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ABSTRACT The current article investigates the possibilities of designing a robust control solution for
a control problem related to type 1 diabetes mellitus. The proposed control methodology exploits linear
parameter varying, linear matrix inequality, tensor product model transformation and extended Kalman
filtering, four advanced control methods in order to guarantee hard safety control constraints for diabetic
patients. In this research we have applied an extension of the minimal model to simulate the glucose-insulin
dynamics and the glucose and insulin absorption of a diabetic patient. We have validated our results on
numerical simulations by using realistic patient data. During the evaluation we have used randomized
glucose intakes both in time and amount (as ’’unfavorable’’ disturbance signals). Furthermore, we did a
long-term (30 days) assessment to confirm the stability of the proposed framework. The results have shown
that the developed controller effectively intervenes into the process and provides appropriate control action
by avoiding hypoglycemia thereby satisfying the predefined quantity and quality requirements.

INDEX TERMS Extended Kalman filter, linear matrix inequality, linear parameter varying-based control,
tensor product model transformation, type 1 diabetes mellitus.

I. INTRODUCTION
Nowadays the application of advanced physiological model-
ing and control have crucial importance in biomedical engi-
neering [1]. There are many fields in which these solutions
can be found in use. Examples include the regulation of
anesthesia [2], control of blood glucose (BG) level of patients
suffering from diabetes mellitus (DM), i.e., the Artificial
Pancreas (AP) problem [3], [4] and the regulation of tumor
growth [5]. In case of DM, many challenging aspects occur
which have to be kept in mind during the development of
solutions for treatment.

On the one hand, several types of DMs exist which have
their own specificities and dependencies. Themost frequently
occurring types are the Type 1 DM (T1DM), Type 2 DM
(T2DM) and Gestational DM (GDM) [6]. The common
point among these types of DMs is the malfunction of
the metabolic system related to the insulin hormone, more
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precisely, the lack of insulin (T1DM) or the decreasing effec-
tivity of it (T2DM, GDM) [7].

On the other hand, all of them require unique approaches
from biomedical engineering point of view: the applicable
modeling and control techniques are similar, but varying
according to the needs. Due to the nature of the problem,
the applicable models are highly nonlinear, there are param-
eter uncertainties which may vary over time, the parameter
sets are patient dependent, time delay affects can occurr, etc.
Nevertheless, one thing is common in all cases: the primary
goal of the control is to keep the BG level in a healthy range
without high variabilities in its value over time, focusing
primarily to hypoglycemia avoidance. [8]–[10].

In this research we investigate the AP context focusing on
T1DM – where the β-cells of the pancreas lost their ability
to produce insulin hormone. Without insulin, the glucose
dependent cells are not able to absorb glucose molecules
from the blood through the insulin dependent gates located
in the cellular wall of the cells [11]. Thus, without external
insulin intake in short-term and appropriate insulin therapy in
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long-term the patients will face serious health consequences,
including death [6].

Appropriate treatment both from quality and quantity point
of view can be realize only by using advanced control solu-
tions [12]. However, the aforementioned conditions have to
be solved by the used methods. Different solutions exist for
AP, although all of them have their own limitations [3]: the
personalization and the generalization are antonyms, but both
of them have to be taken into account during the develop-
ment. The most frequently used methods – which also have
been patented recently as closed loop DM therapies – is
the model predictive control (MPC), proportional-integral-
derivative (PID) control and fuzzy logic based ideas. Clinical
trials have been done to investigate the effectivity of these
methods [13]–[18]. In these cases, we have to accept the
validity of the model and need to deal with the constraints
caused by the approximations. There are several challenges
needed to be dealt with regarding the aforementioned control
methodologies. For example the sensor delay (mainly caused
by the applied sensor technology due to phenomenological,
modeling, manufacturing, or software related issues [19]),
delayed insulin effect (due to the absorption, diffusion, degra-
dation of synthetic insulin [20]), or even overnight super-
vision, which is also a challenge due to the lack of food
intake [15], [21]. These effects and circumstances may lead
to overdosing the insulin during automated treatment. With
single hormone control – when the only action possible in
case of overdosing is to turn off the insulin pump – these are
critical issues [21]–[24].

Robust control approaches can be alternatives to the above
mentioned control opportunities, where the aims could be
to develop robust solution from parameter, model, external
excitations, or other points of view. An applicable method
is the fixed point based controller design (RFPT). In case
of RFPT theorem the control goal is transformed into a
fixed point problem which is solved via iterations during
the control action. This adapting property allows the use
of highly approximated model of the process to be con-
trolled and we do not need to know information about
the internal states of the system (the human body in this
case) [25], [26].

It has been also proven that the robust control techniques
can be useful regarding the control of DM, since they are able
to deal with many kind of uncertainties coming from both the
patient and system side. In general, the goal of the application
with them was to provide acceptable control action from
the system point of view (total avoidance of hypoglycemia,
limited control signal, etc.) and not to provide the ’’best one’’
(the most optimal one) [4], [27], [28].

