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ABSTRACT A surveillance system is one of the most interesting research topics for an unmanned aerial
vehicle (UAV). However, the problem of planning an energy-efficient path for the surveillance purpose
while anticipating disturbances and predicting energy consumptions during the path tracking is still a
challenging problem in recent years. The optimal path planning and the disturbance rejection control for a
UAV surveillance system are investigated in this paper. A trained and tested energy consumption regression
model is used to be the cost function of an optimal path planning scheme, which is designed from a clustered
3D real pilot flight pattern with the proposed K-agglomerative clustering method, and is processed via A-star
and set-based particle-swarm-optimization (S-PSO) algorithm with adaptive weights. Moreover, an online
adaptive neural network (ANN) controller with varied learning rates is designed to ensure the control stability
while having a reliably fast disturbance rejection response. The effectiveness of the proposed framework is
verified by numerical simulations and experimental results. By applying the proposed optimal path planning
scheme, the energy consumption of the optimal path is only 72.3397 Wh while the average consumed energy
of real pilot flight data is 96.593Wh. In addition, the proposed ANN control improves average root-mean-
square error (RMSE) of horizontal and vertical tracking performance by 49.083% and 37.50% in comparison
with a proportional-integral-differential (PID) control and a fuzzy control under the occurrence of external
disturbances. According to all of the results, the combination of the proposed optimal path planning scheme
and ANN controller can achieve an energy-efficient UAV surveillance systems with fast disturbance rejection
response.

INDEX TERMS Unmanned aerial vehicle (UAV), optimal path planning, set-based particle-swarm-
optimization (S-PSO), adaptive weights, adaptive neural network (ANN), varied learning rates.

I. INTRODUCTION

A surveillance system is one of the most interesting research
topics for an unmanned aerial vehicle (UAV). An autonomous
surveillance system using a UAV will face three major prob-
lems, which are energy consumption prediction, energy-
efficient optimal path planning, and stable control design
with disturbance anticipation property for the UAV to follow
reference paths with low tracking error even in an area with a
high chance of disturbance occurrence (e.g. windy area).
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The energy consumption prediction of a UAV flight has
been discussed in several researches. Methods to be used
for solving this problem can be categorized into white-
box and black-box methods. A white-box method was used
by Liu et al. by designing a mathematical model for the
UAV’s power consumption with aerodynamic equations [1].
Abdilla et al. also did a white-box method by conducting
a detail experiment to model a Li-Po battery, which then
became the reference to model the duration of the quadrotor
flight duration [2]. Another published paper with the white-
box method are done by Bezzo et al. via the relation of power
with the motor thrust [3]. In spite of high accuracy to be
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achieved in [1]-[3], the white-box method in general will
require detail physical parameters of a UAV, such that it will
increase the complexity of the method. On the other hand,
the black-box method can be easily used with several adjust-
ments to increase the accuracy. The most comparable adjust-
ment to be done in previous researches is the introduction
of various inputs, which can represent several dynamics of
a UAV. All of those works has been dicussed in our previous
work that will be implemented in this surveillance systems as
the cost function of the optimal path planning algorithm [4].

The optimal path planning problem is also an interesting
research topic, which has been discussed by many researchers
for various applications. Several methods that have been used
can be classified into heuristic methods (e.g., Christofides [5]
or Concorde [6]) and meta-heuristic methods (e.g., genetic
algorithm [7] or discrete particle-swarm-optimization [8]).
Although nowadays heuristic methods have been proved to
get more efficient, the computation time still significantly
depends on the problem size and thus will decrease its effi-
ciency. On the other hand, meta-heuristic methods are more
independent to problem size, which attracts researchers to
apply this method and solve various node routing problem.

One of the meta-heuristic method that has been widely
used to solve an optimal path planning problem is the par-
ticle swarm optimization (PSO). However, implementing the
PSO to a discrete problem requires some adjustments that
have been proposed by several researchers. Hadia et al. [8]
proposed a swap operator to transform the particle’s move-
ment into a swap movement. A set-based particle-swarm-
optimization (S-PSO) is proposed by Chen et al. [9] to have
a more similar characteristic of the continuous-type PSO by
transforming the movement in sequence of nodes into sets of
paths with probability values. To have more improvements of
the PSO algorithm in a discrete problem, Weng et al. [10]
implemented a set-based comprehensive-learning PSO
(S-CLPSO) for virtual machine placement problem. How-
ever, the inertia weight parameter in [9], [10] used a linearly
dicreasing inertia over iterations. The performance of these
methods will be analyzed and compared with the proposed
adaptive inertia weight in this paper.

Applications of meta-heuristic and heuristic methods to
the UAV routing problem have also been conducted by sev-
eral researchers. Amorosi ef al. [11] modified the genetic
algorithm to form a decomposition-based approach to be
constructed for a cellular network coverage problem with
charging stations’ batteries as constraints. Lim er al. [12]
conducted a UAV surveilance system research as a travelling
salesman problem with time window and solved it with a
dynamic programming. Dorling et al. [13] implemented the
simulated annealing method for vehicle routing of a drone
delivery problem. Although those researches in [11]-[13] got
good results, they did not include the actual flight data and
thus, simulations of their flight did not have any accurate
longitude, latitude, or altitude data. This matter is important
to show the possibility of the method to be implemented in a
real case.
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An idea of including clustered actual flight data by the
K-means clustering into the path planning problem has been
proposed by Kwak and Sung [14] by consequently solving arc
routing problems with the A-star path finding algorithm and
node routing problems with the enhanced A-star algorithm to
plan an optimal path of a UAV surveillance system. Although
Kwak and Sung [14] had included pilot flight data, it did
not include any energy consumption information. Moreover,
the method in [14] can only be used for a two-dimensional
problem, where the building and the surveillance points are
assumed to be in the same altitude. This assumption may lead
to unreliability of the method in [14] to the real case. Besides,
there is a connectivity issue of using the K-means algorithm
for a 3-dimensional energy-efficient path planning problem,
and it will be discussed in this paper.

The third problem is the control design of a UAV with fast
disturbance rejection response. The UAV itself can be classi-
fied into several types. The type used in this paper is a UAV
with multi-rotors, which can be controlled from the thurst
produced by motors. As for a nonlinear plant, a nonlinear
control has been widely adopted to control a UAV. One of
the nonlinear control is the backstepping control of quadro-
tors, which was investigated by Jiang et al. [15]. Another
nonlinear control, a sliding-mode control, was also designed
for a hexarotor by Busarakum and Srichatrapimuk [16].
However, nonlinear control always requires a vast detail
in UAV dynamics that complicate the implementation of
the control design process. To overcome this problem,
Walid et al. [17] has implemented numerical simulations of
a cascaded proportional-integral-differential (PID) controller
for a quadrotor. The PID control scheme was also designed
for a hexacopter by Moussid et al. [18]. Other than PID,
a simple heuristic approach with fuzzy control was proposed
by Fakurian et al. [19]. Although all of those controllers
in [15]-[19] can be easily implemented and have remarkable
results, PID and fuzzy control parameters still need to be
tuned carefully as it is easier for a nonlinear plant to be
unstable. Besides, disturbance responses of PID controllers
are slow, which in turn will increase tracking errors. Although
several adjustment mechanisms (e.g. disturbance observer)
can be made to solve this problem, an additional observer
design will complicate the design process with more detailed
system dynamic to be identifed.

In recent years, many researches has been done to apply a
neural network (NN) to the control field to deal with nonlin-
earities and uncertainties of the control system. A NN with
an online learning framework has been proposed to solve this
kind of problem on an ultrasonic motor servo-drive [20] and a
permanent magnet syncronous motor servo-drive [21] by Lin
and Wai. A fuzzy neural network (FNN) controller was also
proposed by Wai et al. [22] to control a single-stage boost
inverter. The NN control is believed to have an advantage
of online learning to solve the afformentioned disturbance
rejection problem.

