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ABSTRACT In some sense, computer game can be used as a test bed of artificial intelligence to develop
intelligent algorithms. The paper proposed a kind of intelligent method: a reinforcement learning model
based on temporal difference (TD) algorithm. And then the method is used to improve the playing power
of the computer game of a special kind of chess. JIU chess, also called Tibetan Go chess, is mainly
played in places where Tibetan tribes gather. Its play process is divided two sequential stages: preparation
and battle. The layout at preparation is vital for the successive battle, even for the final winning. Studies
on Tibetan JIU chess have focused on Bayesian network based pattern extraction and chess shape based
strategy, which do not perform well. To address the low chess power of JIU chess from the view of artificial
intelligence, we developed a reinforcement learning model based on temporal difference (TD) algorithm for
the preparation stage of JIU. First, the search range was limited within a 6 × 6 area at the center of the
chessboard, and the TD learning architecture was combined with chess shapes to construct an intelligent
environmental feedback system. Second, optimal state transition strategies were obtained by self-play.
In addition, the results of the reinforcement learning model were output as SGF files, which act as a pattern
library for the battle stage. The experimental results demonstrate that this reinforcement learning model can
effectively improve the playing strength of JIU program and outperform the other methods.

INDEX TERMS Artificial intelligence, reinforcement learning, temporal difference algorithm, JIU chess.

I. INTRODUCTION
Deep learning and reinforcement learning are current popu-
lar ways of artificial intelligence [1]–[3]. Computer games
research stands out as one of the notable landmarks in the
progress of artificial intelligence. The study of computer
game is as old as computer science itself. Charles Bab-
bage, Alan Turing, Claude Shannon, and John Von Neumann
devised hardware, algorithms, and theory to analyze and play
the game of chess [4]–[6]. The notable studied games include
Go, Chess, Shougi, Multiplayer poker, and so on [4]–[10]. In
1997, IBM’s Deep Blue accomplished the astounding defeat
of Kasparov in international chess competition [6]. From
2016, Google’s AlphaGo [7], AlphaGo Zero [8], and Alp-
haZero for Go, Chess, and Shougi have achieved superhuman
performance by using deep reinforcement learning(DRL)
combined with Monte Carlo Tree Search(MCTS) [4]. From
2017, artificial intelligence god of gamblers, Libratus [9] and
Pluribus [10], have defeated professional players of Texas
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Hold’em poker. Besides these popular games, some minority
games played in some special area around the world, such
as Backgammon, have been studied from the artificial intel-
ligence view and achieved master-level play [11]. JIU chess
is also one of the minority games. Compared to the above
games, JIU chess research is in its infancy. The research on
the computer game version of JIU chess with high perfor-
mance is under-explored, if any.

Jiu chess game is a variant of traditional Tibetan chess. It is
mainly played in places where Tibetan tribes gathering, such
as the Ngawa Tibetan and Qiang Autonomous Prefecture,
Garzê Tibetan Autonomous Prefecture, and Gannan Tibetan
Autonomous Prefecture [12].

The JIU game process is divided into two sequential stages:
preparation and battle. The public JIU board size is 14 × 14
[13]. The rules of Jiu chess are described in the following
in detail:

1) Jiu chess is a 2-player-game while White side uses
white stones and Black side uses black stones. Players
take alternate turn.
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2) Stones must be put on or move to the empty points on
game board.

3) Jiu game starts with the empty board. The task in the
preparation stage is to place one stone on a point at each
move until there is no empty point on board. The task
in the battle stage is to move or capture stones until one
player wins the game. The movements and capturing
methods are similar to those of international checkers.

4) In the preparation stage, White side plays first. Then
Black plays. The 1st move and 2nd move must be
placed on one of the points of the diagonal line of
the central grid. Then each side begins to put one
stone on one point until no empty points on the board
alternatively.