In the recent years, linear parameter varying (LPV) based
controller design methods have came to the fore due to their
beneficial properties. This modeling technology can be com-
bined with linear matrix inequality (LMI) based optimiza-
tion which guarantees the robust stability and satisfies the
performance of LPV control system via gain-scheduling in
real time. Furthermore, it achieves this by using the measured

or estimated parameters [29]–[32]. Among other techniques,
the tensor product (TP) model transformation is another
attractive possibility, since it can be easily combined with
LMI based design on given LPV models and because of
its strong ability in manipulating the convex hull in poly-
topic forms. By combining the TP framework with parallel
distributed compensation (PDC) [33] controller design, the
TP-based LMI controller is able to provide the stability of
the system – regardless the variation of the parameter vector
in time [34]–[45].

In this paper we proposed a TP-LMI-LPV based con-
troller design method for T1DM. The paper is structured
as follows. First, we introduce the applied T1DM model
and its LPV based control oriented form. After, we present
the TP model transformation and the realized TP model.
Hereupon, we demonstrate the LMI design technique. After-
wards, the design of the extended Kalman filtering (EKF) is
presented followed by the finalized control structure and the
results of our numerical simulations. In the discussion section
we analyzed the results. Finally, we have concluded our work
and presented the directions of our future research.

II. MODEL DESCRIPTION AND PROBLEM DECLARATION
A. MODEL DESCRIPTION
The applied model consists of different submodels: core
model to describe the glucose-insulin dynamics [46]; carbo-
hydrate (CHO) absorption submodel [47]; and insulin absorp-
tion submodel [47]. The application of mixed models are
frequent in the scientific literature [48]–[50]. The CHO and
insulin sub-models have been proposed by Hovorka et al.
originally in [47], [51]. Both sub-models are two compart-
mental models. The CHO submodel describes how the orally
ingested CHO affects the rate of appearance of glucose in the
blood. The insulin absorption submodel describes the rate of
appearance of insulin in the blood injected subcutaneously.
The submodels are represented by (1a) - (1d). The core
model – first published in [46] – is responsible for describing
the glucose-insulin dynamics (1e) - (1g).

Ḋ1(t) = −
1
τD
D1(t)+

1000Ag
MwGVG

C · d(t) (1a)

Ḋ2(t) = −
1
τD
D2(t)+

1
τD
D1(t) (1b)

Ṡ1(t) = −
1
τS
S1(t)+

1
VI
u(t) (1c)

Ṡ2(t) = −
1
τS
S2(t)+

1
τS
S1(t) (1d)

Ġ(t) = −(p1 + X (t))G(t)+ p1GB +
1
τD
D2(t) (1e)

Ẋ (t) = −p2X (t)+ p3(I (t)− IB) (1f)

İ (t) = −n(I (t)− IB)+
1
τS
S2(t) (1g)

The core model has three state variables, which are
connected to the blood plasma, these are the follow-
ing: G(t) [mg/dL], the blood glucose (BG) concentration,
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X (t) [1/min], insulin-excitable tissue glucose uptake activ-
ity and I (t) [mU/L], the blood insulin concentration. The
glucose and insulin absorption submodels consist of the
D1(t) [mg/dL], D2(t) [mg/dL], S1(t) [mU/L] and S2(t)
[mU/L], respectively. The disturbance input d(t) [g/min]
represents the glucose intake which is transformed by the(
(1000Ag)/(MwGVG)

)
C complex into the appropriate dimen-

sion to fit to the D1(t). The control input u(t) [mU/L/min] is
directly connected to the S1(t). The detailed description of the
used model parameters can be found in Table 1.

TABLE 1. The applied parameters of the models [46], [47].

B. CONTINUOUS GLUCOSE MONITORING SYSTEM
MODEL DESCRIPTION
Modeling the sensor noise in continuous glucose monitoring
system (CGMS) applications is a crucial question. CGMS
devices measure the BG level from the subcutaneous space
in the arm. However, the measured values can be different
from a given average BG level in the body. There are different
effects which may make the measurements corrupt such as
the time delay, heat effects an so on. These may lead to
sensor decalibration. In order to model these phenomena we
have applied the CGMS model of [52]. The developed model
can be directly connected to the introduced model described
by (1e) - (1g).

ek = 0.7(ek−1 + vk ), k ≥ 1, (2)

vk ∼ Niid (0, 1), (3)

ηk = ξ + λ sinh
(
ek − γ
δ

)
, (4)

Ġsub(t) =
1
τsub

(G(t)− Gsub(t)), (5)

GCGM (kT ) = Gsub(kT )+ ηk . (6)

We used the parameters given by [52]: τsub=15 min,
ξ=-5.471 mg/dL, λ=15.96 mg/dL, γ=-0.5444 and δ=1.6898.
The Brownian motion like term can be initialized with e0 ∼
Niid (0, 1). The noisy measurement data can be calculated by
using the sampled output of the virtual patient system G(t).
The model includes a first order process in order to approx-
imate the delay between the different glucose compartments
and a noise term with Johnson-like distribution.

