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ABSTRACT In medical imaging practice, vascular enhancement filtering has been widely performed before
vessel segmentation and centerline detection, which provides important pathological information and holds
great significance for vessel quantification. In the literature, numerous well known vesselness filtering
approaches have been developed. For example, some techniques explore the Hessian matrix of the original
images and construct the vessel filter based on the eigenvalues of the Hessian matrix. In this work we
develop a hybrid technique for fast and accurate vascular enhancement filter, which contains two main steps:
vesselness diffusion and improved vesselness filter based on the eigenvalues ratio. This novel approach is
quantitatively and qualitatively tested on the public 2D retinal datasets and 3D synthetic vascular structure
models. Experimental results demonstrate that the proposed filter outperforms other existing approaches for
curvilinear structure enhancement from noisy images. Moreover, the novel approach is further evaluated
on real patient Coronary Computed Tomography Angiography (CCTA) datasets with ground truth regions
labelled by professional cardiologist. Our method is proven to produce more accurate coronary artery
segmentation results. Given the accuracy and efficiency, the proposed vesselness filter can be further used
in medical practice for vascular structures enhancement before vessel segmentation and quantification.

INDEX TERMS Vascular structures detection, improved enhancement filter, Hessian matrix, vesselness
diffusion, vessel segmentation.

I. INTRODUCTION
Vascular structures detection plays an utmost role in various
applications of medical image processing and analysis,
for example, cardiovascular disease screening [1], [2].
In clinical practice, automatic vessel segmentation methods
usually achieve poor performances on CT scans due to the
plaques and surrounding structures, and low intensity dif-
ference between coronary structures and surrounding tis-
sues. In modern medical imaging, many approaches are
developed for medical images denoising, e.g., X-ray car-
diovascular angiogram images. For example, in [3] a novel
smooth and convex surrogate function is first proposed as a
replacement of the prior nuclear norm. Then, the proposed
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surrogate function is approximated by its first order Taylor
expansion. Finally, a novel model called iterative weighted
nuclear norm minimization scheme is proposed. In [4] the
authors propose a novel iterative weighted sparse represen-
tation (IWSR) scheme for X-ray cardiovascular angiogram
image denoising. First, a maximum a posterior (MAP) dis-
tribution by the Bayes’ theory is adopted to simultaneously
estimate the image and its sparse representation. Second,
the MAP problem is converted to minimise an energy func-
tion using the logarithmic transformation. Third, the function
is efficiently solved by the single and effective alternating
directions method. In [5] the authors have proposed a spa-
tially adaptive image denoising (SAID) method for X-ray
angiogram images denoising, which contains two steps: spa-
tially adaptive gradient descent (SAGD) image denoising and
dual-domain filter (DDF).
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Vessel enhancement techniques have been widely used as a
common prerequisite in biomedical imaging [6]–[10] before
vessel segmentation and centerline detection, which holds
great significance for coronary artery stenosis quantification.
Normally, this enhancement phase can be conducted dur-
ing the image pre-processing procedure by data acquisition
and image analysis techniques. In the present context, large
numbers of vascular structure enhancement approaches have
been proposed [11]–[15]. Truc et al. [16] review three main
categories of methods: linear filters [17], non-linear filters
[18], [19] and Hessian-based multiscale filters [6], [13], [14],
[20], [21]. Linear filtering methods often filter images by
using Gaussian kernels or Gabor filters. However, they may
filter vessel edges as well as thin vessel branches, which
make them inappropriate to complex structures. Non-linear
anisotropic diffusion filters can take place in certain structure
direction since they use the information of the structure ten-
sor orientation. Hence, they are able to preserve important
features during the filtering process. Therefore, non-linear
filtering methods are commonly used in medical imaging
tasks. For example, in [19] the author combines the eigensys-
tem analysis with a non-linear anisotropic diffusion scheme,
in which the direction and the amount of the diffusion rely on
the local vesselness response at each voxel location. How-
ever, diffusion based methods are not capable of detecting
vessels within a wide range of scales, since they act at a fixed
size.