5) In the battle stage, there are four actions in each turn to
select:

a) Jumping capture: while opponent’s stone is adja-
cent to a player’s stone and an empty point is
direct behind it, Jumping capture can be selected.
This action can be continued while a player can-
not capture stones or a player end turn.

b) Square Capture: if a player constructs a square
with four of their stones nearby,he can capture
its opponent’s one stone located at any point on
the board. In one turn, how many the square a
player construct, he will can take how many its
opponent’s stones.

c) Move: Move a stone to an adjacent empty point.
d) Dalian: the square is the basic shape, and it can

evolve into the Dalian, which is the most impor-
tant JIU shape. There are two different Dalian
shapes. This shape comprises seven same color
stones and one empty point. The stone adjacent
to the empty point is called the ‘‘vital stone’’.
By moving the vital stone into the empty point
to construct a square, they can capture one of the
opponent’s stone located at any point. A player
with the Dalian shape can capture the opponent’s
stones by repeatedly moving the vital stone [13].

6) Winner: a player is declared the winner when they have
constructed a fixed shape, such as the Dalian, and the
opponent cannot construct any square shape or they
have captured fewer than 14 stones.

Previous Studies on JIU are focused on expert knowledge
and chess shapes. Chess power of all existing JIU playing
engines based on those studies is low. [13]–[15]. There-
fore, to improve the computer game power of JIU chess,
we propose a temporal-difference algorithm-based reinforce-
ment learning model for the preparation stage of JIU chess.
This model fully take the characteristics of JIU chess into
consideration. The search range of the model is limited to
a 6 × 6 area in the middle of the chessboard according to
the characteristics of JIU chess stones layouts.TD learning
architecture was combined with chess shapes to construct an
intelligent environmental feedback system. TD based search

engine uses a forward-search strategy that the current state
is updated according to the immediate reward returned by the
current environment.The engine’s strategies are optimized via
sampling and iterative learning. The state transition values
of the engine are updated during the self-play process of
the learning model.The state transitions produced by the TD
algorithm are output as a SGF file and used as opening
libraries for the subsequent battle stage.The contribution of
this study is summarized as follows.
• It is the first time that Temporal Difference (TD) algo-
rithm is used in Jiu Chess, although it has been used in
many other games like Go, Chess, checkers, and etc [11].

• The study verifies that Sarsa algorithm is more suitable
to the special rules of Jiu Chess than Q-learning algo-
rithm does.

• The TD algorithm based reinforcement learning model
search a better policy to choose move than the Bayesian
Network based expert system and defeat beginner by
67:33 (beginner played black).

The remainder of this paper is organized as follows.
Section 2 introduces the related works. Section 3 presents
the proposed model. Experimental and analysis results are
presented in Section 4. Finally, Section 5 concludes the paper
and briefly discusses future work.

II. RELATED WORKS
There are few Studies on JIU chess computer games [13].
In [15], classic chess shapes were designed for JIU chess
using expert knowledge. Each chess shape was weighted
according to the JIU game play. These stones of shape then
were used to design offensive and defensive strategies for the
preparation and battle stages of JIU chess. However, their
method completely relies hand-crafted on expert knowledge.
Reference [14] proposed to use a Bayesian network learning
algorithm for the sample size of JIU game records is small.
The chess shapes were extracted via statistical analysis of
the existing game records. Those records were used to train
Bayesian network for state transition probability of each
shape. The classsic JIU shapes were used as the knowledge
nodes of Bayesian network. Limited by localization of the
shape transition probabilities, this method cannot predict
more moves.

Quite a few reinforcement learning algorithms have been
used in game research, including the dynamic planning (DP)
algorithm [16], Monte Carlo tree search (MCTS) [7], [8],
[17], and the temporal difference (TD) algorithm [18].
We summarize the features of these algorithms Table 1 and
refer the reader to for their basic rules.

JIU chess’ action space is huge and the action spaces in the
preparation stage and battle stage are different. Limited by
existing experimental conditions, to find the optimal solution
by traversing all states is impossible. DP algorithm isn’t suit-
able for searching in JIU chess due to the close relationship
of every turn in the search path [16].