In order to improve the aforementioned drawbacks,
this paper proposes a UAV energy-consumption prediction
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model, an optimal path-planning scheme, and a disturbance
rejection control strategy for a UAV surveillance system.
The prediction of energy consumption for each movement
based on our previous framework in [4] is used as the cost
function of the optimal path-planning scheme. The path is
generated from cluster centers of 3D real pilot flight pattern
data by the proposed K-agglomerative clustering method. The
K-agglomerative clustering is proposed to solve the
connectivity problem of K-means clustering. Moreover,
the proposed adaptive-weight set-based particle-swarm-
optimization (S-PSO) coupled with A-star algorithm is
implemented to solve the path planning problem. In addition,
an online adaptive neural network (ANN) controller with var-
ied learning rates is investigated to overcome the disturbance
rejection problem while minimizing the tracking error. The
optimal path planning scheme is evaluated by comparing the
predicted energy and the average energy consumed by real
pilot flight data. Futhermore, numerical simulations of a UAV
are built to evaluate and to compare the effectiveness of ANN
controller in comparison with a traditional PID control and a
fuzzy control under the occurrence of disturbances.

This paper is organized into six sections. Following the
introduction, the mathematical model of a hexarotor is
presented in Section II. In Section III, a newly-designed
control scheme including an adaptive NN controller and
a dynamic extension tracking controller are explained in
detail. In Section IV, the optimal path planning composed
of adaptive-weight set-based particle-swarm-optimization
(S-PSO) coupled with A-star algorithm is designed.
In Section V, numerical simulations and experimental results
are provided to validate the effectiveness of the proposed
framework, and performance comparisons with other scheme
in previous researches are given to show the superiority of the
proposed framework. Finally, some conclusions are drawn in
Section VL.

Il. MATHEMATICAL MODEL OF HEXAROTOR
The unmanned aerial vehicle (UAV) used in this study is
the winning R&D 100 2018 conference award project to be
called automatic police UAV patrol system (APUPS) [23] and
is depicted in Fig. 1. The hexarotor is a vertical taking-off
and landing (VTOL) type of a UAV. The thrust is produced
by six rotors, which are placed around its center of mass
with six degrees of freedom. Based on Walid et al. [17] and
Moussid et al. [18], the modelling for rigid bodies could be
derived with the Euler-Lagrange method. The body frame of
a hexarotor is described in Fig. 2. The translational move-
ments are in x-axis, y-axis, and z-axis, where the rotational
movement in x-axis is roll (¢), rotational movement in y-axis
is pitch (0), and rotational movement in z-axis is yaw ().
Those movements are mapped in vectors & = [x,y, z)7 and
¢ = [¢, 6, ¥]". The rotation speeds of six motors are notated
as Qili=12,....6-

The rotation matrix R of the hexarotor can be explained
in (1), and the Euler-Lagrange equation of a hexarotor can be
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FIGURE 1. APUPS.

FIGURE 2. Body fixed frame of hexarotor.

expressed in (2)

[ cOcyr  spsOcy —copsy  cpsOcy + sp sy
R=1| s¥cO s¢psOsy+copcyr codsOsy —socy
| —s0 s¢ co cp ch
1

# (o) 5= 5] @

L(g.¢) =" — Tk

where ¢ = [x,y,2, 9,0, W]T is the system state vector, F' is
the translational force, 7 is the torque, Y}, is the potential
energy, and Yy is the kinetic energy. According to (2) the
translational dynamic can be represented as follows:

d (8L SL i _F oF 3
i (5) 5y =ri=rorr ®
where F, = R[0 0 21'6:1 b ;17 is the thrust force vec-
tor, in which b is the thrust constant and €2; is the motor
rotation speed; F, = —[0 0 mg]” is the gravity force
vector. In addition, the rotational dynamic can be expressed
as follows:

d <5L> oLy %g&‘ w)) s
— |\ =) ———=1:¢g > Yl — Iz =Tp + Tgh
di\og/) oq $ 0Ly — L)
“)
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where Iy = diag(Iyy, Iy, I;) is the inertia matrix; 7, is the
actuated torque vector to be represented as follows:

Tpe
Tp = Tpo
L Ty
[bI[—Q3 + Q2 4+ 0.5(-QF — Q3 + QF + Q))]
= bIV3(—Q2 + Q% + Q3 — QD)2 5)
d(—Qf +Q —QJ +Qf — Q3+ Q)

where d is the drag constant, / is the distance to center of
gravity, and Ty = —I, [9 Q, é Q, O]T is the gyroscopic
effect vector of the propeller, in which Q, = —Q + Q2 —
Q3 + Q4 — Q5 + Qg, and I, is the rotor inertia constant.
From (3)-(5), the translation and rotation dynamics can be
represented as follows:

X = [(cgs0 cy + sp sy)U1]/m

y = l(cp 5O sy —sp cy)Ur]/m

£ = (e cOUr —mgl/m ©
¢=[U+0 w(lyy - ]ZZ) —1I0 Qg]/lxx

é = [U3 + (b “p(lzz - Ixx) - Ir ¢ Qg]/lyy

Y = [Us + ¢ 0 — I/

According to (3) and (5), the relation of control inputs and
motor speeds can be denoted as follows:

Uj
U
Us
Uy
b b b b b b
| —05p1 —bl —0.561 0561 bl 0.5bI
—V3b1/2 0 /3blj2 J3bl/2 0 —+/3bl)2
—d d —d d —-d d
Qf
@3
X % @)
@
o
| 2

Therefore, 5212 can be obtained by the inverse of (7).

Ill. NEWLY-DESIGNED CONTROL SCHEME

A. NEURAL NETWORK CONTROL STRUCTURE

According to (6), a UAV is an under-actuated plant with
six states and four control inputs. An adaptive neural net-
work (ANN) controller with varied learning rates to control
system states (z, ¢, 6, and V) via U;, Uz, Uz, and Uy,
and a translational tracking control scheme with dynamic
extensions to manipulate system states (x and y) are proposed
in this paper. The control block diagram is depicted in Fig. 3.
The variables of x4, Y4, 24, ®a, 6a, and ¥4 are the desired
commands of system states x, y, z, ¢, 6, and ¥, respectively.
The transfer functions of the reference model in the outer loop
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FIGURE 3. Framework of ANN control.

and the inner loop can be represented by (8a) and (8b), which
are similar to low-pass filter types.

X 1

— = 8a
Xe s+p (80)
o = ! (8b)
®; s+

where X}, Xy, @7, and @/, are the Laplace transform of xJ,
Xd, ¢y, and ¢y, respectively; s is the Laplace operator. The
outer and inner loop structure is similar to a cascaded control
structure, where the value of p; for the outer loop is set to be
more than 10 times slower in comparison with the value of p,
in the inner loop. Moreover, x};, y, z;, 7, 6 and ¥}, which
are produced by reference models, are reference commands
for system states x, y, z, ¢, 6, and V, respectively. Tracking
errors are defined as e, = xé —X, ey = yZl -y, e, = ZZ, -2
ep = ¢y — ¢, e9g =0 —0,and ey, = ) — V. In addition,
U1, Uy, Uz, and Uy are control signals for z, ¢, 6, and ¢,
respectively.

A three-layer neural network structure is depicted
in Fig. 4 [20]. The input signals are e,, ey, eg, ey, €, €4,
e, and ey, which will be noted as x! and explained in (9).
The tracking error (e;) and its derivative (é;) in the hidden
layer is disconnected from the states of ¢, 9, and i due to the
difference of input range value. The angles of ¢, 6, and ¢ will
be limited from —27 to 27, but the value of z is from 0 to oo.
(0" is the output of activation function (f’) of the input
layer, which will be the input for the hidden layer and can be
expressed in (10), where WY is the connective weight from
the neuron (i) in the input layer to the neuron (j) in the hidden
layer. The activation function (f/) is a sigmoid function

Uy=U, U=Up Uy=Uy Us=Uy

Q Q Q

NN
§\§ X

FIGURE 4. Neural network structure.
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to mimic human brain, which will be used for the weight
update calculation. The function in the output layer can be
represented as (11), where W/ is the connective weight from
the neuron (j) in the hidden layer to the neuron (k) in the
output layer. The output of the output layer is OF, which is
the output of the activation function (f¥) and is equal to the
control signal (U,,), where m = z, ¢, 0, or {r.
Input layer:

net’ = x! O' = fi(net') = net' 9)

Hidden layer:

net! = Z(W’jOi) O = fl(net)) = " (10)

e—net/

Output layer:

nett =% " (Wr0)  OF =f @et*) =net*  (11)

B. ADAPTIVE NEURAL NETWORK CONTROL
The learning algorithms for connective weights are trained
online with the energy functions (E) to be defined as follows:

E= % Z e (12)
m=z, ¢,0, ¥
where the variable (eml,u=;, ¢, 6 or y) 1S the tracking error at
each system state. To minimize those values, the backprop-
agation algorithm is adopted to derive the update laws for
connective weights. The corresponding update laws can be
described in (13) with the learning rates (n¥ and n/%).