Another way to identify vascular structures is to enhance
tubular structures by using Hessian-based methods [6], [13],
[14], [20], [21]. For example, in [20] the authors propose a
novel enhancement filter based on ratio of multiscale Hessian
eigenvalues. These kind of methods utilize the eigensystem
of the Hessian matrix of image intensities to detect tubular
structures. The main advantage of such a method is that it
can be performed in a multiscale manner to detect objects of
different sizes. More specifically, The Hessian matrix is cal-
culated by exploring the second-order Gaussian derivatives
at multiply scales, which is controlled by standard deviation.
However, the Hessian matrix is only used for local geometric
features of the image. As the vascular structure is enhanced,
other tubular structures such as soft tissues are also enhanced
during this process. As a result, some pseudo blood vessels
and a large number of isolated noise points are enhanced,
which increases the difficulty of coronary arteries segmen-
tation. In addition, tensors have a principle limitation that
they cannot simulate a complex image structure with only a
symmetrical sphere.

Recently, diffusion tensors, like the Fractional Anisotropic
Tensor (FAT), have been widely used to advance the detection
of vascular structures [22]. FAT normally measures the vari-
ance of anisotropy across different shapes of vessels, which
enables that FAT can better detect junctions and return more
uniform vessel responds. Thus, FAT has great potential in
medical images processing, like diffusion tensor regulariza-
tion. For example, the method in [23] explores the feasibility
of detecting vascular structures based on the Hessian matrix.

However, the method introduces too many parameters and
threshold values, which makes it difficult to be used for other
medical datasets.

In modern medical imaging, manual extraction and
annotation of vascular regions is time-consuming and
skill-demanding. On the other hand, the performances of
the existing vascular enhancing approaches vary easily due
to artifacts and surrounding noises. Furthermore, it is a
grand challenge to identify the vascular directions at junc-
tions. As a result, accurate and automatic vessel enhance-
ment approaches with minimal user interaction are in great
demand. We are committed to improving the quality of medi-
cal images by filtering noises and enhancing edges, and using
the smoothness suitable for the underlying image structure
to maintain edges. A three-dimensional nonlinear anisotropic
diffusion filtering method is introduced. The diffusion tensor
proposed in this work is controlled by the image structure ten-
sor. As a result, themain diffusion takes place along the vessel
direction of the underlying image. A novel diffusion tensor,
which is based on and extended from Frangi’s vesselness
measure, is developed to control the vesselness enhancement
diffusion for CT images. Besides, the theoretical supports of
the enhanced Frangi’s vesselness measure and the diffusion
tensor are mainly described. The superiority of the proposed
3D improved vesselness filter based on the ratio of eigenval-
ues is also studied in this paper.

The main contributions of this work are summarized in
the following aspects: 1) A detailed review of related work
about vascular structures enhancement in medical images is
presented. 2) The enhanced Frangi’s vesselness measure is
proposed by multiplying an exponential term, which ensures
that it is smooth at the origin and can be substituted into the
diffusion equation. The theoretical support is also presented.
3) The manuscript includes detailed studies of diffusion
tensor construction for anisotropic diffusion equation. 4) A
detailed theoretical support of the new improved vesselness
filter is given. Figure 1 depicts the flowchart of the proposed
vesselness enhancement filter. First, original medical images
are processed as input. Second, the Hessian matrix of each
voxel in the 3D data is computed, and the enhanced Frangi’s
vesselness measure is calculated. Next, vesselness enhance-
ment diffusion is performed for original medical images. The
enhanced Frangi’s vesselness measure is used to construct
the diffusion coefficient. Finally, the Hessian matrix is again
computed. Given the new eigenvalues, the proposed vessel
enhancing filter can be designed.

The proposed vesselness filter is described in Section 2,
which includes two main parts: 1) Frangi’s filter based ves-
selness enhancement diffusion. 2) improved enhancement
function based on the eigenvalues ratio of the Hessian matrix.
Section 3 presents the experimental results on public 2D
retinal datasets, 3D synthetic vascular structure models and
3D real patient Coronary Computed Tomography Angiogra-
phy (CCTA) datasets. In Section 4 we give a brief discussion
about the proposed enhancement approach. Finally, conclu-
sions are given in Section 5.
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FIGURE 1. The flowchart of the proposed vesselness enhancement filter.