MCTS can not be used in Jiu chess game directly because
of the unique two sequential preparation and battle stages
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TABLE 1. Comparison of current reinforcement learning algorithms used
in game research.

playing rule of JIU chess. The state-action of every turns in
one game often have different action sequence for the special
rules in Jiu chess.

TD algorithm combines the strengths of DP and MCTS.
TD algorithm has better performance and easy to be applied
on other popular board game [19]. There are successful exam-
ples of TD algorithm playing good in games [11]. Therefore,
the TD algorithm is more appropriate for developing JIU
chess search engine.

III. TD ALGORITHM BASED REINFORCEMENT
LEARNING MODLE FOR JIU CHESS
1) SEARCH RANGE OF THE MODEL
The goal of the preparation stage is to build an advantageous
shape for the battle stage and disrupt the shape designed
by the opponent. The most basic chess shape for obtaining
victory in the battle stage is the square (gate), and the Dalian
shape is the derivatives of this shape. In moderate- and high-
level matches, the Dalian shape is key to securing victory.
The chance to win in JIU chess is mainly determined by the
potentially advantageous chess shapes designed during the
preparation stage. The quality of a chess shape is determined
by the 6 × 6 central region of the chessboard. Therefore,
this 6 × 6 area (Figure 1) is defined as the search range of
the reinforcement learning model.

2) TD ALGORITHM-BASED JIU ENGINE FOR THE
PREPARATION STAGE
In reinforcement learning, an individual undergoes many
actions to achieve the stated goal [20], [21]. The TD algorithm
is one of the most basic forms of reinforcement learning.

FIGURE 1. Search range of the reinforcement learning model.

It estimates and updates the value of the current state using
the values of its adjacent states and a reward function [22]. TD
is therefore a model-free algorithm that effectively combines
the strengths of the MCTS and DP reinforcement learning
algorithms. During TD reinforcement learning, an individual
is placed in an interactive environment where each action
generates a new state. The environment responds by returning
a reward value, which depends on the innate reward mech-
anisms of the environment. Similar to other reinforcement
learning schemes, the goal of the TD algorithm is to obtain
a strategy that maximizes the cumulative reward by making
continuous adjustments to the strategy; these adjustments
are based on the reward values returned by the environ-
ment [23]. However, unlike other reinforcement learning
schemes, the TD algorithm uses the value of the current
action and its immediately adjacent states to estimate and
update the value of the current state in a sampling-learning
process. Hence, the current model is updated immediately
after a sample is obtained. This iterative process continues
until the model converges.

The JIU chess engine is considered as as a decision maker
(a decision maker referred to a player), and the state of the
chessboard is the interactive environment. Since the state
of the chessboard changes as the player lay their stones,
the interaction between the player and the game environment
is mediated by laying of the stones. The game environment
then returns a reward value according to the player’s behavior
and the state transitions of the chessboard. The construction
of an internal rewardmechanism is therefore the core problem
at hand. After the JIU chess engine obtains feedback through
this reward mechanism, the value of the current state is then
updated according to the feedback of its immediately adjacent
states. The engine then derives optimal action sequences
from this learning process, and increases its chess-playing
strength [24].
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FIGURE 2. Interactions between the agent and the environment.

3) SYSTEM ENVIRONMENT OF THE GAME MODEL
In TD learning, the self-play process of the JIU chess engine
is referred to as the agent. The agent interacts with the
system environment, and the feedback from these interac-
tions is used to iteratively update the strategies of the JIU
chess engine [25]. The system environment refers to the JIU
chessboard, which provides the foundation for this learning
process. The system environment must provide feedback
according to the agent’s actions and changes in the chess-
board’s state. The accuracy of this feedback ultimately deter-
mines the outcome of the TD learning process. For example,
in each iteration, the state initializing function specifies that
the first two stones must be placed at the ends of the central
diagonal line. After the agent has taken some action, the sys-
tem environment provides an estimated reward value based
on the environment’s sensingmechanisms. In our TD learning
model, a two-dimensional (2D) Q table is used to store the
value functions with its entries (board state, action space).