C. AIM OF THE CONTROL
Our research aim is to hold the blood glucose level –
described by G(t) – within a given determined range. Due
to physiological limitations, our primary goal is to avoid
hypoglycemia and allow only short hyperglycemic periods.
The selected constraint in this research was: 60 [mg/dL]
(3.33 [mmol/L]) ≤ G(t) ≤ 320 [mg/dL] (17.76 [mmol/L])
which shall not be exceeded by the blood glucose level at all.

III. TENSOR PRODUCT MODEL TRANSFORMATION
OF THE LPV MODEL
A control engineering summary is given in the following
to briefly describe and highlight the applied modeling and
control methods.

A. LPV MODEL FORM
Consider the following nonlinear time-varying system in state
space form [53], [54]:

ẋ(t) = A(t)x(t)+ B(t)u(t)+ E(t)d(t)

y(t) = C(t)x(t)+ D(t)u(t)+ D2(t)d(t)(
ẋ(t)
y(t)

)
= S(t)

x(t)
u(t)
d(t)


S(t) =

[
A(t) B(t) E(t)
C(t) D(t) D2(t)

]
, (7)

where x(t) ∈ Rn, y(t) ∈ Rk , u(t) ∈ Rm and d(t) ∈ Rl

are the state-, output-, control input- and disturbance input-
vectors, respectively. The A(t) ∈ Rn×n is the state matrix,
B(t) ∈ Rn×m is the control input matrix, E(t) ∈ Rn×l is
the disturbance input matrix, C(t) ∈ Rk×n is the output
matrix, D(t) ∈ Rk×m is the control feed-forward matrix,
D2(t) ∈ Rk×l is the disturbance feed-forward matrix. The
S(t) ∈ R(n+k)×(n+m+l) is the so-called system matrix.

Assume that the nonlinearity-causing terms of the model
are selected as scheduling variables pi(t). Therefore, the (7)
can be described as an LPV system in the following
way [53], [55]:

ẋ(t) = A(p(t))x(t)+ B(p(t))u(t)+ E(p(t))d(t)

y(t) = C(p(t))x(t)+ D(p(t))u(t)+ D2(p(t))d(t)(
ẋ(t)
y(t)

)
= S(p(t))

x(t)
u(t)
d(t)


S(p(t)) =

[
A(p(t)) B(p(t)) E(p(t))
C(p(t)) D(p(t)) D2(p(t))

]
, (8)
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where p(t) = [p1(t) . . . pR(t)] is the so-called parameter vec-
tor which consists of scheduling parameters pi(t), or simply
the parameters. The p(t) ∈ �R

∈ RR is an R dimensional real
vector within the � = [p1,min, p1,max] × [p2,min, p2,max] ×
. . . × [pN ,min, pN ,max] ∈ RR, ∀p pi,min < pi,max hypercube
inside the RR real vector space.

B. CONTROL ORIENTED MODEL TRANSFORMATION
Control oriented model form is a widely used technique in
control engineering if we apply different state feedback based
control solutions [56]. In this way it is able to describe the
deviation of the state variables from given predefined refer-
ence valueswhich can be themodel equilibrium (natural equi-
librium) or prescribed values (enforced equilibrium). Thus,
the so-called error dynamics is attached to the state variables.
The usual state feedback based control solutions guarantee
that the state variables become zero over time. Through this
approach, the goal is to reach the zero state variables over
time, whichmeans that the state variables become equal to the
predefined values or equilibrium – and the design of reference
compensator is not necessary anymore [33], [34]. This tool is
a convenient method for TP transformation based modeling
and control as well.

Consider the x(t) ∈ Rn state vector and the xd ∈ Rn

(permanent) model equilibrium. The formalization is:

1x(t) = x(t)− xd , (9)

where 1x(t) ∈ Rn is the deviation from the equilibrium and
the goal of the control in this way is 1x(t)→ 0.

Respect to (9), the (8) can be described in control oriented
form as follows:

ẋ(t)− 0 = 1Px(t)

= A(p(t))1x(t)+ B(p(t))1u(t)+ E(p(t))1d(t)

y(t)− yd = 1y(t)

= C(p(t))1x(t)+ D(p(t))1u(t)+ D2(p(t))1d(t)(
1ẋ(t)
1y(t)

)
= S(p(t))

1x(t)
1u(t)
1d(t)


S(p(t)) =

[
A(p(t)) B(p(t)) E(p(t))
C(p(t)) D(p(t)) D2(p(t))

]
, (10)

where 1x(t) = x(t) − xd , 1y(t) = y(t) − yd , 1u(t) =
u(t) − ud and 1d(t) = d(t) − dd are the deviation based
state-, output-, control input- and disturbance input-vectors,
respectively. For our case the following equilibrium has
been applied: xd = [D1,d ,D2,d , S1,d , S2,d ,Gd ,Xd , Id ]> =
[0, 0, 0, 0,GB, 0, IB]>, ud = 0 and dd = 0.