II. METHODOLOGIES
A. VESSELNESS ENHANCEMENT DIFFUSION
Medical images can first be pre-processed by utilizing vessel
enhancing techniques [24]. The divergence form of the diffu-
sion equation is commonly given by:

∂L
∂t
= ∇ · (D∇L) (1)

where L(x, y, z) is the original image, t the diffusion time
and D the diffusion tensor. The diffusion tensor D usually is
defined as:

D =

D11 D12 D13
D21 D22 D23
D31 D32 D33

 with Dij =
∑

n=1...3

λnvnivnj

(2)

where v1, v2, v3 with v1 = [v11, v12, v13] are the eigenvectors
of the structure tensor. In Weickert’s work [25] the eigenval-
ues are computed by a from 2D to 3D extended equation.
In the literature, there are mainly two possibilities for the
extension from 2D to 3D. The first type is edge enhancing
diffusion (EED) whose diagonal elements are defined as:

λ1 = 1 (3)

λ2 = 1 (4)

λ3 = 1− exp
(
−3.31488
(GMS/λ2e)4

)
(5)

where GMS = ||∇θL||2 represents the gradient magnitude
square, and λe planar structure contrast parameter. In this
way, diffusion along the edge direction still takes place, but
diffusion perpendicular to an edge is inhibited. Another type
is coherence enhancing diffusion (CED) [19] whose diagonal
elements are defined as follows:

λ1 = α − (1− α) exp
(
−
C
k

)
(6)

λ2 = α (7)

λ3 = α (8)

with α is the global smoothing constant which is between
0 and 1, C is the edge enhancing smoothing constant and k is
a parameter. The amount of smoothing is determined by the
number of iterations set by the user.

In this work, Frangi’s vesselness measure needs to be mod-
ified and used to construct the new diffusion tensor. Frangi’s
vesselness filter is defined as:

VF (Eλ)

=

0 if λ2 > 0 or λ3 > 0

(1− e−
A2

2α2 ) · e
−

B2

2β2 ·(1− e
−

S2

2γ 2 ) otherwise

(9)

where |λ1| ≤ |λ2| ≤ |λ3| are the eigenvalues, and α, β and γ
are weighting parameters. A, B and S are initially introduced
to represent different vascular structures and given by:

A =
|λ2|

|λ3|
(10)

B =
|λ1|
√
|λ2λ3|

(11)

S =
√
λ21 + λ

2
2 + λ

2
3 (12)

In the literature, the multiscale vesselness function VF is used
to construct the diffusion tensor based on the Hessian matrix
eigensystem. The purpose of this paper is to design a diffusion
tensor D for vascular enhancement, which makes it possible
to use multiscale methods for vessel analysis. Unfortunately,
the VF defined in (9) cannot be used directly in (1) because
of its non-smoothness at the origin. Therefore, an enhanced
vesselness function Vs is developed [26]:

Vs(σ )

=


0 if λ2 ≥ 0 or λ3 ≥ 0

e
−

(
2c2

|λ2|λ
2
3

)

(1− e−
A2

2α2 )·e
−

B2

2β2 ·(1− e
−

S2

2γ 2 ) otherwise

(13)
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where e
−

(
2c2

|λ2|λ
2
3

)
is the novel term developed to multiply by

the original VF with a constant parameter c. The parameter
c is used to result in a smoothed version of the vesselness

function. The term e
−

(
2c2

|λ2|λ
2
3

)
resembles a Gaussian function

with its argument inverted, and it is controlled by the standard
deviation c. In order to only have influence around the origin,
the constant c should be chosen very small. There are two rea-

sons for multiply the term e
−

(
2c2

|λ2|λ
2
3

)
. First, this term satisfies

the differential property, approaches one near the origin and is
one elsewhere. Second, after multiply the term, the enhanced
Frangi’smeasure can be used to construct the diffusion coeffi-
cient and numerically substituted into the diffusion equation.
For ideal tubular structures, the diffusion process guarantees
that the diffusion strength is maximal and hence thin vessels
can be preserved. For non-vessel structures, the diffusion
strength is isotropic and high and noises can be removed.
The maximum vesselness response is selected to perform the
multiscale approach:

