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ABSTRACT We present a new Adaptive Error Correction Net (AEC-Net) to formulate the estimation of
Cobb anges from spinal X-rays as a high-precision regression task. Our AEC-Net introduces two novel
innovations. (1) The AEC-Net contains two networks calculating landmarks and Cobb angles separately,
which robustly solve the disadvantage of ambiguity in X-rays since these networks focus on more features.
It effectively handles the nonlinear relationship between input images and quantitative outputs, while
explicitly capturing the intrinsic features of input images. (2) Based on the two estimated angles, theAEC-Net
proposed a new loss function to calculate the final Cobb angles. The optimization of the loss function is based
on a high-precision calculation method. The deep learning structure is used to complete this optimization,
which achieves higher accuracy and efficiency. We validate our method with the spinal X-rays dataset
of 581 subjects with signs of scoliosis at varying extents. The proposed method achieves high accuracy
and robustness on the Cobb angle estimations. Comparing to the exsiting conventional methods suffering
from tremendous variability and low reliability caused by high ambiguity and variability around boundaries
of the vertebrae, the AEC-Net obtain Cobb angles accurately and robustly, which indicates its great potential
in clinical use. The highly accurate Cobb angles produced by our framework can be used by clinicians for
comprehensive scoliosis assessment, and possibly be further extended to other clinical applications.

INDEX TERMS AEC-Net, Cobb angle estimation, deep learning, direct estimation, high-precision calcula-
tion.

I. INTRODUCTION
Cobb angles are widely used for scoliosis diagnosis and
treatment decisions. Scoliosis is a structural, lateral, rotated
curvature of the spine, which especially arises in children
at or around puberty and leads to disability [1]. For clinical
examination of scoliosis, the radiography (X-ray) is the most
common imaging technique with cheap acquisition and less
time cost [2]. Cobb angles derived from a posteroanterior
(back to front) X-ray and measured by selecting the most
tilted vertebra at the top and bottom of the spine with respect
to the horizontal line are typically used to quantify the mag-
nitude of spinal deformities [3].

However, conventional landmark-based manual measure-
ment [4], [5] involves the indirect calculation of identify-
ing the vertebrae and measuring angles, which suffers from
high inter- and intra-observer variability while being time-
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consuming. The accuracy of Cobb angles is often affected by
many factors such as the selection of vertebrae, the bias of
observer, the accuracy of landmark measurement, as well as
image quality. These variabilities in measurements can affect
diagnosis significantly when assessing scoliosis progression.
Moreover, it is also challenging to estimate Cobb angles auto-
matically due to the high ambiguity and variability of X-rays.
As shown in Fig. 1, large anatomical variability and low tissue
contrast can lead to complex identification of interesting
vertebrae and further measurement. It is therefore important
to provide accurate and robust quantitative measurements for
Cobb angles.

A. PREVIOUS METHODS
1) SEGMENTATION AND FILTER BASED METHODS
Methods proposed in the literature such as Active Contour
Model [4], Customized Filter [5] and Charged-Particle Mod-
els [6] were used to localize the required vertebrae in order
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FIGURE 1. Traditional methods use landmark (yellow points in (a)) to measure cobb angles (a). It is
challenging to measure three cobb angles: Proximal-thoracic (PT), main thoracic (MT), thoracic-lumbar
(TL) due to high ambiguity and variability in scoliosis X-rays from different subjects (a-i).

to derive the Cobb angle from their slopes. These methods
require accurate vertebrae segmentations and feature engi-
neering, which makes them computationally expensive and
susceptible to errors caused by variation in X-ray images.

2) MACHINE LEARNING BASED METHOD
Machine learning algorithms such as Support Vector Regres-
sion (SVR) [7] and the BoostNet [8] have been used for land-
mark estimation. Although these methods obtained effective
performance, there are still some limitations exist when we
apply them for Cobb angle estimation: (1) These methods
require high quality images of the spine for landmark coordi-
nates detection, and then use the landmark to calculate the
Cobb angles. Hence, these methods would not work well
with noising images. (2) These methods rely on the landmark
coordinates to calculate the angle, and they perform worse on
the angles than they work on the landmark coordinates since
a small error in landmark coordinates may cause a big error
in the angle.