The model described by (1a) - (1g) can be written as it
is represented by (10). Regarding the measurable state G(t)
from (1e), its form becomes:

Ġ(t)− 0 = −(p1 + X (t))G(t)+ p1 GB +
1
τD
D2(t)

−
[
− (p1 + Xd )Gd + p1 GB +

1
τD
D2,d

]

= −(p1 + Xd )1G(t)− G(t)1X (t)+
1
τD
1D2(t)

S(p(t)) =
[
A(p(t)) B E

C D D2

]
(11)

=



−
1
τD

0 0 0 0

1
τD

−
1
τD

0 0 0

0 0 −
1
τS

0 0

0 0
1
τS

−
1
τS

0

0
1
τD

0 0 −(p1 + Xd )

0 0 0 0 0

0 0 0
1
τS

0

0 0 0 0 1

0 0 0
1000Ag
MwGVG

C

0 0 0 0

0 0
1
VI

0

0 0 0 0
−G(t) 0 0 0
−p2 p3 0 0
0 −n 0 0
0 0 0 0


(12)

By applying the same transformation on the remain-
ing state equations, the deviation-based control oriented
state-space description can be represented by its system
matrix S(p(t)) in (11). The only nonlinearity causing term
is the multiplication with G(t) in (11) – thus, we have
selected the measurable state G(t) as scheduling variable,
namely p(t) = p(t) = G(t). We have already presented
in Sec. II-C that the aim of the control is to keep G(t)
within 60 [mg/dL] and 320 [mg/dL] – which is considered
as the physiologically optimal range [6], [10]. This leads to
the �1

= [Gmin,Gmax] = [60, . . . , 320] one dimensional
parameter space where the p(t) can be changed. Furthermore,
only A(p(t)) is affected by p(t).

C. TP BASED MODEL TRANSFORMATION
The TP model transformation is able to transform a given
function into its TP function form within given limi-
tations [57]. The transformation is possible in case of
multi-variable functions, neural networks, fuzzy constructs,
among others. Due to its flexibility, it is possible to use the TP
model transformation to transform a given model described
by its LPV (or qLPV) representation into polytopic TP model
form as well [34]. In more detail, the TP model transforma-
tion is capable of transforming a given model into multipli-
cations consisting of orthonormal weighting function systems
both depending on one variable, namely, the p(t) scheduling
variable. The resulting TP model is able to approximate the
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original LPV model with given accuracy depending on the
applied specifications. The sampling density is connected
to the higher order singular value decomposition (HOSVD)
among others. The TP model transformation can be com-
bined with LMI-based controller design – the developed
sub-controllers can be connected by the occurring weighting
functions and the resulting controller becomes equal to the
convex combination of them [34], [58].

In order to realize the TP model transformation the (8) can
be considered where the bounded � hypercube – interpreted
inside the RR vector space – is the transformational space.
In the following, we introduce the main terms and structures
which are needed to execute the TP model transformation on
a given class of LPV models.
Definition 1: The finite element convex polytopic model

describes the S(p(t)) actual model as a convex combination
of the Sr ∈ R(n+k)×(n+m+l) LTI sub-models – LTI vertices –
inside the � hypercube in the following way:

S(p(t)) =
R∑
r=1

wr (p(t))Sr , (13)

where the R is limited as described above and wr (p(t)) ∈
[0, 1] is a continuous convex weighting function.
Definition 2: The finite element TP type convex polytopic

model describes the S(p(t)) actual model as a convex combi-
nation of the Sr ∈ R(n+k)×(n+m+l) LTI vertex system inside
the � hypercube in the following way:

S(p(t)) =
I1∑

i1=1

I2∑
i2=1

. . .

IR∑
iR=1

R∏
r=1

wr,ir (pr (t))Si1,i2,...,iR

= S
R
�
r=1

wr (pr (t)), (14)

where S ∈ RI1×I2×...×IR×(n+k)×(n+m+l) coefficient ten-
sor can be derived from the Si1,i2,...,iR LTI vertex system
and the wr (pr (t)) weighting function vector consists of the
wr,ir (pr (t)) (ir = 1 . . . IR) univariate continuous weighting
functions.
Definition 3: The HOSVD method [34], [35], [59] makes

it possible to construct a tensor product structure according
to the significance of each component. The result of the TP
model transformation is the numerical reconstruction of the
HOSVD of the given LPV model without the consideration
of complexity reduction and convex hull manipulation. The
resulting HOSVD canonical form consists of singular func-
tions in orthonormal structure and a core tensor consists of
LTI system vertices assigned to the higher order singular
values.
Definition 4: A general convex hull can be defined in the

following way:

Conv(�) =
{ |�|∑
i=1

wiqi|(∀i : wi ≥ 0) ∧
|�|∑
i=1

wi = 1
}
, (15)

where � is the convex set, wi are the weighting parameters
and qi are the points inside �. Namely, the � can be defined
with a convex combination of wi and qi, if qi ∈ � [60].