) ; BE(n)
ly _ zj

Win+1) = WV(n) — W)
. . . 0E(n)
jk _ wik _ gk 2V

Whn 1) = Wi — ot S (13)

where # is the iteration number.

Then, chain rules are applied to the partial derivative
mentioned in (13). Chain rules for the output layer can be
expressed as (14), in which Ok is equal to Uy, Us, U3, and Uy.

0E(n) Z AE(n) dem(n) dm(n) 90*(n)

aWik(n) dem(n) dm(n) dOK(n) dWik(n)
_ am(n) om(n)
= Z em(n )aok() = —en(n )aUm(n)

(14)

The term e,,(n) [0m(n)/dU,,(n)] will be estimated with
delta adaptation laws to be proposed in [21], and can be
represented as follows:

= (em +ém) (15)
n

Varied learning rates are designed to be adaptive by
deriving a discrete-type Lyapunov function that is explained
in [22]. A discrete-type Lyapunov function for the ANN
controller is defined as follows:

V(n) = En) (16)
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The change of the Lyapunov function can be obtained as

AVin)=Vin+1)—-Vm)=En+1)—EMn (17)

In order to prove the stability by assuring that AV (n) < 0,
the following term E(n + 1) should be smaller than E(n):

Emn+1)

= E(n)+ AE(n)

_ OEm) 7 \ ik EWT oy
=Emn+ |:8Wfk(n)] (n) + [ Wi ] AWY(n)

_ ik dE(n) : i 9E(r) ’
I ij,k

) ik IE(m) \2

=Emi =20 ; (awfk(n)>

nY OE(n) \*
— E(n) “Zm ,X,: (aWU(n)> < E®) (18)

Thus, varied learning rates (n¥) and (njk) can be designed as

; E
7 = ) — ta (19)
Z( AE(n) ) te
~ AW (n)
Js
.. E
n’ = /L$ +a (20)

2
AE(™n)
iZj (awv‘(n)) te

where ¢ is a small positive value to avoid dividing by zero;
 is a small positive constant to tune the learning speed; a
threshold « is set to be 0.01 to keep the system on slowly
learning to anticipate any disturbance. As a result, the term
AE(n) will be less than zero, and with E(n) > 0, which
implies AV (n) < 0 and V(n) > 0. Therefore, tracking errors
converge to zero as n tends to infinity.

C. TRANSLATIONAL TRACKING CONTROL
With stabilized states (z, ¢, 6, and ), a translational track-
ing control scheme is designed to manipulate system states
(x and y) via 6 and ¢. The nonlinear tracking control efforts
(Ux and Uy) for system states (x and y) can be derived from
the first Lyapunnov function defined in (21) and its first
derivative in (22).
1 1
Vi= et e = —(x,; —07+ 05—y @D
Vl = exey + eyey = ex(jcg - X))+ ey(j’;j ) (22)
By extending the dynamics as x* = x; + Kye, and y* =
vy + Kpyey with positive constants (Kpx and Kjy), two new
virtual command errors (v, and vy) can be defined in (23) and
its first derivative can be obtained as (24).
vy = XF — % =1+ Kprex — X
vy =3 =y =3+ Kye, —y (23)
Uy = XF =¥ =X + Kpeéer — Uy
vy =V =y =¥+ Kpey — Uy (24)
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The second Lyapunnov function with virtual inputs
(x* and y*) can be designed as

1
Vo=V + =v2 + =2 (25)

By taking the derivative of (25) with respect to time, one can
obtain

Vo = Vi + v + VyVy
= ex (&) — X + X% — X*) + v (8] + Kpeéx — Uy)
+ey(y — Y+ 3 =3 + v + Kpyéy — Uy)
= ex[X] — X + X% — &) — Kprey]
+ve(X) + Kprex — Uy)
+eylig =3+ 3" =35 — Kpyeyl
+vy (V) + Kpyey — Uy)
= —Kpee? + exvy + (& + Kpeéy — Uy)
- pr% +eyvy + v, (3 + Kpyéy — Uy) (26)

By designing Uy and Uy in (27), it can guarantee the facts of
Vo >0and V, = — pxe)% — prei — dev)% — Kdyv§ < 0.
It can imply that the errors (e , ey, vy, vy) Will converge to

zero as time tends to infinity.

Uy = X + Kpeex + ex + Kaxve
Uy = ¥y + Kpyey, + ey + Kgyvy (27)

where K, and Ky are positive coefficients.
According to (27), desired angle commands (¢4 and 6,)
can be calculated by

ba = —Uﬂ][— sin(y) Uy + cos(y) Uy ]

ba = [cos(¥) Uy + sin(yr) Uy] (28)

m
Ui cos ¢
It should be noted that based on the frame model in Fig. 2,
the positive direction of x requires a positive rotation direction
of 8, while a positive direction of y requires a negative rotation
direction of ¢. The terms (m/U; and m/(U; cos ¢)) in (28)
are used to cancel the signal U; in (6).

IV. OPTIMAL PATH PLANNING

A combination of the A-star path-finding algorithm and the
set-based particle swarm optimization (S-PSO) with adap-
tive inertia weight to solve the UAV optimal path-planning
problem is presented in this section. The objective function
is discussed in the first subsection. The second subsec-
tion describes the data collection process. The third sub-
section expresses the proposed k-agglomerative clustering
procedure, and explains how to overcome the limitation of
K-means clustering. Finally, the fourth subsection presents
the optimal path-planning scheme via A-star and S-PSO
algorithms with adaptive inertia weight.

A. OBJECTIVE FUNCTION DEFINITION
A UAV surveillance system can be represented as a graph
G(A, H), where A is a set of vertices to be represented in
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latitude, longitude, and altitude coordinates from the system,
and H is a set of edges to express the connection between
vertices. There are two types of vertices, which are a* € A"
for imaging points, and a” € A" for non-imaging points.
Imaging points are coordinates, where the UAV has to take
surveillance video, and non-imaging points are coordinates,
where the UAV does not take any surveillance video. The
objective of the path planning is to find a tour from the
take-off point with the smallest cost to visit each imaging
points exactly once, and then go to landing point. The tour
can be represented as permutation (o) of imaging points
{al, a3, ..., a, }, where n, is number of imaging points.
The costs of edges between imaging points in the tour are the
output of energy prediction model discussed in our previous
work [4] for missions to move from the coordinate (a;) to the
coordinate (a;), which will be noted as P(a;, a;). The objective
function can be defined as

B = arg min[ Z P(af, af, ) + ZP(G?)

i€o<ny i=1

+P@",d}) + P ,a")]  (29)

where P(a, aj, ;) is a predicted energy consumption to move
through edges that connect the imaging point (a}) to the
imaging point (a;’, ); P(a™®, a?) is the predicted energy con-
sumption to move through the edge that connects the take-
off point (a’?) to the first imaging point (a}) of the chosen
sequence; P(ay, , al) is the predicted energy consumption
to move through the edge that connects the last imaging
point (a, ) of the chosen sequence to the landing point (ab),
and P(ay) is the predicted consumed energy to take videos
in the imaging point (a}). This objective function is imple-
mented to solve the path-planning problem of real pilot flight
data and simulation data. The process is done in three consec-
utive steps including the data collection, the cluster analysis,
and the optimal path planning. The corresponding process is
depicted in Fig. 5.