3) DIRECT METHODS
To circumvent these limitations, direct methods [9]–[15]
were proposed to roughly estimate Cobb angles. Two ini-
tial attempts [8], [16] have been put forward in conference.
Sun et al. [16] aimed to improve the robustness of spinal
curvature assessment by consolidating the tasks of vertebral
landmark detection with Cobb angle estimation by exploiting
the dependency between the two tasks. Wu et al. [8] achieved
robust spinal landmark estimation by automatically removing
deleterious outlier features on x-rays images. Despite their
effectiveness in landmark estimations, these methods didn’t
achieve high accuracy in Cobb angle estimation.

4) HIGH-PRECISION CALCULATION
High-precision calculation, a catalog of methods in numerical
mathematics, can be used to achieve complex calculation
with high accuracy, and to calculate complex expression
numerically. The extrapolation [17] is one of the most useful
methods in the high-precision calculation. Mathematically,
the extrapolation provides a combination function of the
functional value at measured data to speculate the functional
value, which makes the estimated value much more close
to the ground truth. To achieve higher accuracy, the com-
bination function depends on a series of rough measured
data. However, it is very time consuming to calculate the
parameters of the combination function. Deep learning (DL)
structure can effectively solve this problem by automatically
and adaptively learning these parameters since it is much
less time consuming using numeral approximation instead of
complex precise calculation.

B. PROPOSED METHOD
In this paper, we propose an Adaptive Error Correction
Net (AEC-Net) to calculate the Cobb angles directly. The
AEC-Net firstly estimates Cobb angles using two methods.
(a Landmark Net for regressing landmarks, that are used
to calculate Cobb angles indirectly; and an Angle Net for
regressing Cobb angles directly.) Then it employs an alter-
native error correction Net using extrapolation to adaptively
offset the errors of the two estimated Cobb angles by each
other, and obtain an enhanced estimation. The high-precision
calculation applied in this work is for decreasing error. Incor-
porating in a DL structure, the alternative error correction
Net learns a combination of the two Cobb angles estimations
adaptively solving the approximation equation iteratively,
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FIGURE 2. Schemes of landmark net (a) for indirect angle estimation and angle net (b) for direct angle estimation.

which further improves the accuracy and effectiveness of the
calculation. Therefore, AEC-Net can obtain a more accurate
estimation.

C. CONTRIBUTION
Our work contributes in three aspects: (1) A highly accurate
and robust clinical Cobb angle measurement is achieved to
help physicians to avoid tedious work and reduce inter- and
intra-observability; (2) For the first time, high-precision cal-
culation, a powerful numerical method is integrated into a
deep learning frame-work; (3) The newly proposed two-stage
optimization provides efficient optimization to achieve both
fast convergence and high accuracy.

II. METHODOLOGY
Our AEC-Net consists of three parts: (1) A Landmark Net for
spinal boundary features learning to regress the landmarks,
which are used to calculate Cobb angles (angle′) indirectly.
(2) An Angle Net for spine curve features learning to regress
the Cobb angles (angle′′) directly. (3) An alternative error cor-
rection Net for leveraging both angle estimations through a
specially designed combination function using extrapolation
to combine the error complementarity between the two esti-
mates. The AEC-NET uses two estimates from the Landmark
Net andAngle Net as a reference, and then uses the alternative
error correction Net to learn a combination function of these
references to improve the accuracy of the final results.

A. LANDMARK NET FOR INDIRECT ANGLE ESTIMATION
As shown in Fig. 2(a), Landmark Net is designed to learn the
spinal boundary features in order to obtain robust spinal land-
marks for comprehensive scoliosis assessment, and use those
landmarks for indirect Cobb angle calculation. It consists of
two convolution net parts: (1) Spinal boundary features learn-
ing: a large convolution kernel is used to capture large gray
level differences around pixels (especially for blurred images

TABLE 1. Construction of the landmark net. Learn the landmark and
calculate the angle using landmark.

and unclear boundary) for learning the spinal boundary
features, and (2) Multi-task learning: a dedicated landmarks
estimator network that uses these spinal boundary features to
regress landmarks. The construction of the Landmark Net is
shown in Table 1.