V = max
σmin≤σ≤σmax

Vs(σ ) (14)

The novel diffusion tensor D that incorporates the new
vesselness measure V and is defined as: [18], [19]:

D , Q3′QT (15)

where Q is the eigenvectors of the Hessian, and the
diagonal matrix 3′ contains the following diagonal
entries:

λ′1 , 1+ (ω − 1) · V
1
S (16)

λ′2 = λ
′

3 , 1+ (ε − 1) · V
1
S (17)

with parameters ω > ε, ε > 0 and S ∈ R+. ω is
the parameter controlling the diffusion strength (ω > 1).
Small positive value is chosen for ε. For ideal tubular struc-
tures, V → 1, the parameter ω works on λ′1 and guaran-
tees that the diffusion strength is maximal. For non-vessel
structures, V → 0, the parameter ε works on both λ′2 and
λ′3 and allows that the diffusion strength is isotropic and
high.

B. IMPROVED VESSEL FILTER
Once original medical images are pre-processed by utiliz-
ing the proposed vessel enhancing technique, the Hessian
matrix at each voxel location is again computed, and the
eigensystem is explored. The purpose of this section is to
design an vesselness filter function in the form of the ratio of
eigenvalues. The filter is not proportional to any eigenvalue
and, at the same time, is robust to low-magnitudes of the
eigenvalues. Compared with vesselness filters of other forms,
this type of vesselness filter has two main advantages. First,
it returns a response is close-to-uniform. Second, it enables
that the response is invariant to object contrast. These two

advantages play an utmost role in balanced and accurate
vesselness enhancement [22], [27].

One example of the ratios of eigenvalues is called the
volume ratio, which is used to detect nearly-spherical tensors
and defined as:

Vvolume = λ1λ2λ3

(
3

λ1 + λ2 + λ3

)3

(18)

It can be shown that the value of Vvolume is in the range [0, 1].
To detect both elongated and spherical structures Vvolume can
be modified by substituting λ1, with λ3 − λ1, which results
in:

Vmod = (λ3 − λ1)λ2λ3

(
3

2λ3 − λ1 + λ2

)3

(19)

However, such a vesselness filter may be ill-defined at low
values of |λ2| and |λ3|, and is sensitive to image noises in
regions with uniform intensities. The value of λ3 is therefore
regularized at each scale σ as:

λreg =

λ3 if λ3 < τ minx λ3(x, σ )

τ minx λ3(x, σ ) otherwise
(20)

where τ ∈ [0, 1] is a cut-off threshold parameter. High
value of τ represents larger difference between |λ2| and |λ3|
for low contrast structures. Otherwise, it indicates smaller
difference between |λ2| and |λ3|. Here λ3 is regularized
using function min() since we process images with bright
structures on dark background (all the eigenvalues nega-
tive). Moreover, the value of |λ1| is relatively small, com-
pared with |λ2| and |λ3|. Thus it can be omitted, and |λ3|
is replaced by λreg in (19), which yields the vesselness
function:

V ′mod = λ2λ
2
reg

(
3

λ2 + 2λreg

)3

(21)

Furthermore, to explore vascular structures with elliptic
cross-sections, we have the following relations:

λ2 ≈ λ3 and λ2 ≥ λ3 (22)

note that both λ2 and λ3 are negative.
Without loss of generality, we consider the

ratio λ2
λ3

in the range [0.5, 1], for vascular structures
with elliptic cross-sections, which corresponds to the
relation:

λ2 ≤ λ3/2 (23)

since both λ2 and λ3 are negative. Recall that λ3 is regular-
ized, we have

λ2 ≤ λreg/2 (24)

which requires that the vesselness function (21) equals to
1 when λ2 ≤ λreg/2. Therefore, it is achieved by substituting
λreg with λreg − λ2 in (21) and fixing the value to 1 for
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λ2 ≥ λreg/2. Finally, the proposed vesselness function is
given by:

V

=


0 if λ2 > 0 and λ3 > 0

λ2(λreg − λ2)2
(

3
2λreg − λ2

)3

if λ2 ≤
λreg

2
1 otherwise

(25)