; Path
Cluster Analysis ; Planning

Real Pilot | Il

Flight Data

{ Adaptive |

~ nertin
i Weight |
- H H

K-Means on [ ses0
Imaging Points |

. 7
// Generating Graph

| Fully Connected
| Graph of Imaging
i Points

Planned Path

K-Agglomerativejon

Non-imaging Points

FIGURE 5. Optimal path-planning process.

B. PILOT FLIGHT DATA COLLECTION

Collection processes of the pilot flight data are done by
recording longitude, latitude, altitude, and heading of sev-
eral flight patterns. Mission planner in [24] and Arducopter
firmware in [25] are installed in the UAV to conduct the
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proposed method. Due to unavailability of camera angle data
in the corresponding UAYV, the camera angle is set to be fixed
before the data is taken. Therefore, the representation of the
camera angle can only be represented as the combination of
altitude and heading. A python code to record the log of lon-
gitude, latitude, altitude, and heading values from the mission
planner with the HTTP protocol (http://127.0.0.1:56781/) at
every 0.5s is created. The value of u = 1 is automatically
set when the camera is on, and the value of u = O is
automatically set when the camera is off. By running this
code while letting the pilot to fly the UAV for complet-
ing surveillance missions, imaging points and non-imaging
points are collected at the same time. Those data with u = 1
are imaging points while data with ¥ = 0 are non-imaging
points. By including altitude in the recording data, it will open
capability to solve a 3D path-planning problem, which will
be more reliable in comparison with the proposed method by
Kwak and Sung [14].

Imaging points are locations to take surveillance videos,
and those locations are depicted in Fig. 6. Points A, B, C,
and D have different longitude, latitude, altitude, and heading
with the yellow circles as their survey objects. Video taking
on the points (A, B, and D) are done by hovering and turning
the heading and altitude to the required position and orien-
tation to have a relatively the same video of the objects for
10 seconds. The point C has a consecutively horizontal right -
vertical down - horizontal left movement while maintaining
the same heading and is depicted in Fig. 7.

FIGURE 6. Imaging points in real pilot flight data.

Non-imaging points are locations, where the pilot flew the
UAV to move from the take-off point, through all the imaging
points, then go to the landing point. These points are shown
in Fig. 8, and cluster centers of these points will be arcs that
connect imaging points after the clustering. The pilot flew the
UAV three times for three different flight patterns, where the
first location point of each flight pattern data is defined as a
take-off point (a”0), and the last one is defined as the landing
point (ab).
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FIGURE 8. Non-imaging points in real pilot flight data.

C. K-AGGLOMERATIVE CLUSTERING

Clustering is one of unsupervised learning method to group a
set of objects with more similar characteristic than the other
group. In this paper, this characteristic is the distance between
non-imaging points or imaging points. The purpose of this
process is to decrease the number of recorded coordinates
points from the data collection process. This process is nec-
essary to simplify the path-planning problem. By this way,
it will shorten the computational time of the proposed path-
planning algorithm.

The collected imaging points and non-imaging points are
then clustered. With different values for u, the data can be
easily separated between imaging points and non-imaging
points. Afterwards, each of the separated data will be clus-
tered among themselves for all flight patterns that have been
recorded in Section I'V-B. Imaging points will be clustered
with the K-means clustering algorithm while non-imaging
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points will be clustered with the proposed K-agglomerative
clustering. This is due to the necessity of non-imaging points
to be clustered by an algorithm that can include a connectivity
constrain, which the K-means clustering algorithm is unable.
On the other hand, it is important for the clustering process
of imaging points to have cluster centers as close as possible
to the real data in order to have a similar image with the real
data, which the K-means clustering algorithm has this ability.

The K-agglomerative clustering is proposed in this
research as the combination of the K-means to define the
number of cluster, and the agglomerative to do the clustering.
The agglomerative clustering is one type of hierarchical clus-
tering [26]. This method is a bottom-up approach, where the
clustering process will be started from all points. Then, it will
be clustered with 1 closest distance point in every iteration
until there is only 1 cluster. The dendrogram illustration of
the agglomerative clustering is depicted in Fig. 9. One of the
problem of implementing the agglomerative as a hierarchical
approach of cluster analysis is to define the number of the
cluster (K).

0000000?0

---

3,4,5,6,7,8,9

1.3.4,5,6,7.8.9

FIGURE 9. Dendrogram illustration of agglomerative clustering.

To define the number of cluster (K), a similar mechanism
with the K-means is implemented. The objective function of
this mechanism is to minimize the function of G(n) in (30),
which is sum of distances of normalized point coordinate
Dglg=12,..., n, 10 its closest centroid &¢lo—1 2, . k-

K
O =agmin Y (IDa— sl (30)
S =1 Dye Se(n)
Si) = {Da: 1Dy = &I <Dy = &l Ve, 1 < <K}
3D

The algorithm starts by randomly placing ¢, into the coor-
dinate space of D, as many as K. Then, each D, is assigned
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to its closest ¢.. Moreover, U in (30) can be calculated and
evaluated. If the value of G(n+1)—G(n) is not smaller than or
equal to a preset constant value (¢ = 0.0001), the position of
the centroid (¢.) is updated by averaging all the D, position,
which is assigned to it. The relation between U and K of non-
imaging points can be plotted in Fig. 10.

i @
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400 +

300 +

]

=3
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1

U (distance to centroid)

100

0 20 40 60 80 100
K (number of cluster)

FIGURE 10. Relation between & and K.

Figure 10 shows an elbow curve characteristic, where the
knee can be found by implementing the kneedle algorithm
by Satopaa et al. [27] to the relation U of and K. Then,
the value of K is used to be the number of cluster parameter
to implement the agglomerative clustering.

The agglomerative clustering also has an advantage to
solve this kind of data, which is connectivity constraint to be
proposed by Li [28]. The connectivity constraint can guar-
antee that data in one cluster are data that continuously con-
nected in the recording phase. This part is important because
the pilot could have avoided an obstacle in two different flight
pattern by flying roundabout the obstacle and clustering with-
out connectivity constraint (e.g., with K-means) will cluster
them into one cluster with the centroid on the obstacle itself.
The result and comparison of the proposed K-agglomerative
clustering and the K-means for this problem will be discussed
in the Section V.

An undirected graph G(A, H) can be generated from clus-
tered imaging points and non-imaging points with cluster
center of clustered imaging points by K-means as set of
vertices A¥, and medians of clustered non imaging points
by K-Agglomerative as set of vertices A”. The connectivity
between imaging points and non-imaging points is generated
based on the recorded data index, where an edge (h, ;) from
the set of edge H between one median of clustered non-
imaging points and one cluster center of imaging point is
generated if the index of at least one of each cluster mem-
ber is sequentially connected. The same way goes for the
edge (h, ) between clustered non-imaging points and non-
imaging points, the edge (4, ,) between imaging-points and
non-imaging points, and the edge (%, ,) between imaging-
points and imaging points. Finally, the edge (%) from the
take-off point to clustered non-imaging points or to clustered
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imaging points, and the edge (4;) from clustered non-imaging
points or from clustered imaging points to the landing point
are generated by the same way. The existences of these
edges will represent the connection between cluster centers
of imaging points or non-imaging points, which longitude,
latitude, and altitude information will be the inputs for the
energy consumption prediction as a mission to move from
one cluster center to the other cluster center.

In this step, the term (Z;.zl P(a})) in (29) is also pre-
dicted using the energy consumption prediction from [4]. The
energy consumptions for survey points (A, B, and D) of real
pilot flight data are predicted as 10 seconds hover missions.
Moreover, the required energy to cover the survey point (C)
in Fig. 7, which is an imaging point that is composed of
horizontal-vertical-horizontal movements while heading to
one direction, is predicted by redoing the clustering to these
points with four number of clusters. Then, the UAV can be
set to fly through these four cluster centers while turning the
camera direction to the cluster center of heading and taking
video at the same time. The comparison of K-means and
K-agglomerative clustering algorithms in real pilot flight data
is depicted in Fig. 11. One can evaluate the objective function
in (29) from these results in Fig. 11, and one can obtain
the values of 0.9775 and 1.0312 for the K-means cluster-
ing algorithm and the K-agglomerative clustering algorithm,
respectively. Because it would be better to have a smaller
amount of U(n), the K-means clustering algorithm is chosen
to cluster imaging points.