To better leverage the spinal boundary features and the
regressed landmarks, the Landmark Net here uses a loss
function:

LossLandmark Net = Losslandmark error
+λ1Lossboundary (1)
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TABLE 2. Construction of the angle net. Learn the angle directly.

The mean square error (MSE) between ground thruth and
the predict landmarks, Losslandmark error , is used in Landmark
Net to evaluate the results of multi-task learing. Since the
landmark ground truth is the intersection of the vertebra’s
boundary, which contains the essential information of spine
curve features for Cobb angle detection, the Landmark Net
uses Pearson Correlation Coefficient to evaluate the boundary
features learning results, Lossboundary. λ1 in Eq. 1, is a weight,
which is selected based on our experiments. It is set to be 1,
and a constraint is added to force the losses of boudary feature
learning to be no larger that those of landmark errors. The
starting learning rate of the Landmark Net was 0.0005, after
every 200 epochs it was divided by 2. It had 3000 epochs in
total.

B. ANGLE NET FOR DIRECT ANGLE ESTIMATION
As shown in Fig. 2(b), Angle Net is designed to learn the
spinal curve features in order to estimate the Cobb angles
directly. It consists of two convolution net parts: (1) Spine
curve features learning: a small convolution kernel is used to
capture little gray level differences near pixels for learning
the spinal curve features, which accumulate region curve
information to global curve information, and (2) Multi-task
learning: a dedicated Cobb angles estimator network that
uses the spine curve features to regress Cobb angles. The
construction of the Angle Net is detailed in table 2.

The Angle Net uses a loss function:

LossAngle Net = Lossangle error + λ2Lossspine curve (2)

It uses log of hyperbolic cosine to minimize the error between
ground truth and the predict angles, Lossangle error , Since
the relationship between the error of angles and pixels is

not linear. Moreover, the angle ground truth reflects the
accumulation of the spinal curve, which plays a significant
role in spine curve features. The Angle Net uses Pearson
Correlation Coefficient to evaluate the spine curve multi-task
learning results, Lossspine curve. λ2 in Eq. 2, is a weight, which
is selected based on our experiments. It is set to be 1, and a
constraint is added to force the losses of spine curve multi-
task learning to be no larger that those of angle errors. The
starting learning rate of Angle Net was also 0.0005, after
every 200 epochs it was divided by 2. It had 3000 epochs in
total.

C. ALTERNATIVE ERROR CORRECTION NET FOR
ACCURACY IMPROVEMENT
The alternative error correction Net is designed to further
improve the accuracy of the estimations based on the Land-
mark Net and Angle Net. We are given the ground truth
angle0 and two input angles from Landmark Net and Angle
Net.

angle0 = (PT0,MT0,TL0) (3)

angle′ = (PT ′,MT ′,TL ′) (4)

angle′′ = (PT ′′,MT ′′,TL ′′) (5)

Here PT (Proximal-Thoracic), MT (Main Thoracic), and TL
(Thoracic-Lumbar) are three Cobb angles using in scoliosis
assessment. The aim of the alternative error correction Net
is to generate our estimation angleest , an approximation of
angle0, using angle′ and angle′′.

1) SCHEMES OF ALTERNATIVE ERROR CORRECTION NET
As shown in Fig. 3 and Algorithm 1, the alternative error
correction Net (1) normalizes the angle sequence as norm-
angle, optimize the norm-angle’s error to decrease global
error, and (2) optimizes the norm-angle to learn the optimal
descent direction. The alternative error correction Net accom-
plishes these process by using the iterative angle training
algorithm (IAT).

Algorithm 1 Iterative Angle Training
1: Set initial of angle sequence angle[0] = (angle′, angle′′)

2: repeat
3: calculate anglenorm using Eq. 8
4: update angelest using anglenorm
5: calculate anglecor using Eq. 20
6: update angle[n] using angle(i) = anglecor , i = 1or2
7: until Convergence

The iterative angle training algorithm leverage the simi-
larities between tasks of the norm-angle estimator (Eq. 8)
and angle sequence estimator (Eq. 10) for accelerating the
convergence. To accomplish this, the two estimations of
Cobb angles are used to train the alternative error correc-
tion Net through Stochastic Gradient Descent optimization.
A two-stage alternating optimization scheme was used to
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FIGURE 3. The alternative error correction net. The alternative error correction Net iteratively optimize the ref-angle
and norm-angle to learn the optimization direction and step length, which can obtain a more accurate estimation.

train norm-angle estimator and angle sequence estimator of
the alternative error correction Net iteratively to ensure a syn-
ergistic effect when optimizing the two related tasks (Fig. 4).