The proposed vesselness function is designed based on
the ratio of eigenvalues, which can return nearly uniform
intensity profile for tubular structures. It is straightforward
that when the value of τ decreases, the value of λreg will
increase. As a result, it is more likely that λ2 > λreg/2, which
makes V to be 1. The idea behind the vesselness function is
that it gives a more uniform response on bright structures for
τ < 1. Moreover, the proposed vesselness function returns
a uniform response for varying contrast of raw image inten-
sities, due to the eigenvalue ratio defined in (25). Therefore,
the proposed vesselness function is capable of producing high
and highly uniform response for vascular structures of interest
with varying contrast of intensities.

III. RESULTS
In this section, the proposed method is both quantitatively
and qualitatively evaluated against three different categories
of datasets: public 2D retinal dataset, 3D synthetic vascular
models and 3D real patient CCTA datasets. The accuracy of
the new method is compared with that of the state-of-the-
art approaches. The Receiver Operating Characteristic (ROC)
curve is used to perform the visual comparison. Also, theArea
Under the Curve (AUC) of the ROC curve is explored as the
evaluation metric to compare the performances between the
proposed vessel enhancing filter and the state-of-the-art tech-
niques. Our hybrid vesselness filter for vascular structures
enhancement takes the advantages of vesselness enhance-
ment diffusion, and integrates the improved Frangi’s filter
based on the ratio of eigenvalues of the Hessian matrix.
The proposed method is mainly compared with Frangi’s
filter [14], Jerman’s method [20] and multiscale fractional
anisotropy tensor (MFAT) method [23]. The main reasons
are summarized in the following aspects: 1) Frangi’s filter is
widely used, since it is easy to implement, and returns very
high response uniformity on objects with uniform intensities.
In our work, we have first modified the original Frangi’s
vesselness filter bymultiplying an exponential term tomake it
smooth at the origin. Then it can be used in the diffusion equa-
tion. 2) Jerman’s method represents the category of enhance-
ment filters that are based on the ratio of multiscale Hessian
eigenvalues, and it achieves the state-of-the-art performance
for this category of enhancement filters. 3) The MFAT
method represents the category of non-linear anisotropic dif-
fusion filters that use the information of the structure tensor
orientation, and it achieves the state-of-the-art performance
for this category of vessel filters. The proposed vascular

TABLE 1. A comparison of mean AUC values between the state-of-the-art
methods and the proposed approach over the DRIVE and STARE retinal
datasets.

enhancing method is implemented on a 16 GB of RAMWin-
dows laptop. The parameters in the diffusion part are chosen
as: total diffusion time 15s and time step 0.25s, c1 = 10−3,
c2 = 10−5, ρ = 2, σ = 1. The eigenvalues used in this part
are given by VED type.

A. 2D RETINAL IMAGES
To explore the effectiveness and accuracy of the pro-
posed vascular structure enhancement approach, two pub-
licly available retinal image datasets: DRIVE [28] and
STARE [29], are used to present a more rigorous form of
quantitative validation. Particularly, the proposed approach
is evaluated against the state-of-the-art techniques. First,
a visual inspection of the mean ROC curve, that represents
some qualitative information, can be conducted. In addition,
quantitative information, i.e., the mean of AUC between
the ground truth vessels and the filtered results, are also
presented.

Figure 2 presents the detected retinal vascular structures
by using different enhancement methods, compared with
the specialist labelled ground truth vessel structures. It can
be observed that Jerman’s method can extract only main
branches, a lot of thin vessel branches are missing. Besides,
large region of artifacts is introduced in the high intensity
area (Figure 2(d)). In Figure 2(e), the MFAT method is
able to return more thin vessel branches, and remove the
large region of artifacts. However, many thin branches are
isolated from the main branches. The proposed method is
shown to detect most vessel branches, thin vessels are con-
nected to the main branches, and no artifact is introduced
by our approach. Figure 3 demonstrates a comparison of
the intermediate retinal vascular results of the proposed
vesselness enhancement method. The hybrid strategy is
shown to give more complete and accurate retinal vessel
structures.