D. A-STAR AND ADAPTIVE-WEIGHT S-PSO PATH
PLANNING

An A-star algorithm, which is an arc routing algorithm to find
a shortest path, is implemented to simplify the graph G to be
a node routing problem with one vehicle (i.e., the travelling
salesman problem). This method is implemented by running
an A-star algorithm to find the shortest path to move from
one a* € A" to all member of A* through a" € A". The
A-star algorithm is also used to find shortest paths to move
from take-off vertices a’® to all a* € A“ through " € A"
and to find shortest paths to move from all a* € A" to
landing vertices a” through a” € A”". Then, a new fully
connected graph G ({a*, a9, a-}, HY ) is generated as the
result of the A-star algorithm, where H’ is the set of edges
that is generated by A-star algorithm as shortest paths through
edges h, , and vertices a” € A”. This fully connected graph
then will be solved by the S-PSO algorithm.

A PSO algorithm is a meta-heuristic optimization algo-
rithm that inspired by social behavior of bird flocking or
fish schooling. The term particle in this algorithm is used
to visualize the individual optimization of each individual
bird during the flocking while maintaining communication
with the best optimized value the group can have. In general,
a PSO algorithm can be expressed in (32) and (33). The
position of particle (i) represented in (32) is a sequence
combination of imaging points (0;) to minimize predicted
energy consumption (8;) from (29), where A is the iteration
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FIGURE 11. Clustering of moving survey points C in real pilot flight data:
(a) K-means clustering result; (b) K-agglomerative clustering result.

number. The velocity update for particle i (v;(1)) is expressed
in (33), where w;(A) is the inertia weight, ¢ is the exploitation
constant, c¢; is the exploration constant, 0;‘ is the best position
of particle (i), o* is the global best position of the group, and
two random operator (r; and r, ) with values between 0 to 1.

oi(A +1) = 0;(A) + vi(X) (32)
vih + 1) = wiM)vi(A) + c1r1 (0] — 0) + c2r2 (0" — 0))
(33)

The set-based PSO (S-PSO) was first investigated by
Chen et al. [9]. The purpose of this method is to tackle the
ineffectiveness of PSO to solve a discrete problem. Thus, this
method can be explored as a method to bring any upgrade in
the PSO from a continuous problem to a discrete problem.

The difference that is offered by the S-PSO is the represen-
tation of particle’s velocity to be a set with possibilities given
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by
vi = (W /p(h)Ii e HT) (34)

where each element #/ € H/ has a possibility p(#) € [0, 1]
in v;. Using this definition, the fully connected graph (G/),
as the output of the A-star algorithm, can be represented as
the particle’s velocity.

In this paper, a method to define an adaptive inertia weight
of the S-PSO for particle (i) is proposed, implemented, and
compared to other method, and is explained in (35) and (36).

wi(h) = o — (@) — ") x 2[0(— )—0.5]148 (35)
0.21,

5 — 0.1 x rand, l:foi()»)zolz 36)
—0.1 x rand, if 0;(X) # o;

where a)? is the initial inertia weight, w?” is the desired

final inertia weight value in the last iteration number, o is
a sigmoid function, A is the iteration number, and A, is the
total iteration instant. In (36), the value of § is defined as
the function of the random operator, which is a random float
number between 0 and 1. In the proposed adaptive inertia
weight, a positive value of § will be given if the position
of the particle at iteration A (0;(A)) is its best position (o).
Otherwise, it will be negative if 0;() is not equal to 0. When
the values of a)? = 0.9. and a)l.k” = 0.4 are selected, the plot
of w(}) is depicted in Fig. 12.
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FIGURE 12. Inertia weight o(}).

V. RESULT DISCUSSION
A. CONTROL SYSTEM DESIGN
The detailed parameters of the APUPS can not be
obtained from the manufacturer. Therefore, parameters in
Moussid et al. [18] are used in this paper as numerical simu-
lations. The hexarotor parameters are summarized in Table 1.
By using the parameters in Table 1, numerical simulations
of proportional-integral-differential (PID) control in [18],
fuzzy control in [19], and the proposed ANN control are
created in MATLAB software with the sampling time (¢, =
0.001s) and the occurrence of a disturbance (—30N) at
35s < t < 45s for Uy. The parameters of PID, fuzzy, and
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TABLE 1. Hexarotor parameters.

Notation Description Value

I, Moment of inertia about 7.5x107 kg m’
body fram’s x-axis

I, Moment of inertia about  7.5x107 kg m?
body fram’s y-axis

L. Moment of inertia about 1.3%10? kg m’
body fram’s z-axis

b Thrust constant 3.13%10° N ¢

d Drag constant 7.5%107 Nms

1, Inertia of each rotor 7.5%107 kg m*

m Mass 0.65 kg

/ Distance to center of 0.23m
gravity

g Gravity constant 9.8 m/s’

ANN controllers are provided as follows:

p1 =6, p=0.09,
Kyy = Kpy =041, Ky =Ky =0.15,K;x = K;y =0,
Ky, =15, Ky, =5, Ki; =10, Kpp = Kpp = 200,
Kip = Kgo = 6.2, Ky = Kjp =0.048, Kyy =70,
Koy =4, Ky =5,
Ke; =10, Ki; =5, Ke¢ =Koy = Kew =2,
Kep = Kop = Koy =1, Ky, =3.9,
Kyy = Kyg =Kyy =1
e = 0.1, pgay =1, &, = gggy = 1,
a; = agey = 0.01 37

where p; and pp are time constant of reference model in
outer loop and in inner loop, respectively; Kpy, Kpy, Kux,
and Ky, are proportional and derivative gains for nonlinear
tracking control of systems states (x and y) that are con-
structed according to (27), tuned and chosen to get the best
transient control performance in numerical simulations while
maintaining the stability, and implemented to PID, fuzzy, and
ANN; K., Kpg, Kpo, Kpy, Kazo Kag, Kao, Kay, Kiz, Kig,
K9, and K;y, are PID controller parameters for system states
(z, ¢, 8, and ) that are constructed according to control
framework in [18] and are chosen to have the best transient
performances that match aforementioned hexacopter param-
eters in Table 1 while ensuring the stability. A fuzzy control
framework proposed in [19] is designed to only control sys-
tems states (z, ¢, 6, and ). Therefore, by implementing (27),
the other parameters to be tuned are K,;, K.y, Ke, and Ky,
which are error gains and are tuned to adjust the steady-state
response. Kiz, Koy, Kig, and K;y, are the first-derivative error
gains and are tuned to adjust the damping characteristic of
the transient; Ky, Kyg, Kyg, and Kyy are control output
gains and are also tuned to adjust the steady state and the
stability of system states (z, ¢, 6, and ). The proposed ANN
control framework is implemented according to Figs. 3 and 4.
Moreover, the tuned parameters from (19) and (20) are u.,
&;, and a; for the ANN of the system state (z), and ©gpo y,
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£¢oy»and ag gy for the ANN of system states (¢, 6, and /).
The value of w, are tuned to be slower than the inner loop
¢ 6 y to have the outer loop at least ten times slower learning
rates in comparison with the inner loop. The values of ¢, and
£¢ 6y are chosen to prevent dividing by zero in (19) and (20)
if the partial derivative in the denominator is equal to zero.
The values of o; and ay ¢y are selected to have the ANN to
be constantly learning to anticipate any disturbance.

To examine and compare the control performance, the fol-
lowing root-mean-square-error (RMSE) values of states
tracking responses are defined:

RMSE(qj) =

~| =

T
D e (38)
n=1

where g; and ¢; indicate the elements of the system state vec-
torqg = [x,y,2,¢,0, I/I]T and the corresponding error state
vector e = [ey, ey, ez, €4, €9, ew]T; T is the total sampling
instant; n is the iteration number.

