main target, our proposed model is of practical meaning.
In summary, the DBN-HMM model is better than the other
three models, and the SAES model has the worst prediction
performance.

V. CONCLUSION

In this paper, we have proposed a two-level data-driven model
for short-term traffic prediction in the context of edge com-
puting. The first-level of DBN-HMM model can effectively
predict the future road flow through the road occupancy
and road flow. The second-level of model can extract traf-
fic hidden states based road flow and road speed. Then,
we have adopted the weighted average method to repair traf-
fic data from the PeMS system. Finally, we have compared
our proposed short-term traffic prediction model with SAES,
LSTM, and GRU model. The simulation results show that
our proposed model has smaller RMSE and MAPE, and the
prediction performance is better than other models.
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