Furthermore, the mean AUC values between the ground
truth vessels and the filtered results by Frangi’s filter,
Jerman’s method, MFAT method and the proposed method,
are also presented in Table 1. Generally, higher values of AUC
represent better vascular structure enhancement results. If the
enhancement result is found to be identical to the ground
truth, it will return the AUC value of 1. Given the qualita-
tive and quantitative results, the proposed vessel enhancing
method slightly outperforms the state-of-the-art methods.
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FIGURE 2. The detected retinal vascular structures by using different
enhancement methods, compared with the specialist labelled ground
truth vessel structures. (a): Original image. (b): Ground truth. (c): Our
method. (d): Jerman’s [20]. (e): MFAT [23].

B. 3D SYNTHETIC VASCULAR MODELS
In this stage, the segmentation approach is tested on the
March 2013 VascuSynth Sample (10 datasets) presented in
[30], [31]. Synthetic vascular trees of multiple complexities
were generated by using the VascuSynth Software, by chang-
ing the number of terminal nodes from 5 to 1000 within
a volume of 100 × 100 × 100 voxels [30]. Figure 4
presents three examples of synthetic vessel models from the
March 2013 VascuSynth Sample: Group 2 (data3), Group 3
(data4) and Group 4 (data5), which are used as the ground
truth vessel structures and adequate to represent the three
dimensional vascular structures, for the purpose of evaluating
the efficiency of the proposed vesselness filter function.

As reported in [31], four different quantitative metrics,
i.e., true positives (TP), false negatives (FN), false posi-
tives (FP) and overlap measure (OM) between the detected

FIGURE 3. A comparison of the intermediate retinal vascular results of
the proposed vesselness enhancement filter. (a): Original image.
(b): Vessel enhancing diffusion only. (c): Improved vesselness filter only.
(d): Our hybrid strategy.

TABLE 2. Segmentation results on 2013 vascusynth sample (%).

vascular structures and the ground truth vessel segmenta-
tion, are computed for the synthetic validation. The average
TP, FN, FP, and OM rates on the 10 datasets are presented
in Table 2. The proposed method is found to achieve 96.96±
0.70, 3.04± 0.70, 5.39± 1.25 and 96.56± 0.94 percentage
of TP, FN, FP, and OM rate for all 10 datasets, respectively.
Moreover, low level of noise was added to the 2011 Vas-
cuSynth Sample Data [30], [31], and the proposed method
was tested compared with Jerman’s method [20] and theMul-
tiscale Fractional Anisotropy Tensor (MFAT) method [23].
The comparison results are presented in Table 3. It can be
seen that the proposed method can obtain the highest values
for TP and OM, and lowest values for FN and FP, which
demonstrates that the proposed method slightly outperforms
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TABLE 3. A comparison of the multiscale fractional anisotropy tensor (MFAT) method, jerman’s method with our method in the presence of low level of
gaussian noise (σ2 = 20) (%).

FIGURE 4. Three 3D examples of synthetic vessel models from the march
2013 vascusynth sample: Group 2 (data3), group 3 (data4) and group 4
(data5).

MFATmethod and Cheng’s method, with the presence of low
level Gaussian noise.

Figure 5 presents a comparison of average true positives
(TP), false negatives (FN), false positives (FP) and overlap

TABLE 4. Dataset size and processing time by different vessel enhancing
approaches of five real patient CCTA datasets, dataset 01 LAD, dataset
01 LCX, dataset 01 RCA, dataset 02 LAD and dataset 02 LCX.

measure (OM) measures by using Jerman’s, MFAT and the
proposed method on 2013 VascuSynth Sample. The new
method is found to achieve the highest overlap measure.
In addition, the statistical tests between the proposed method
and the advanced methods (Jerman’s method and MFAT
method) are performed. The results (p-values < 0.05) indi-
cate that there is a statistically significant difference between
the proposed method and the advanced methods (Jerman’s
method or MFAT method). Figure 6 shows the maximum
intensity displays (MIP) of three 3D synthetic vessel models
from the March 2013 VascuSynth Sample by using different
vessel enhancing methods, Frangi’s (first column), Jerman’s
(second column), MFAT (third column) and the proposed
method (last column). The proposed method shows better fil-
tered vascular structures, especially for thin vessel branches.