Numerical simulations of the PID control in [18], the fuzzy
control in [19], and the proposed ANN control are depicted
in Figs. 13-16, respectively. The translational movements
in 3D illustration of PID, fuzzy, and ANN controllers are
depicted in Fig. 13. Figure 14 clearly shows that the given
disturbance affected the system controlled by the PID control
to have a 3.5m error when the disturbance is given, and a
—3.488m error when the disturbance is removed for z-axis
responses. Figure 14 shows that with a fine parameter tuning,
the fuzzy control can significantly minimize errors from the
given disturbance to be 0.831m and —0.0360m. However,
it can also clearly be seen that the steady state errors of all the
states are slightly bigger, which will give a bad impact to the
RMSE values. Figure 16 shows that the ANN controller can
minimize errors from the given disturbance to be 1.399m and
—0.3060m, which is slightly worse than the fuzzy control.
But, the proposed ANN controller has a better steady-state
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FIGURE 13. Translational movement in 3D of PID, fuzzy, and ANN
controllers.
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response. Moreover, varied learning rates of the ANN to
be updated according to (19) and (20) for this scenario are
depicted in Fig. 17. It is obvious that the disturbance affects
the learning rate for the system state of z at 35s and 45s.

The performance comparisons of the PID control in [18],
the fuzzy control in [19], and the proposed ANN control are
summarized in Table 2. As can be seen from Table 2, the pro-
posed ANN control can achieve 49.083% and 30.433%
improvement of average horizontal and vertical tracking per-
formance, and 44.44% and 37.50% fewer number of parame-
ters to be tuned in comparison with PID and fuzzy controllers,
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FIGURE 17. Varied learning rate.

respectively. Although non-pretrained results of the ANN
control in Fig. 16 only achieve slightly better average angle
control results compared to fuzzy controller, which is 1.33%.
A pre-training process is believed to be able to tackle this
problem. Moreover, the proposed ANN control is the only
method with learning ability and Lyapunov stability analysis
in comparison with PID and fuzzy controllers.

Advantages of the proposed ANN controller with varied
learning rates in comparison with conventional methods are
summarized as follows. 1) The disturbance anticipation has a
faster response with smaller errors. 2) The ANN has more
robust control structure with adaptive and online learning
capability. 3) It also has better steady-state responses in com-
parison with conventional methods. 4) It has fewer parameter
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TABLE 2. Performance comparisons of PID, FUZZY, and ANN controllers.

PID control in Fuzzy control in The proposed
[18] [19] ANN
RMSE(x) 0.0282m 0.0697m 0.0176m
RMSE(y) 0.0410m 0.0947m 0.0251m
RMSE(z) 0.5141m 0.0954m 0.1497m
RMSE(¢) 0.0001rad 0.0022rad 0.0031rad
RMSE(6) 0.0001rad 0.0046rad 0.0027rad
RMSE(y) 0.0001rad 0.0029rad 0.0029rad
Parameters
number to 18 16 10
be tuned
Lyapunnov
stability Not included Not included Included
analysis
Learr}mg None None Online learning
ability

to be tuned with guaranteed stability, which means a better
usability in comparison with conventional methods.

B. OPTIMAL PATH PLANNING

To evaluate the path-planning performance, the method is
implemented via numerical simulations and real pilot flight
data. The parameters for the S-PSO in (35) are given as
follows:

Anl =60, A =20 (39)

where A, is the number of iteration for the simulation data,
and A, is the number of iteration for the implementation
data. Moreover, the numbers of particles are 15 and 3 for
simulation and implementation data, respectively.

1) SIMULATION

The simulation is conducted via the software in the loop
simulator by ArduPilot [29]. This program let the user move
the UAV in the mission planner with joystick as a simulation
and retrieve the GPS data. Thus, the logger code in python
can be used to log the data from the HTTP connection to the
mission planner.

Imaging points and the flight pattern of simulation data
are depicted in Figs. 18 and 19, respectively. The number of
imaging points in the simulation data are six, which includes
the horizontal-vertical-horizontal imaging movement in the
survey point E. The detailed imaging points are depicted
in Fig. 20.

The comparison of clustering results via the K-means
and the proposed K-agglomerative clustering is depicted
in Fig. 21. The blue arrows in the K-means clustering results
are pointing to centroids that are not from the data. This is
the disadvantage of the traditional K-means clustering. The
result of the proposed K-agglomerative clustering is a graph
that will be the input to the optimal path planning process,
and is depicted in Fig. 22.

The shortest paths are then calculated with the A-star algo-
rithm, which will make the system become a fully connected
graph. Afterward, the fully connected graph will be the input
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FIGURE 20. Imaging point E of simulation data.

for the path planning. Moreover, the term (Z;’il P(a)) of the
simulation data is predicted by inputting six hovering mis-
sions of survey points (A, B, C, D, F, and G) of simulation data
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FIGURE 21. Performance comparison of K-means and K-agglomerative
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FIGURE 22. Graph from K-agglomerative of simulation data.

and inputting one moving mission for survey points (E). The
moving mission of survey points (E) is depicted in Fig. 23.
The total energy requirement for taking videos in these imag-
ing points of simulation data is 16.585 Wh, which will be used
to calculate the objective function in (29).

The performance of the proposed path-planning method
is compared with the ones of the PSO-Swap operator
in [8], the S-PSO in [9], the S-comprehensive learning PSO
(S-CLPSO) in [10], and the S-PSO with chaotic inertia
weight in [30]. The inertia weights for previous methods
in [8]-[10], [30] are exactly the same as the lists in the
references. These methods are reconstructed for this com-
parison in Python code. All of these five methods are used
in five times with the aforementioned parameters, and the
comparison of the objective function in (29) are summarized
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TABLE 3. Comparison of path planning on real pilot flight data.
. Best Worst Mean Mea'n
Algorithm (Wh) (Wh) Energy Duration
(Wh) (s)
PSO-Swap in [8] 78.6414 89.0007 85.0028 0.0173
S-PSO in [9] 78.6414 89.6598 82.884 5.0583
S-CLPSO in [10] 78.9814 89.8656 85.8609 3.2147
S-PSO  with chaotic
inertia weight in [30] 78.9814 85.0715 822112 5.8839
S-PSO with adaptive 78.6414 85.0715 80.153 5.4970

weight

in Table 3. The results clearly show that the proposed S-PSO
with adaptive inertia weights can plan a pattern with the
lowest mean predicted energy with 5.23% lower average in
comparison with other methods in [8]-[10], [30].

2) REAL PILOT FLIGHT DATA

The average energy consumed for those patterns
in Figs. 6-8 is 96.593Wh. The experiments are done in
ITRI headquarter, Hsinchu, Taiwan. The performances of
the K-means and the proposed K-agglomerative clustering
of the recorded data are depicted in Fig. 24. The problem in
the K-means clustering can be solved by using the proposed
K-agglomerative clustering to ensure the connectivity before
defining a cluster.

The term Z?i] P(a}) of the real pilot flight data is pre-
dicted by inputting three hovering missions of survey points
(A, B, and D) of real pilot flight data, and inputting one mov-
ing mission of survey points (C), which cluster is depicted
in Fig. 11. The moving missions of survey points (C) are
depicted in Fig. 26. The total predicted required energy for
taking videos in these imaging points of real pilot flight data
is 19.70 Wh. This value is higher than the one in simulation
data because the real pilot flight data has a higher altitude
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FIGURE 24. Performance comparison of K-means and K-agglomerative on
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FIGURE 25. Graph from K-agglomerative of real pilot flight data.

than the one in the simulation data. This means that it requires
more vertical movement, which will consume more energy
than the horizontal movement. Later, this value will be used
to calculate the objective function in (29).

By doing the same comparison in Table 3, the perfor-
mance of the proposed S-PSO with adaptive inertia weight
via real pilot flight data in comparison with other methods
in [8]-[10], [30] is summarized in Table 4 with the afore-
mentioned parameters and five times run. These methods are
reconstructed for this comparison in Python code. The pro-
posed S-PSO with adaptive inertia weight can plan an optimal
path with 2.75% mean predicted energy in average compare
to other methods in [8]-[10], [30] and is the third fastest
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FIGURE 26. Moving missions of survey points C of real pilot flight data.