In this work, board state and action space of JIU chess
are expressed as follows. Board state: A variable-length tuple
S = (a1, a2, a3 . . . an) is used to represent the board state,
where a1 to an represent the action sequence that leads
to the JIU chessboard’s current state, and each element is
temporally linked. In other words, the current board state is
formed by a time series of actions. Action space: ai represents
an action that leads to the current board state. Since each
stone has two attributes, color and coordinates, the actions
in the preparation stage are expressed as (stone, x, y). The
‘‘stone’’ describes the player who made the action, while
(x, y) represents the coordinates of the action.

4) AGENT-ENVIRONMENT INTERACTIONS IN JIU CHESS
The interactions between the agent and the system environ-
ment are illustrated in Figure 2 [26].

The ‘‘Environment’’ is the game system of JIU chess,
i.e., the JIU chessboard. As the agent interacts with the
environment, the latter provides feedback about the former’s
actions and the state actions based on the rationality of
these actions. Hence, the environment is the foundation for
TD-learning by the agent.

(1) The agent represents the two sides that are playing
against each other in the self-play process of the JIU chess
engine. Given a current board state of S = (a1, a2, a3 . . . at),
the highest valued (S,At) entry in the Q table is selected
because At is the most valuable action in the current board
state.

(2) The environment immediately returns a reward value
according to the action taken by the agent (the reward mech-
anism is described in Section ‘‘The effect of an action on
the time-action sequence’’). The multi-dimensional reward
mechanism returns values immediately, which is one of the
parts that make up the reward target, Rt . The constitution of
the reward target is different in each TD algorithm, which
is Sarsa and Q-learning, but each TD algorithm always
contain an immediate reward from the environment. The
reward targets of the state-action-reward-state-action (Sarsa)
algorithm and the Q-learning algorithm are shown in Equa-
tions (1) and (2), respectively.rt is the Val returned by the
multi-dimensional reward mechanism.

Rt = rt + εQ (st+1, at+1) (1)

Rt = rt + εmax
at+1

Q (st+1, at+1) (2)

(3) Based on the preparation-stage action that is being
taken, the JIU chess environment returns a predicted reward
value (Rt), the next state (St+1), and the reward target (Rt+1).
The agent is then updated according to the difference between
the Rt+1 and Rt values returned by the environment. This
updating process is crucial for TD-learning by the agent, and
this is where the TD reinforcement learning algorithm differs
from other reinforcement learning algorithms [27].

In the TD-learning process, the JIU chess agent obtains
feedback through interactions with its environment and by
sensing its environment; this feedback is then used to update
the agent. In the JIU chess TD model, the agent interacts
with its environment via preparation-stage actions. The selec-
tion of preparation-stage actions involves two of the most
important concepts in reinforcement learning: exploration
and exploitation. Exploration refers to the selection of actions
that have never been taken before to explore a greater range
of possibilities. Exploitation is the selection of the previously
taken actions according to the current situation, thus refin-
ing the actions that are currently known [28]. In this work,
the action selection strategy of the agent is determined by
ε_greedy ∈ (0,1). If ε_greedy is 0.9, there is a 90% prob-
ability that the agent will select the action with the highest
estimated value in the current strategy and a 10% probability
that the agent will select a random action. This helps to
prevent the algorithm from falling into a local optimum.

5) UPDATING STRATEGY
The Sarsa and Q-learning TD algorithms were used in the
updating process. Sarsa is an on-policy TD-learning algo-
rithm. In Sarsa, the state-action pair’s value function,Qπ (s, a),
which indicates the reward of all actions (a) that are pos-
sible in the current state (s), is iteratively updated under
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strategy π [29]. The updating process of the action value
function in Sarsa is described in Equation (3):

Q (st, at)← Q (st, at)+ α(Rt

+ εQ (st+1, at+1)− Q (st, at)) (3)