Definition 5: Convex resulting TP model occurs, if the
weighting functions satisfy the following criteria:

∀r, i, pr (t) : wr,ir (pr (t)) ∈ [0, 1]

∀r, pr (t) :
IR∑
i=1

wr,ir (pr (t)) = 1. (16)

Definition 6: The minimum volume simplex (MVS) kind
of convex hull is the smallest convex region to be defined
inside the parameter space [35]. In this case (S)jr=j r-mode
sub-tensors evolve a minimal volume bounding simplex for
S ×r w(r)

jr (pr ) trajectory over r = 1..R for the S ∈ SI1×...×IR
core tensor, which is realized from the Si1,...,iR matrices as
follows:

S(p) = S
R
�
r=1

w(r)(pr ). (17)

Definition 7: The control input in case of a general
state-feedback controller can be described as

u(t) = K(p(t))x(t), (18)

whereK(p(t)) ∈ Rm×n is the parameter dependent controller
gain. A kind of state-feedback controller, the parallel dis-
tributed controller in polytopic structure can be described in
the following way:

K(p(t)) = K
R
�
r=1

wr (pr (t)) = K ×r w(p(t)). (19)

Further derivations, explanations and case studies can be
found in [34]–[45], [58], [61], [62].

We have used the TP Toolbox [63] in this study in order to
execute the TP model transformation and get the appropriate
weighting functions belonging to the given TP model form.

D. THE REALIZED TP MODEL FORM
By applying the TPmodel transformation on (11), the general
TP model structure becomes S(G(t)) = S ×1 w(G(t)).
The variation of the obtained MVS type weighting func-

tions can be seen on Fig. 1. The obtained resulting weight-
ing functions are linear due to the properties of the model
described by (11).

FIGURE 1. The w(G(t)) weighting function regarding the realized TP
model transformation.

The resulting specific TP model form in this case becomes

S(G(t)) = S ×1 w1(G(t)), (20)

namely, S = [S(Gmin),S(Gmax)].
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IV. LMI BASED CONTROLLER DESIGN
Several LMI based methods are available for controller
design to get the K feedback gain tensor [64], [65]. Due to
the disturbance input – glucose intake – we have selected
the robust pole clustering method for the controller design
via LMI optimization [66], [67]. By applying this method
the poles of the closed-loop system lie inside the so-called
LMI-region on the complex plane.
Definition 8 [54]: ’’A given subset D inside the complex

plane is an LMI region if there exists a α = [αkl] ∈ Rm×m

symmetric matrix and a β = [βkl] ∈ Rm×m matrix such that

D = {s ∈ C : fD(s)} < 0

fD(s) := α+sβ+s̄β> = [αkl + βkls+ βlk s̄]1≤k,l≤m, (21)

where fD(s) characteristic function takes values in the space
of m × m Hermitian matrices and < 0 means negative
definite.’’
Theorem 1: The matrix A is D stable if and only if there

exists a positive definite symmetric matrix X such that

X > 0

MD(A,X) < 0

MD(A,X) = α ⊗ X+ β ⊗ (AX)+ β> ⊗ (AX)>

= [αabX+ βab(AX)+ βba(AX)>]ab, (22)

where MD is a m × m block matrix characterizes the pole
location in a given LMI region.
Proof can be found in [54], [66], [68].
In the following, we introduce the design method and the

stability on intersection of LMI regions.
If i pieces of givenDi LMI regions are specified then theA

matrix isD stable if and only if there exists a positive definite,
symmetric matrix X such that

X > 0

MD(A,X)i < 0, ∀i ∈ N. (23)

The following substitution can be applied to fD(s) (21) and
MD(A,X) (22):

(X, (AX), (AX)>)↔ (1, s, s̄). (24)

Note that in case of the closed loop, the following substi-
tutions can be applied by introducing the L ∈ Rm×n term as
follows:

(X, (AX+ BL), (AX+ BL)>)↔ (1, s, s̄), (25)

from where the K controller gain can be calculated as

K := LX−1. (26)

By considering the general D stability determined
by (22) – (25) then, along the lines of [69], [70], the so-called
α-stability and disk kind of LMI regions can be defined in
presence of disturbance as follows:

2αX+ (AX+ BL)+ (AX+ BL)> + EE> < 0, (27a)[
−rX qX+ (AX+ BL)

qX+ (AX+ BL)> −rX

]
< 0, (27b)

where the K = LX−1 in agreement with (26).

The α-stability kind of region described by (27a) deter-
mines a half-plane on the negative left hand side and ensures
that all of the closed loop poles lie on this plane. In this
case, the α tuning parameter can be interpreted as the distance
between the imaginary axis and the half-plane.