C. APPLICATION TO PATIENT STUDY
In this section, the proposed vessel filter is implemented on
five real patient CCTA datasets, which were obtained from
the National Heart Center Singapore, and each ground truth
artery, i.e., the left anterior descending artery (LAD), the left
circumflex artery (LCX) and the right coronary artery (RCA),
was labelled by the experienced cardiologist. The dataset
size and processing time by using different vessel enhancing
approaches of each group of data is summarized in Table 4.
The proposed enhancing approach is proven to be efficient,
with an average processing time of about 9.8 minutes. This
enables the proposed diffusion scheme to be further applied
as a real-time medical images preprocessing tool in clinical
practice.

To explore the performance of the proposed vessel
enhancing scheme, five other vascular enhancement meth-
ods (Frangi’s, Yang’s [21], VED, Jerman’s and MFAT) were
also performed into five CTCA datasets. Figure 7 depicts
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FIGURE 5. A comparison of average true positives (TP), false negatives (FN), false positives (FP) and overlap measure (OM) measures by
using jerman’s, MFAT and the proposed method and their p-values on 2013 vascusynth sample.

the comparison of the ROC curves for all the approaches.
Frangi’s filter achieves the lowest mean AUC value. This
may be explained by the fact that Frangi’s filter is sensitive
to noise. Yang’s improved filter achieves low value of AUC.
VED is found to outperform the two latter methods. This is
can be explained by the fact that VED utilizes the vesselness
measure to construct the diffusion tensor. Jerman’s method
and the MFAT method can achieve higher AUC values. The
proposed method is found to outperform the five existing
state-of-the-art vessel enhancementmethods, with the highest
AUC value of 0.897.

In Figure 8 we present a visual comparison of the seg-
mentation results in axial view obtained by using the MFAT
method [23] and the proposed enhancement filter with the
ground truth regions, for dataset 01 LAD, dataset 01 LCX
and dataset 02 LCX. The first column (blue) shows the
ground truth regions labelled by the professional cardiologist.
The second column (yellow) gives the segmentation results
by the MFAT method. The segmentation results obtained by
using the proposed vesselness filter are presented in the last
column (red). The experimental results demonstrate that the
proposed vascular enhancement approach is capable of pre-
serving more coronary artery features and reducing pseudo
vessel structures. As a result, the segmentation results are
more precise and reliable for clinical diagnosis.

IV. DISCUSSIONS
Vessel enhancement technique has been widely used as a
common prerequisite in biomedical imaging before vessel

segmentation and centerline detection, which provides impor-
tant pathological information. Among the reviewed vessel
enhancing approaches, the Frangi’s filter is widely used,
since it is easy to implement, and returns very high response
uniformity on objects with uniform intensities. Besides, some
improved vesselness filters are developed. They are usually
modified from Frangi’s function, like Yang’s method [21],
and can obtain only minor improvement on vascular struc-
tures detection. Non-linear anisotropic diffusion filtering can
take place in certain structure direction since it uses the
information of the structure tensor orientation. Hence, they
are able to preserve important features during the filtering
process. However, diffusion based methods are not capable
of detecting vessels within a wide range of scales, since
they act at a fixed size. Moreover, diffusion tensors, like the
Fractional Anisotropic Tensor (FAT), have been widely used
to advance the detection of vascular structures. FAT has great
potential in medical images processing, like diffusion tensor
regularization. However, the method introduces too many
parameters and threshold values, which makes it difficult to
be used for other medical datasets.

In this work, we develop a hybrid technique for fast and
accurate vascular enhancement filter, which contains two
main steps: vesselness diffusion and improved vesselness
filter based on the eigenvalues ratio. The diffusion tensor
proposed in this work is controlled by the image structure
tensor. As a result, the main diffusion takes place along the
vessel direction of the underlying image. For ideal tubular
structures, the diffusion process guarantees that the diffusion
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FIGURE 6. Maximum intensity displays (MIP) of three 3D synthetic vessel models from the march 2013 vascusynth sample: Group 2
(data3), group 3 (data4) and group 4 (data5), by using different vessel enhancing methods, frangi’s (first column), jerman’s [20]
(second column), MFAT [23] (third column) and the proposed method (last column).