We optimized the norm-angle estimator and angle
sequence estimator alternately (one after the other). The joint
optimization scheme allows the Alternative error correction
Net to leverage the reciprocal relationship between norm-
angle and angle sequence for more fast and accurate Cobb
angle estimation (since angle sequence can be computed
using norm-angle). The general outline of the iterative 2-stage
training scheme is summarized in Algorithm 1. Where
n = 481 is the number of training data, each training data
includes the final three Cobb angles.

The loss function of alternative error correction Net is

Loss = ‖anglecor − angle0‖22︸ ︷︷ ︸
angle sequence estimation

+λ ‖angleest − angle0‖22︸ ︷︷ ︸
norm-angle estimation

(6)

The starting learning rate of alternative error correction Net
was 0.0006. It had 10000 epochs totally. We trained the
networks using AdamOptimizer. The models and training
algorithm was implemented in Python 2.7 using Tensorflow.

2) COMBINATION FUNCTION
We choose the following combination function:

µangle′ + νangle′′ (7)

The µ, ν are extended to real numbers. Weigthed averages
µ = ν = 1/2orν = 1 − µ (0 ≤ µ ≤ 1), generally have
two limitations: 1) when angle′ and angle′′ are greater than
or less than angle0 at the same time, it’s inevitable the error
of weighted average will be higher than one of the error of
angle′ and angle′′. 2) The weighted average can not offset
the simultaneous system errors of angle′ and angle′′ since the
sum of the coefficient equals to 1. Eq.7 allow us to correct
errors in any direction.

The alternative error correction Net combines the errors
of angle′ and angle′′ complementarity through Eq.7 to
reduce both of them. The accuracy and reliability of an
estimated angle (angleEST ) is reflected by its absolute error
(‖angleEST − angle0‖) and relative error (‖angleEST −
angle0‖/‖angleEST ‖), respectively. The alternative error cor-
rection Net uses a norm-angle (anglenorm) to normalize local
relative error, which shows the local characteristics of a

loss function to learning the error descenting direction, and
an angle sequence (angle[n])to show the effect of abso-
lute error, which shows the descending step of the loss
function.

3) NORM-ANGLE BASED ON LOCAL RELATIVE ERROR
Considering fanglei (|angle

i
− angle0|) is a smooth and

monotonous fuction for the absolute error |anglei − angle0|
of anglei (i = 1or2) (which changes a little in its neightbor-
hood), we formulate the norm-angle as

angleinorm =
angle0 − anglei

50∑
r=0

l(anglek )fanglei (|anglek − angle0|)+ ε

(8)

Here, anglek are the elements of the input angle set anglei,
r = |anglek − anglei| is the radius of the neighborhod, ε is
a small constant avoiding zero denominators. l(anglek ) is the
length of the neighborhood of anglek .

l(anglek ) =
1
2
(min(angle|angle > anglek )

−max(angle|angle < anglek )) (9)

Then, we can update the estimation of norm-angle angleest
by calculating

angleest = argmin(λestnorm1
+ (1− λest )norm2) (10)

where

normi =
angle− anglei

50∑
r=0

l(anglek )fanglei (|anglek − angle|)+ ε

(11)

The optimization of anglenorm corrects the descent direc-
tion, which accerelates the convergence. The initial of angle
sequence angle[0] = (angle′, angle′′).

4) ANGLE SEQUENCE OPTIMIZATION WITH NORM-ANGLE
Expand the fanglei (|angle

i
− angle0|) in this power series

expansion of x = |anglei − angle0|.

fanglei (x) = fanglei (0)+ f
′

anglei (0) ∗ x + o(x
2)

= f ′anglei (0) ∗ x + o(x
2) (12)
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FIGURE 4. The iterative angle training algorithm (IAT) optimizes the norm-angle estimator and
angle sequence estimator in tandem for each training batch during training such that the reciprocal
relationship between norm-angle and angles is reinforced.