The disk kind of region described by (27b) determines a
disk plane in the complex domain and ensures that all of the
poles of the closed system lie inside this plane. The tuning
parameters are the q and r variables, which can be interpreted
as the center and the radius of the disk plane, respectively.

FIGURE 2. The D regions method allows that the poles of the closed loop
system will lie within the shaded region thank to the applied α-stability
and disk kind of LMI regions.

Figure 2. provides a graphical interpretation of the detailed
techniques. The resulting feedback gain provide that the poles
of the closed-loop system lie in the shaded region.

In case of LPV systems, the use of the introduced LMI
techniques from (27a) – (27b) are still possible. In accordance
with [66], [69], [70] the following feasibility kind of LMI
optimization problem needed to be solved in order to get
the Ki subcontrollers belong to the Si LTI vertices of the
system which ensures the stability and prompt control action
for the (11). Note thatKi and Si denoteK(pi) and S(pi) where
pi = [Gmin,Gmax]. However – for sake of simplicity – we
applied a short notation in the followings.

X > 0, (28a)

2αX+ (AiX+ BLi)+ (AiX+ BLi)> + EE> < 0, (28b)[
−rX qX+ (AiX+ BLi)

qX+ (AiX+ BLi)> −rX

]
< 0,

i < j s.t. wi ∩ wj 6= φ. (28c)

In order to get the K(pi) controller gains, we have to solve
the optimization problem described by (28a) – (28c). This
provides stable controller gains in Lyapunov sense which
satisfy the predefined criteria against the poles of the closed
loop. It should be noted that we have applied MOSEK Apps.
solver [71] and the YALMIP toolbox [72] to solve the LMI
optimization problem described by (28a) – (28c).
Remark 1: The proposed difference based LPV system

in (11) is not fully controllable, because rank(C(A,B)) = 5,
n = 7, where C is the controllability matrix. Hence, two
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FIGURE 3. The resulting controller ensures that the poles lie in the
shaded region in accordance with the applied values of α, r and q.

uncontrollable modes appear in the system. Both uncontrol-
lable modes are stable, namely, both of them decay to zero
asymptotically (the eigenvalues do have negative real parts)
and all of the unstable modes are controllable. Therefore,
the system is stabilizable [73].

The two uncontrollable, but stable modes are λuc,1−2 =
−0.025 which requires the selection of α and q to cover them
in order to satisfy (28a) – (28b). In accordance with this
requirement, we have selected α = 0.02 and q = −0.02
which are basically equivalent statements and this selection
guarantees that all of the closed loop poles lay beyond−0.02
at the negative half plane. In order to reach satisfactory gains
on the oscillation and magnitude points of view, we have
selected that r = 10 which cause that all of real parts of the
poles obtained will be between −10.02 and −0.02.
Based on (26) the controller gains can be calculated as

Ki = LiX−1.
After the optimization, the following Ki gains have been

obtained:

K1 = K(Gmin)

=
[
−1.0414 11.4231 −28.5733 −58.1709

10.5541 −1.537 · 105 −90.5105
]

(29)

and

K2 = K(Gmax)

=
[
−1.0308 11.396 −28.5111 −58.0372

10.5171 −1.5346 · 105 −90.2944
]

(30)

which leads to K = [K(Gmin),K(Gmax)]>.
The large K(1, 6)i elements are caused by the small p3

model parameter – the magnitude of which is 10−5. As the
gains are close to each other, soft control action can be
expected.

Figure 4. shows the calculated poles of the closed loop sys-
tem at the extremes of the parameter domain (λ(Ai + BKi)i)
– in the simulation environment. As it can be seen, the poles

FIGURE 4. Closed loop poles (λ(Ai + BKi )i ) belong to the vertices of the
LPV systems. The upper diagram is an overview about the whole complex
plane with the selected LMI region. It can be seen that all of the closed
loop poles lie inside the determined LMI region. The lower figure points
out the complex plane from 0 to −0.26 from the real values point of view.
It can be seen that the poles lie in the LMI region, namely, Re(λ)i < −0.02
in accordance with the selected α and q. The lower diagram shows the
poles of the system which are closed to zero from the upper diagram.

lie in the determined LMI region, which is parametrized by
the α, q and r parameters.

V. DESIGN OF MIXED ADDITIVE/NON-ADDITIVE
EXTENDED KALMAN FILTER
As only the blood glucose levelG(t) can be directly measured
we need to estimate the remaining states as well. We designed
a specific Extended Kalman Filter (EKF) in order to estimate
the values of the states. Since the carbohydrate intake in
our glucose metabolism model and the measurement noise
is also an additive term, the overall system can be given in
the following form:

ẋ = f (x(t),u(t))+ d(t)

zk = Cxk + vk , (31)

where x(t) is the actual state, u(t) is the actual control signal,
w(t) is the actual disturbance. vk is the actual sensor noise,
C is the output matrix. z output of the system is linearly
dependent on the BG level and on the sensor noise.