Equation (3) shows that each update of the Sarsa algorithm
is related to the (St , at , st+1, at+1) terms of JIU chess. St is
the current board state, at is the preparation-stage action that
was performed in state St , St+1 is the next board state of
the (St , at) state-action pair, and at+1 is the preparation-stage
action that will be performed in St+1 under the current strat-
egy. The Sarsa algorithm will select the at+1 action in the
next state, st+1, when laying the next stone.Q-learning is an
off-policy TD-learning algorithm. Unlike Sarsa, where the
same strategy is used for action selection and for updating
the action value function, the maxat+1 Q (st+1, at+1) term in
Q-learning is only used to update the Q-table [30], and the
at+1 action may not be selected in the next state. The updat-
ing of the action value function in Q-learning is described
in Equation (4). The Q table is updated according to the
difference between the predicted value at time t and the
actual one-step reward plus the predicted longer-term value
after that one-step reward given by the JIU environment’s
multi-dimensional feedback mechanism.

Q (st, at)← Q (st, at)+ α(Rt

+ εmax
at+1

Q (st+1, at+1)− Q (st, at)) (4)

Both Sarsa and Q-learning algorithms use the same TD
reinforcement learning framework but differ in their updat-
ing strategies. Therefore, the TD-learning environment and
the interactions between the JIU chess agent and the game
environment were separated into a different package, while
the Sarsa and Q-learning algorithms were used as updating
strategies for the TD algorithm.

6) MULTI-DIMENSIONAL SENSING AND
FEEDBACK MECHANISM
The heart of the TD algorithm is the provision of feedback for
each action and the state transition made by the agent. In this
work, the environmental factors that significantly affect the
game situation and agent decisions were chosen as feedback
factors. These factors return the reward values according to
the actions and state transitions chosen by the agent. The cho-
sen factors are the spatial values of the current action (default
positions and controllable area) and the effects of the time-
action series (the advantageous shape formed by the action
sequence). At present, there are no comprehensive shape and
pattern libraries available for the static evaluation of game
situations in JIU chess. Therefore, our multi-dimensional
sensing-feedback mechanism uses a two-dimensional three-
aspect assessment metric that was designed using expert
knowledge and the currently available literature on JIU chess.
The value returned by the feedback mechanism is calculated
using Equation (5).

Val = e1 + e2 + e3 (5)

TABLE 2. Default position values of JIU chess stones
in the spatial dimension.

where e1 is the value of the default position of the current
action space, e2 is the area expected to be controlled by
the played stones, and e3 is the expected influence of the
current stone in the time-action series. Val is the expected
reward returned by the multi-dimensional sensing-feedback
mechanism after an action is taken.

a: DEFAULT POSITION VALUES
A game of JIU chess can be divided into two stages: prepa-
ration and battle. In the preparation stage, the first step is
to place two stones at the ends of the diagonal lines in the
middle of the board. The removal of these stones marks the
beginning of the battle stage. Since the first actions of each
stage are taken around the center of the board (as represented
by the two central stones), this is the area where the stones
are initially laid out during the preparation stage. Therefore,
the central locations of the board are more valuable than the
board’s peripheral positions. Default values were assigned
to the positions in the spatial dimension of the chess board.
The central diagonal has the highest value at 106 while the
values of the other positions decrease radially. The values of
the 36 positions that make up the central region are shown
in Table 2 [13]; all other positions have a default value of 0.

b: CONTROLLABLE AREA
The rules of JIU chess are simple; the goal of the game
is to capture the opponent’s stones via ‘‘jumping capture’’
or ‘‘square capture,’’ or Dalian shapes to disrupt the shapes
that could threaten one’s stones. Therefore, the value of each
chess stone in the spatial dimension also depends on the
stone’s influence on its surroundings, i.e., the ability of a
stone to capture other stones or form shapes bymovingwithin
its available range of motion. Hence, the area that can be
controlled by a stone is also an important factor in evaluating
an action.

At the beginning of the battle stage, only a few stones
in the central region are able to move. As these stones are
the only stones that can affect their surroundings (and the
entire game), they have the highest value among all stones.
Towards the end of the battle stage, when one of the players
has no more than 14 stones, all the stones belonging to
that player can move to any position on the chess board
and thus affect the overall state of the game through their
movements. Therefore, if a player cannot form some stone
shapes before the weaker side has fewer than 14 remaining
stones, the weaker side will win. In this work, the area that
can be controlled by each stone was analyzed according to the
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TABLE 3. Spatial dimension: Assignment of values according to the area
that can be controlled by a stone.