FIGURE 7. A comparison of the ROC curves for all the approaches.

strength is maximal and hence thin vessels can be preserved.
For non-vessel structures, the diffusion strength is isotropic
and high and noises can be removed. The proposed vesselness

enhancement diffusion algorithm is designed for medical
images including vascular structures, which can be viewed
as a pre-processing technique before vessel segmentation
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FIGURE 8. A visual comparison of the segmentation results obtained by using the MFAT method [23] (yellow) and the proposed
enhancement filter (red) with the ground truth regions (blue) in axial view. First row: Dataset 01 LAD. Second row: Dataset 01 LCX. Third
row: Dataset 02 LCX.

and centerline extraction. The Frangi’s filter is modified by
multiplying a term, in order to make the derivatives of the
vesselness measure smooth at the origin and allow it to be
used in the diffusion equation. However, the term needs to be
carefully selected. Moreover, the parameters of the diffusion
procedure can also be further explored to produce better dif-
fusion results in the further work. Once original images is fil-
tered by the proposed diffusion algorithm, the Hessian matrix
at each voxel location is computed, and the eigensystem
is further explored. An improved vesselness filter function
can be designed in the form of the ratio of eigenvalues.

The filter is not proportional to any eigenvalue and, at the
same time, is robust to low-magnitudes of the eigenvalues.
Compared with vesselness filters of other forms, this type
of vesselness filter has two main advantages. First, it returns
a response that is close-to-uniform. Second, it enables that
the response is invariant to object contrast. These two advan-
tages play an utmost role in balanced and accurate vesselness
enhancement.

Finally, the proposed vascular structures enhancement
method may garner a high potential in clinical practice, since
it may also enhance vascular structures with non-circular
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cross sections (at lesion areas). For vessels in the presence of
vascular disease, V < 1, the parameter ω works on λ′1 in (16)
and guarantees that the diffusion strength is still high. Thus
even vessels with lesion sites can be well preserved. This
is because the proposed vesselness diffusion takes place in
certain structure direction since it uses the information of the
structure tensor orientation. Therefore, it is able to preserve
important features during the filtering process. In our future
work, we are going to explore the performance improvement
of the existing segmentation and reconstruction approaches,
which rely on prior vascular structures enhancement results.

V. CONCLUSION
In this study, we developed a hybrid vesselness filter for
vascular structures enhancement from noisy medical images,
which takes the advantages of vesselness enhancement dif-
fusion, and integrates the improved Frangi’s filter based on
the ratio of eigenvalues of the Hessian matrix. We have first
modified the original Frangi’s vesselness filter by multiply-
ing an exponential term to make it smooth at the origin.
Based on this, a novel diffusion tensor can be constructed,
and original medical images can be processed, in order to
enhance vascular structures and inhibit surrounding noises.
Second, the Hessian matrix was computed and the novel ves-
sel enhancing filter was then developed based on the eigen-
values ratio. This novel approach has been validated over the
public 2D retinal datasets and 3D synthetic vascular structure
models. It showed that the the novel method can detect more
thin retinal vessel branches by a visual comparison. Besides,
the AUC value of the ROC curve of the proposed method was
further compared with that of each state-of-the-art approach,
and the new method gave the highest AUC value. In addi-
tion, the new method can achieve highest AUC value on the
March 2013 VascuSynth Sample and the 2011 VascuSynth
Sample with low level of noise. Experimental results demon-
strate that the proposed filter outperforms other existing
approaches for curvilinear structure enhancement from noisy
images. Moreover, the novel approach is further evaluated
on real patient Coronary Computed Tomography Angiogra-
phy (CCTA) datasets with ground truth regions labelled by
professional cardiologist. Our method is proven to produce
more accurate coronary artery segmentation results. Given
the accuracy and efficiency, the proposed vesselness filter
should have more routine clinical applicability as a real-time
vascular structures enhancement tool before vessel segmen-
tation and quantification.
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