The d(t) impulse, as a disturbance, affects the correspond-
ing states. The values of the n × n semidefinite Q(t) covari-
ance matrix had to be selected with the consideration of the
effect of the disturbance on each state.
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In this given case we modeled the sensor noise with a
CGMS model described in II-B, however – the vk – term was
approximated with zero mean and 10 [mg/dL] variance vk ∼
N (0,Rk ) with Rk covariance matrix. The variance has been
arbitrarily selected in this specific case, but in accordance
with the latest findings of [74].

In the light of the aforementioned considerations, the pre-
diction and update algorithm of the EKF can be described as
follows.
Predict phase

Predicted state estimate:

. ˙̂x(t) = f (x̂(t),u(t)). (32)

Predicated covariance estimate:

Ṗ(t) = F(t)P(t)+ P(t)F(t)> +Q(t), (33)

where F(t) = ∂f
∂x

∣∣∣
x̂(t),u(t)

, x̂k+1,k = x̂(tk ) and Pk+1,k = P(tk )

by applying appropriate sampling.
Update phase

Innovation residual:

ỹk+1 = zk+1 − Cx̂k+1|k . (34)

Innovation covariance:

Sk+1 = CPk+1|kC> + Rk+1. (35)

Kalman gain:

Kk+1 = Pk+1|kC>S−1k+1. (36)

Updated state estimate:

x̂k+1|k+1 = x̂k+1|k +Kk+1ỹk+1. (37)

Updated covariance estimate:

Pk+1|k+1 = (I−Kk+1C)Pk+1|k , (38)

where I is the unit matrix and C is the output matrix,
respectively [75], [76].

Due to the model specificities, the applied sampling time
for the EKF was 1 min because our primary goal was the
demonstration of the usability of the TP-LMI-LPV controller.
Further development regarding sensor modeling will be done
in our future work.

VI. FINAL CONTROL STRUCTURE
Figure 5. presents the developed control structure. The Orig-
inal Nonlinear Model is described by (1a) - (1g). The output
of the model is the y(t) = G(t) blood glucose level which is
affected by the v(t) additive random sensor noise. The mea-
sured output is the z(t) = y(t) + v(t). The Extended Kalman
Filter provides the x̂EKF (t) estimated states from which the
deviation based estimated states are generated as1x̂EKF (t) =
x̂EKF (t) − xd . The deviation based error 1e(t) is based on
a comparison between the reference and estimated states,
namely, 1e(t) = 1r − 1x̂EKF (t). The applied 1r = 07×1
reference was constant zero, which basically means the zero
deviation of x(t) through x̂EKF (t) from the desired states xd .

FIGURE 5. Final control structure with the designed TP-LMI-LPV controller
and mixed EKF. The D/A converter is added to provide the continuous
signal to the continuous process model used by the EKF in the predict
phase.

The controller directly gets information about the scheduling
parameter p(t) = p(t) = G(t), which was in this case the
measured parameter and provides the appropriate difference
based control signal1u(t). The applied control signal can be
calculated as u(t) = 1u(t)+ ud .

It should be noted that we applied the filtered BG level
instead of the measured one (p(t) = GEKF (t) 6= z(t)), since it
is accessible and in this way we were able to reduce the high
noise on it.

VII. NUMERICAL SIMULATIONS
A. INITIAL CONDITIONS AND CIRCUMSTANCES
The developments have been made under the MATLAB
core – although, we did use the already mentioned exter-
nal solvers – YALMIP [72] framework and MOSEK [71]
solver – to solve the optimization problems. We have applied
Runger-Kutta 4 method [77] for the simulations.

We have started the simulations by using the follow-
ing initial state variables: x(t0) = [0, 0, 0, 0, 110, 0, 5]>.
We expected that no food and insulin intakes have been done
before t0, thus the corresponding state variables have been
taken to be zero: x1−4(t0) = 0. The initial state values belong-
ing to G(t0),X (t0) and I (t0) have been arbitrarily, but realis-
tically selected. The xcv(t0) = [0, 0, 0, 0, 110, 0, 5]> – the
initial states of the cross-validation system have been consid-
ered as the same as x(t0) in order to facilitate the comparabil-
ity. The x̂EKF (t0) = [0, 0, 0, 0, 130, 0, 11]>. We assumed the
same for x̂EKF,1−4(t0) as in case of x1−4(t0), namely, nor food
neither insulin have been taken before the beginning of the
simulation. The x̂EKF,5−7(t0) have been arbitrarily selected,
but comparable to x5−7(t0) to simulate the uncertainty of the
EKF at the beginning of the simulation.