Approximately, norm angle can be defined as

angleinorm = λ|angle0 − angle
i
| + εi (13)

where λ = f ′anglei (0). ε
i is proportional to o(angle0 −

anglei) and since it’s an infinitesimal quantity, angle0 can be
expressed approximately as

angle0 = anglei + k(anglei) ∗ anglenorm(anglei) (14)

If there is only one estimation, then anglei is the best approx-
imation of angle0. In our case, we have two inputs

angle0 = angle′ + k(angle′) ∗ anglenorm(angle′) (15)

angle0 = angle′′ + k(angle′′) ∗ anglenorm(angle′′) (16)

As Fig. 5 shown, we can combine Eqs. 15 and 16 get a new
estimation anglecor , we use anglecor instead of one of the
angle′ and angle′′ then repeat the optimization. Each new
element in the angle sequence has the lowest absolute error
in each iteration, which shows the descending step of the loss
function. The optimization of angle sequence can improve the
accuracy of the estimation.

5) PROPOSED ESTIMATION
Our proposed estimation anglecor has higher order accuracy
comparedwith the estimations of angle′ and angle′′. Subtract-
ing Eq. 15 from Eq. 16, we can have

angle′ + k(angle′) ∗ anglenorm(angle′)

= angle′′ + k(angle′′) ∗ anglenorm(angle′′) (17)

Replace anglenorm by Eq. 13, and consider ε(i) = 0

angle′ + K (angle′) ∗ |angle0 − angle′|

= angle′′ + K (angle′′) ∗ |angle0 − angle′′| (18)

where

K (anglei) = k(anglei) ∗ λ (19)

Hence, we have

anglecor = angle0

=
K (angle′′) ∗ angle′ − K (angle′) ∗ angle′′

K (angle′′)− K (angle′)

−
K (angle′′) ∗ K (angle′)(angle′′ − angle′)

K (angle′′)− K (angle′)
(20)

when angle′ and angle′′ are greater than or less than angle0
at the same time, and a very similar expression for angle0 is
between angle′ and angle′′.

In this estimation, we have

|angle0 − anglei|=|k(anglei) ∗ anglenorm(anglei)| (21)

as a higher order estimation compared with anglei since here
we made a more specific estimation of the error. Actually,
for most of the time, k(anglei) ∗ anglenorm(anglei) is
less than 2|anglei − angle0| unless |angle′ − angle0| and
|angle′′ − angle0| different greatly.

III. RESULTS AND ANALYSIS
AEC-Net is validated on the spinal X-ray dataset with signs
of scoliosis of varying extents. Extensive experiments show
that our method with significant effectiveness, which can be
practically used in clinical scoliosis analysis.

A. DATA AND IMPLEMENTATION DETAILS
Our dataset consists of 581 spinal anteriorposterior x-ray
images provided by local clinicians. All the images used
for training and testing show signs of scoliosis to varying
extents. Since the cervical vertebrae (vertebrae of the neck)
are seldom involved in spinal deformity, we selected 17 ver-
tebrae composed of the thoracic and lumbar spine for spinal
shape characterization. Each vertebra is located by four land-
marks with respect to four corners thus resulting in 68 points
and 3 Cobb angles per spinal image. These landmarks and
the Cobb angles were manually annotated by two profes-
sional experienced experts in London spine center based on
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FIGURE 5. The optimization of alternative error correction net. Using high-precision
calculation, iteratively optimize the norm-angle (red arrows) and angle sequences
(green arrows) to approach the ground truth. For ground truth angle0 and two angles
angle′ and angle′′ , the proof shows the improvement using linear estimation for the
angle accuracy and shows the accuracy of our method.

visual cues. This procedure relies on clinicians to identify
the most tilted vertebrae endplates on the x-ray images [3]
and then measuring the Cobb angles between those vertebrae.
During training, the pixel coordinates were scaled based on
original image dimensions such that the range of values lies
between 0-256(row) or 0-128(column) depending on where
the pixel coordinates lie with respect to the original image
(e.g. (128, 64) is the exact centre of the image). We then
divided our data according to 481 training set (trainset) and
100 testing set (testset) such that no patient is placed in
both sets. We then trained and validated our model on the
trainset and tested the trained model on the testset. Since DL
methods like our AEC-Net typically require large amounts
of training data, we augmented our data in order teach our
network the various invariance properties in our dataset. The
types of augmentation used include: 1) Adding Gaussian
Noise directly to our image in order to simulate inherent

TABLE 3. Accuracy of landmark net, angle net, and AEC-Net.

noise and 2) Randomly adjusting the brightness and con-
trast in order to learn the appearance characteristics of the
image.