TABLE 4. Valuation of the chess shapes that can be formed by
time-action sequences in a game of JIU chess.

JIU rules to enable the assignment of values. The JIU chess
stones were classified into four types by the area they control:
stones that can onlymove by one step, stones that can perform
jumping capture, stones that can make consecutive jumping
captures, and stones that can make Dalian. The value of each
class is shown in Table 3.

c: THE EFFECT OF AN ACTION ON THE
TIME-ACTION SEQUENCE
The capture of an opponent’s stone through an action is one
of the consequences of JIU chess. However, the shape of
certain chess shapes such as the Dalian shape will greatly
increase the win probability because the Dalian shape is one
of the basic shapes required to win a game of JIU chess.
In high-level games, the shape of a Dalian shape is equivalent
to victory. If a player succeeds in forming powerful chess
shapes such as the Double Dalian, that player is considered
to have won an overwhelming victory. Therefore, the chess
shape by an action sequence is the most important aspect of
situation assessment in a JIU chess game. The value of a turn
significantly increases if a stone movement or capture in that
turn leads to a chess shape. In this work, a set of chess shapes
were formulated using the rules of JIU chess and expert
knowledge, and the values were assigned to these shapes. The
valuation of the chess shapes is displayed in Table 4.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
The results of the self-play by our reinforcement learning
model for JIU chess were outputted as SGF files, which
were then used to generate an opening library. This opening
library provides a library of actions for the preparation-stage
engine; a reinforcement learning JIU chess engine was thus
formed by combining this preparation-stage engine with the
battle-stage engine described in [14]. To examine the per-
formance of Sarsa and Q-learning updating algorithm in our
reinforcement learning model, the JIU chess uses a Bayesian
network-guided shape transitioning strategy.

The actions taken by the preparation-stage engine were
learned through a Bayesian network, whereas the offensive
and defensive strategies taken by the battle engine were
selected on the basis of expert knowledge-based evaluations.

TABLE 5. Configuration of the test environment.

TABLE 6. Configuration of the tested JIU chess engines.

The human player that played against the JIU chess engine
is a medium-level JIU chess player named Naota, who works
in the Computer Games Laboratory of the Minzu Univer-
sity of China and won a JIU chess tournament in Minzu
University.

A. CONFIGURATION OF THE TEST ENVIRONMENT AND
INTRODUCTION OF DIFFERENT JIU ENGINES
A uniform testing environment, whose hardware components
are shown in Table 5, was set up to eliminate the effects
of environmental factors on the results of our tests. All ver-
sions of our JIU chess engines were tested in the same test
environment.

Our JIU chess engine has two different versions; each
version uses a different updating strategy in the TD algorithm
(Sarsa or Q-learning). Both versions of our JIU chess engine
were played against the Bayesian network-based JIU chess
engine, and the learning outcome of the adopted TD algo-
rithm was compared via the win rates. The configurations of
the JIU chess engines are presented in Table 6.

B. TESTS ON DIFFERENT UPDATING ALGORITHMS
The JIU chess engines were tested using the TD algorithm
opening libraries with different numbers of iterations. Tomin-
imize the impact of other external factors, the ε_greedy
parameter was set to 0.9 in all TD algorithms. The win rates
of the Sarsa JIU chess engine (i.e., the program using the
Sarsa algorithm to generate its opening library) against the
Bayesian network-based JIU chess engine (i.e., the program
using the Bayesian network-guided shape transition strategy
to generate its opening library) are displayed in Figure 3. The
horizontal axis indicates the number of learning iterations
used by the Sarsa JIU chess engine, whereas the vertical axis
indicates the win rate of the Sarsa JIU chess engine against
the Bayesian network-based JIU chess engine. The Sarsa
JIU chess engine converges after 80,000 iterations (games
played), and its win rate stabilizes around 68%. The win
rate of the Q-learning JIU chess engine against the Bayesian
network-based JIU chess engine is illustrated in Figure 3.
The Q-learning JIU chess engine converges after 40,000 iter-
ations, and its win rate stabilizes around 66%. The Sarsa
algorithm converges more slowly during the reinforcement
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FIGURE 3. Win rate of the JIU chess engine using the Sarsa and
Q-learning opening libraries.