TABLE 4. Comparison of path planning on real pilot flight data.

Mean Mean
. Best Worst .
Algorithm (Wh) (Wh) Energy Duration
(Wh) (O]
PSO-Swap in [8] 76.5024 76.7728 76.348 0.006
S-PSO in [9] 72.3339 76.0502 73.1762 0.1755
S-CLPSO in [10] 72.3339 74.6485 73.6329 0.1183
S-PSO  with chaotic
inertia weight in [30] 72.3482 74.1852 73.083 0.1948
S-PSO with adaptive 72.3339 72.3482 72.3397 0.1707

weight

mean calculation duration. Although the mean duration of
simulation and real pilot flight data by the proposed strategy
are high, the proposed method shows consistency on giving a
better objective value.

The advantages of the proposed S-PSO with adaptive iner-
tia weight compared to the PSO-Swap operator in [8], the S-
PSO in [9], and the S-CLPSO in [10] with linearly decreased
inertia weight; and S-PSO with chaotic inertia weight in
[30] are summarized as follow. 1) The proposed method
increases the efficiency of the S-PSO by slightly decrease the
mean duration in comparison with the S-PSO with linearly
decreased inertia weight. 2) The proposed adaptive inertia
weight has capability to give a response to a wrong position
of the particle by decreasing the inertia weight (increase
global search) for the next iteration and do the otherwise
when the position is the best position. 3) The accuracy of
the prediction for the aforementioned scenario is proved to be
more consistently be able to choose the path with the lowest
energy consumption prediction.

3) PLANNED PATH CONTROL RESPONSE
The planned path then is used to do the final test,
which are control responses for the path following process.
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FIGURE 28. Responses of ANN controller for planned path.

A disturbance (—30N) at35s < t < 45sfor U; is also given
to examined the performance of the disturbance rejection con-
trol of the proposed ANN controller. The results are depicted
in Figs. 27 and 28, and the corresponding RMSE values
are 2.1578m, 1.8678m, 0.0458m, 0.0020rad, 0.0024rad, and
0.0002rad for system states (x, y, z, ¢, 8, and ) with respect
to individual reference commands (x}, y7;, 2, ¢4, 6 and ¥/ ))),
respectively. The total predicted power consumption of the
planned path is 72.3339 Wh. This means that the UAV will
consume 24.2591Wh less energy compared to the average of
the pilot flight data.
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Comparisons of imaging points from real pilot flight data
and imaging points from the planned path are depicted
in Fig. 29. It can clearly be seen that the image on cluster
centers are similar to the real pilot flight data.

Clustered Imaging Point A

Clustered Imaging Point B

(b

Clustered Imaging Point D

©

FIGURE 29. Imaging points comparisons: (a) Comparisons of imaging
point A of real pilot data and its cluster center; (b) Comparisons of
imaging point B of real pilot data and its cluster center; (c) Comparisons
of imaging point D of real pilot data and its cluster center.

VI. CONCLUSION

This paper has been successfully designed a complete UAV
surveillance system, and discussed from the low-level con-
troller to the optimal path-planning solution. According to
the root-mean-square-error (RMSE) comparisons, the pro-
posed adaptive neural network (ANN) controller can achieve

126152

49.083% and 30.433% improvement of average horizontal
and vertical tracking performance, and 44.44% and 37.50%
fewer number of parameters to be tuned in comparison with
proportional-integral-differential (PID) and fuzzy controllers,
respectively. Moreover, the learning behaviour of the pro-
posed ANN control can make the control structure easier to be
used for other UAVs with different parameters without tuning
control parameters as many as what it is in PID or fuzzy
controller with better disturbance anticipation. In addition,
the combination of the proposed K-agglomerative cluster-
ing, the set-based particle-swarm-optimization (S-PSO) with
adaptive weight, and the A-star algorithm can plan a path
with predicted energy 21.28Wh less then actual energy con-
sumed by pilot flight. The main contributions of this study
includes an ANN framework for the disturbance rejection
control, a mission-based energy consumption prediction to
give an insight of the flight duration limitation, and an optimal
path planning with K-agglomerative clustering and adaptive
inertia-weight S-PSO to plan an energy efficient path.

REFERENCES

[1] Z. Liu, R. Sengupta, and A. Kurzhanskiy, “A power consumption model
for multi-rotor small unmanned aircraft systems,” in Proc. Int. Conf.
Unmanned Aircr. Syst. (ICUAS), Miami, FL, USA, Jun. 2017, pp. 310-315.

[2] A. Abdilla, A. Richards, and S. Burrow, “Power and endurance modelling
of battery-powered rotorcraft,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst. (IROS), Sep./Oct. 2015, pp. 675-680.

[3] N. Bezzo, K. Mohta, C. Nowzari, I. Lee, V. Kumar, and G. Pappas,
“Online planning for energy-efficient and disturbance-aware UAV opera-
tions,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Oct. 2016,
pp. 5027-5033.

[4] A. S. Prasetia, R.-J. Wai, Y.-L. Wen, and Y.-K. Wang, “Mission-based
energy consumption prediction of multirotor UAV,” IEEE Access, vol. 7,
pp. 33055-33063, 2019.

[5] M. Dorigo and M. Birattari, Ant Colony Optimization. Boston, MA, USA:
Springer, 2010.

[6] D.L. Applegate, R. E. Bixby, V. Chvatal, and W. J. Cook. (Mar. 1, 2015).
Concorde TSP Solver. Traveling Salesman Problem. [Online]. Available:
https://www.math.uwaterloo.ca/tsp/concorde

[7] S. S. Juneja, P. Saraswat, K. Singh, J. Sharma, R. Majumdar, and
S. Chowdhary, “Travelling salesman problem optimization using genetic
algorithm,” in Proc. Amity Int. Conf. Artif. Intell. (AICAI), Feb. 2019,
pp. 264-268.

[8] S.K.Hadia, A. H. Joshi, C. K. Patel, and Y. P. Kosta, ““Solving city routing
issue with particle swarm optimization,” Int. J. Comput. Appl., vol. 47,
no. 15, pp. 27-30, 2012.

[91 W.-N. Chen, J. Zhang, H. S. H. Chung, W.-L. Zhong, W.-G. Wu, and
Y.-H. Shi, “A novel set-based particle swarm optimization method for
discrete optimization problems,” IEEE Trans. Evol. Comput., vol. 14,
no. 2, pp. 278-300, Apr. 2010.

[10] Y. Weng, W.-N. Chen, A. Song, and J. Zhang, “Set-based comprehen-
sive learning particle swarm optimization for virtual machine placement
problem,” in Proc. 9th Int. Conf. Intell. Control Inf. Process. (ICICIP),
Nov. 2018, pp. 243-250.

[11] L. Amorosi, L. Chiaraviglio, and J. Galdn-Jiménez, “Optimal energy man-
agement of UAV-based cellular networks powered by solar panels and bat-
teries: Formulation and solutions,” IEEE Access, vol. 7, pp. 53698-53717,
2019.

[12] C.-W.Lim, S. Park, C.-K. Ryoo, K. Choi, and J.-H. Cho, ““A path planning
algorithm for surveillance UAVs with timing mission constrains,” in Proc.
Int. Conf. Control, Autom., Syst. (ICCAS), Oct. 2010, pp. 2371-2375.

[13] K. Dorling, J. Heinrichs, G. G. Messier, and S. Magierowski, *“Vehicle
routing problems for drone delivery,” IEEE Trans. Syst., Man, Cybern.,
Syst., vol. 47, no. 1, pp. 70-85, Jan. 2017.

[14] J. Kwak and Y. Sung, “Autonomous UAV flight control for GPS-based
navigation,” IEEE Access, vol. 6, pp. 37947-37955, 2018.