B. TEST RESULTS
As shown in Table 3, our model achieved an average mean
absolute error (MAE) of 4.90◦ in Cobb angle detection and
achieved a symmetric mean absolute percent error (SMAPE)
of 23.59% based on 481 images and is demonstrated as an
accurate method. After training each of the models listed in
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FIGURE 6. The results of cobb angles estimation using AEC-Net. The red lines are ground truth, and the green lines are our
test performance. The yellow dots are landmarks.

the table 3 on all 481 images from the trainset, we evaluated
each model on the testset consisting of 100 unseen images.
The accuracy of AEC-Net has about 8.95◦ MAE improve-
ment compared with Landmark Net, it also has about 4.46◦

MAE improvement compared with Angle Net. The lowest
error of our AEC-Net base on the improvement on the pre-
vious Nets indicates AEC-Net has higher accuracy. Fig. 6
shows the Cobb angle estimation using the AEC-Net com-
pared with the ground truth. It overcomes huge variations and
high ambiguities and achieves high accuracy in Cobb angles
detection.

Compared with other methods, our model has achieved
more effective results. As shown in Table 4, we compare with
three othermethods, (i.e. support vector regression (SVR) [7],
shape regression machine (SRM) [18] and structured support
vector regression (S2VR) [16] the relative root mean squared
error (RRMSE) and the correlation coefficient, which shows
the accuracy of our method. Our method achieves the lowest
average RRMSE of 11.88%, which shows it is superior to
other methods. In the robust test, we add Gaussian noise iσ
to the images. Experiments show our AEC-Net is still valid
after adding noise and it’s robust.

The correlations between the estimated angles and ground
truth are depicted in Fig. 7. The proposed method achieves a
correlation coefficient of 0.903, 0.906, 0.945 for the PT, MT
and TL angles, which shows the prediction of our AEC-Net
has high consistency with ground truth.

TABLE 4. The comparison of the average RRMSE against different
methods. Average: The average of landmark net and angle net,
AEC-Net + iσ noise: The AEC-Net with a gaussian noise of iσ .

C. ANALYSIS
The AEC-Net achieved the lowest average mean absolute
error of 4.90◦ and symmetric mean absolute percent error
of 23.59% on the unseen testset. This is due to the con-
tributions of (1) the rough estimation methods (Landmark
Net and Angle Net), which successfully learned boundary
and spine curve feature embedding as it is the basement for
the accuracy of the algorithm and (2) the alternative error
correction Net, which faithfully corrects the Cobb angle error
of Landmark Net and Angle Net. The success of our method
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FIGURE 7. The correlations between estimated angles and ground truth.
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is further exemplified by the more than 3 degree on average
of mean error as well as more rapid convergence compared to
the conventional Landmark Net and Angle Net deep learning
model. Because of the extrapolation effectively estimate the
errors of two initial results and offset their errors each other,
the combination of two angles based on extrapolation leads
to a lower error. Since the two initial estimations achieved
a satisfactory accuracy to a certain extent, our AEC-Net
achieves a significant improvement.

IV. CONCLUSION
We have proposed a novel spinal Cobb angle estimation
framework that uses our newly designed Adaptive Error Cor-
rection Net architecture to assess Cobb angle measurement
automatically. The proposed Adaptive Error Correction Net
consists of nonlinear mapping and explicit structure mod-
elling, which can handle the highly non-linear relationship
between image features and quantitative evaluation param-
eters and explicitly learn the circular output corrections.
Moreover, the alternative error correction Net corrects the
error of the Landmark Net and Angle Net. The highly accu-
rate Cobb angles produced by our framework can not only
be used by clinicians for comprehensive scoliosis assessment
but can also be further extended to other clinical applications.
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