FIGURE 4. Win rates of the Sarsa JIU chess engine with different
ε_greedy values.

learning process but ultimately produces better results than
Q-learning algorithms.

C. EFFECT OF PARAMETERS ON SARSA ALGORITHM
The following tests were performed using the Sarsa algorithm
only, with ε_greedy and the number of training iterations
used as independent variables. The effects of ε_greedy on
the convergence of the Sarsa algorithm were determined
by evaluating the win rates of the Sarsa JIU chess engine
against the Bayesian network-based JIU chess engine that
changed with the value of ε_greedy. Lower ε_greedy values
allow the JIU chess engine to take random actions more fre-
quently during TD learning and thus avoid falling into local
optima. Lower ε_greedy values therefore result in higher win
rates, if provided a sufficient number of training iterations.
However, this comes at the cost of a slower rate of con-
vergence. An ε_greedy value of 0.8 produces an acceptable
rate of convergence, and the win rate of this Sarsa JIU chess
engine reaches its maximum after 160,000 rounds of iteration
(Figure 4). Battle stage is closely related to preparation stage
in JIU chess, so the search path is much longer than other
games. Thus updating value in Q table by Q-learning is
inefficient compared to Sarsa method due to the long game
search path.

TABLE 7. Wins and losses against Song Wang (junior level human JIU
chess player).

TABLE 8. Wins and losses against Naota (medium-level human JIU
chess player).

D. TESTS AGAINST HUMAN PLAYERS
The results of our previous tests show that the Sarsa algo-
rithm with an ε_greedy value of 0.8 provides the best learn-
ing outcomes. Using this combination, 160,000 rounds of
training were performed, and the resulting JIU chess engine
was played against human opponents (including junior and
medium chess players).

The program and the junior JIU chess player, Song Wang,
played 200 games. The program and Song Wang held the
white in turns. The winning results of the 200 games are
shown in Table 7. The winning rate of the JIU chess program
is 0.61 as the white and 0.67 as the black. This demonstrates
that the JIU chess program using the TD algorithm can out-
perform a junior chess player.

The program and the medium-level JIU chess player,
Naota, also played 200 games and held the White in turns.
The winning results are shown in Table 8. Our reinforcement
learning JIU chess engine has a win rate of 0.32 as the
white and 0.36 as the black. Although our engine showed
a weaker performance than the medium-level human player,
it performed better than the chess shape-based JIU chess
engine designed in [14], whose win rate against Naota is less
than 0.3.

V. CONCLUSION AND FUTURE WORK
Based on the JIU chess rules, we proposed to employ TD
algorithms for reinforcement learning in JIU chess engines
and constructed a reinforcement learningmodel for the prepa-
ration stage of JIU chess. The Sarsa and Q-learning algo-
rithms were used to train the reinforcement learning model,
and the learning outcome was output as SGF file to generate
opening libraries for the battle stage. The incorporation of
the TD algorithm in the JIU chess engine resulted in an
agent that has the ability to learn, and the playing strength
of the JIU chess engine was significantly improved by the
TD algorithm. However, due to the lack of systematic expert
knowledge, the sensing-feedback mechanism of the TD algo-
rithm is only a ‘‘best effort’’ attempt in ensuring that the
learning outcomes are indeed rational. Furthermore, the iter-
atively updated values in TD-based reinforcement learning
are intrinsically biased because it is very difficult to perform
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bias-less estimations using the TD algorithm. In future work,
we plan to study objective function-based learning via the
incorporation of a neural network model in our JIU chess
engines and use TD learning to optimize the parameters of
the neural network. It is expected that the guidance provided
by the neural network will further improve the learning out-
comes of JIU chess engines.
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