VOLUME 7, 2019



R.-J. Wai, A. S. Prasetia: ANN Control and Optimal Path Planning of UAV Surveillance System

IEEE Access

[15] T. Jiang, D. Lin, and T. Song, “Finite-time backstepping control for
quadrotors with disturbances and input constraints,” IEEE Access, vol. 6,
pp. 62037-62049, 2018.

[16] S.Busarakum and V. Srichatrapimuk, “The design of sliding mode control
of a hexarotor,” in Proc. IEEE Conf. Syst., Process Control (ICSPC),
Dec. 2014, pp. 47-52.

[17] M. Walid, N. Slaheddine, A. Mohamed, and B. Lamjed, “Modeling and
control of a quadrotor UAV,” in Proc. 15th Int. Conf. Sci. Techn. Autom.
Control Comput. Eng. (STA), Dec. 2014, pp. 343-348.

[18] M. Moussid, A. Sayouti, and H. Medromi, ‘“‘Dynamic modeling and control
of a hexarotor using linear and nonlinear methods,” Int. J. Appl. Inf. Syst.,
vol. 9, no. 5, pp. 9-17, 2015.

[19] F. Fakurian, M. B. Menhaj, and A. Mohammadi, “Design of a fuzzy
controller by minimum controlling inputs for a quadrotor,” in Proc. 2nd
RSI/ISM Int. Conf. Robot. Mechatronics (ICRoM), Oct. 2014, pp. 619-624.

[20] E-J.Lin, W.-J. Hwang, and R.-J. Wai, “Ultrasonic motor servo-drive with
online trained neural-network model-following controller,” IEE Proc.-
Electr. Power Appl., vol. 145, no. 2, pp. 105-110, Mar. 1998.

[21] E-J.Lin and R.-J. Wai, “Hybrid controller using a neural network for a PM
synchronous servo-motor drive,” IEE Proc.-Electr. Power Appl., vol. 145,
no. 3, pp. 223-230, May 1998.

[22] R.J. Wai, M. W. Chen, and Y. K. Liu, “Design of adaptive control and
fuzzy neural network control for single-stage boost inverter,” IEEE Trans.
Ind. Electron., vol. 62, no. 9, pp. 5434-5445, Sep. 2015.

[23] (2018). RD 100 Conference, Award Winners Finalists. [Online]. Available:
https://www.rd100conference.com/ awards/ winners-finalists/year/2018/

[24] ArduPilot Dev Team. (2016). Mission Planner, Mission Planner Home.
[Online]. Available: http://ardupilot.org/planner/index.html

[25] ArduPilot Dev Team. (2016). Ardu Copter, Copter Home. [Online]. Avail-
able: http://ardupilot.org/copter/

[26] L. Rokach and O. Maimon, “Clustering methods,” in Data Mining and
Knowledge Discovery Handbook. Boston, MA, USA: Springer, 2005,
pp. 321-352.

[27] V. Satopaa, J. Albrecht, D. Irwin, and B. Raghavan, “Finding a ‘Kneedle’
in a haystack: Detecting knee points in system behavior,” in Proc. 31st Int.
Conf. Distrib. Comput. Syst. Workshops, Jun. 2011, pp. 166—-171.

[28] J. Li, “Agglomerative connectivity constrained clustering for image seg-
mentation,” Stat. Anal. Data Mining, ASA Data Sci. J., vol. 4, no. 1,
pp. 84-99, 2011.

[29] ArduPilot Dev Team. (2019). SITL Simulator (Software in the
Loop). Accessed: Jun. 18, 2019. [Online]. Available: http://ardupilot.
org/dev/docs/sitl-simulator-software-in-the-loop.html

[30] J. C. Bansal, P. K. Singh, M. Saraswat, A. Verma, S. S. Jadon, and
A. Abraham, “Inertia weight strategies in particle swarm optimization,”
in Proc. IEEE 3rd World Congr. Nature Biol. Inspired Comput., Oct. 2011,
pp. 633-640.

RONG-JONG WAI (M’99-SM’05) was born in
Tainan, Taiwan, in 1974. He received the B.S.
degree in electrical engineering and the Ph.D.
degree in electronic engineering from Chung
Yuan Christian University, Chung Li, Taiwan,
in 1996 and 1999, respectively.

From 1998 to 2015, he was with Yuan Ze Uni-
versity, Chung Li, where he was the Dean of gen-
eral affairs, from 2008 to 2013, and the Chairman
of the Department of Electrical Engineering, from
2014 to 2015. Since 2015, he has been with the National Taiwan
University of Science and Technology, Taipei, Taiwan, where he is currently

VOLUME 7, 2019

a Distinguished Professor, the Dean of general affairs, and the Director
of the Energy Technology and Mechatronics Laboratory. He is a chapter-
author of Intelligent Adaptive Control: Industrial Applications in the Applied
Computational Intelligence Set (Boca Raton, FL: CRC Press, 1998) and the
coauthor of Drive and Intelligent Control of Ultrasonic Motor (Tai-chung,
Taiwan: Tsang-Hai, 1999), Electric Control (Tai-chung, Taiwan: Tsang-Hai,
2002), and Fuel Cell: New Generation Energy (Tai-chung, Taiwan: Tsang-
Hai, 2004). He has authored more than 170 conference articles and over
180 international journal articles. He has 57 inventive patents. His current
research interests include power electronics, motor servo drives, mechatron-
ics, energy technology, and control theory applications. The outstanding
achievement of his research is for the contributions to real-time intelligent
control in practical applications and high-efficiency power converters in
energy technology.

Dr. Wai is a Fellow of the Institution of Engineering and Technology, U.K.
He received the Excellent Research Award, in 2000, the Wu Ta-You Medal,
and Young Researcher Award from the National Science Council, China,
in 2003. In addition, he was a recipient of the Outstanding Research Award
from the Yuan Ze University, China, in 2003 and 2007; the Excellent Young
Electrical Engineering Award and the Outstanding Electrical Engineering
Professor Award from the Chinese Electrical Engineering Society, China,
in 2004 and 2010, respectively; the Outstanding Professor Award from the
Far Eastern Y. Z. Hsu Science and Technology Memorial Foundation, China,
in 2004 and 2008; the International Professional of the Year Award from
the International Biographical Centre, U.K. in 2005; the Young Automatic
Control Engineering Award from the Chinese Automatic Control Society,
China, in 2005; the Yuan-Ze Chair Professor Award from the Far Eastern
Y. Z. Hsu Science and Technology Memorial Foundation, China, in 2007,
2010, and 2013; the Electric Category-Invent Silver Medal Award, in 2007;
the Electronic Category-Invent Gold and Silver Medal Awards, in 2008; the
Environmental Protection Category-Invent Gold Medal Award, in 2008; the
Most Environmental Friendly Award, in 2008; the Power Category-Invent
Bronze Medal Award, in 2012; and the Electronic Category-Invent Gold and
Silver Medal Awards from the International Invention Show and Technomart,
Taipei, in 2015; the University Industrial Economic Contribution Award
from the Ministry of Economic Affairs, in 2010; the Ten Outstanding Young
Award from the Ten Outstanding Young Person’s Foundation, in 2012; the
Taiwan Top 100 MVP Managers Award from MANAGER Today magazine,
in 2012; the Outstanding Engineering Professor Award from the Chinese
Institute of Engineers, in 2013; the Green Technology Category-Scientific
Paper Award from the Far Eastern Y. Z. Hsu Science and Technology
Memorial Foundation, in 2014; the Scopus Young Researcher Lead Award-
Computer Science from Taiwan Elsevier, in 2014; the Outstanding Research
Award from the National Taiwan University of Science and Technology,
in 2016 and 2018; and the Most Cited Researchers Award, in 2016 (Field:
Electrical and Electronics Engineering).

ALEX S. PRASETIA was born in Negara, Bali,
Indonesia, in 1995. He received the B.S. degree in
electrical engineering from the Institut Teknologi
Sepuluh Nopember, Surabaya, Indonesia, in 2017,
and the M.S. degree in electronics and computer
engineering from the National Taiwan University
of Science and Technology, Taiwan, in 2019. His
current research interests include control system,
power electronics, and machine learning.

126153