We did use 1r = 07×1 as permanent reference signal.
During our investigations we have applied multiple ran-

domized disturbance signal – both the time instances and
the amounts of food intake were randomized within a given
range. The glucose absorption submodel using the CHO
intake and the given utilization rate (Ag). During the CHO
intake design we applied the dietary recommendations for
diabetic patients [78]–[81]. We decided to use 300 ± 50 g
on a daily basis (which is higher than the recommended
300 g CHO/day) and split it into 5 meals in order to simulate
high glucose load. In order to approach ’’eating’’ realistically,
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TABLE 2. Applied meal intakes on daily basis.

we assumed the consumption of 20 g of CHO at given time
instances. For example, if the total amount of CHOwas 108 g
in a meal then the developed algorithm realized five portion
of 20 g of CHO and one portion of 8 g of CHO at consecutive
time instances. Furthermore, we added a saturation to all
intakes to avoid negative intakes which may appear due to
the applied randomization method. In this way we were able
to test our control solution under ’’unfavorable’’ conditions to
investigate its abilities. We have applied standard normal dis-
tribution (randn = N (0, 1)) for the randomization. The exact
details regard to the meal protocol can be found in Table 2.

We have simulated the operation of the system on daily
basis, namely, we simulated 1440 minutes (24 hours) in each
secondary loop. Further, we did long-term tests with a total
duration of 30 days. Hence, 30 iterations have been done in
the primary loop.

B. RESULTS
Figure 6–10. represent one day, namely, 1440 minutes –
the first day of the 30 days long test. Through these dia-
grams we introduce the operation of the control framework
in details. It should be noted that in those diagrams repre-
senting the BG levels we show the results in [mmol/L] –
which is usually applied in the medical community; in
other diagrams some values are represented in [mg/dL]. The
model uses [mg/dL], thus we considered this unit during the

FIGURE 6. The applied control and disturbance signals. The upper
figure shows the d(t) disturbance signal in accordance with the applied
glucose intake protocol. The lower figure shows the u(t) control signal
provided by the controller.

control design and calculations. We applied the exchange rate
of 18.018 [mg/dl] = 1 [mmol/L].

Figure 6. shows the d(t) disturbance and u(t) control
inputs, respectively. It can be seen that the controller became
active right after the disturbance intake in order to decrease
the error.

FIGURE 7. Appearance of the absorbed insulin (S2(t)) and carbohydrate
(D2(t)) in the blood.

Figure 7. shows the absorbed glucose (D2(t)/τD) and
insulin (S2(t)/τS ) over time. Due to the model specificities
(insulin distribution volume and time constants) the rate of
absorption of insulin is delayed and ridden compared to the
effect of glucose.

FIGURE 8. Measured, estimated and real blood glucose level during a
24 hours long simulation under the surveillance of the developed control
scheme.

Figure 8. represents the blood glucose levels, namely the
blood glucose concentration measured by the sensor, esti-
mated by the EKF and the real blood glucose level. The speci-
ficities of v(t) noise signal was already described previously.
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Our goal was to use the EKF to demonstrate the usability of
the proposed control solution. As the operation is possible
without smoother, we did not implement EKF smoother in
this case. The consequence is noisier EKF signals, however,
this can be handled as an other source of uncertainty and
based on the results, the proposed control solution is able to
deal with it.

FIGURE 9. Numerical simulation of a 24 hours period. The controller was
able to avoid the hypoglycemia despite the high glucose load.

Figure 9. shows the variation of the BG level with and
without control. It is clearly visible that the controller pro-
vided better performance with lower peaks and the total
time of hyperglycemia was also much lower by applying the
developed controller.

FIGURE 10. Comparison between the deviation based reference and
deviation based estimated states within a 24 hours period.

Figure 10. represents the L2 norm [82] of the 1e(t) error
signal. The selection of L2 norm was arbitrarily in order to
make the graphical representation of the obtained error signal
easier. This error representation is quite convenient – instead

of comparing all the state variables x(t)i by each other state-
by-state the norm-based error provides all error information
in one single vector which can be represented in a single
diagram. As usual in state feedback controllers, the control
goal was to reach the zero error over time 1e(t) ← 0. Due
to the control framework this is equivalent to the reaching
of the zero deviation based states, since the deviation based
reference signal was zero (1r = 0). In other words, when the
state variables approach the zero value, the real state variables
and the desired equilibrium are closing to each other. It can
be seen on the figure that our controller solution is able to
enforce the deviation based state variables to approach the
zero over time. Hence, without disturbance the error signal
the deviated state variables are closing to the zero. The fluc-
tuation in the signal is coming from that simple fact that the
states to be used for the comparison are provided by the EKF
(1xEKF (t)). From the fact that we did not use EKF smoother,
the estimation error is reflected in the error signal as well.

FIGURE 11. CVGA plot of the blood glucose levels within 24 hours during
30 days long simulation. Black dots: Measured BG level with sensor
noise; White dots: Estimated BG by EKF; Blue dots: Real BG levels.

Figures 11. and 12. summarize the results of the long-term
simulations (30 days) from quality and quantity point of view.

Figure 11. shows the control variability grid analy-
sis (CVGA) diagram [83]. Basically, the diagram points out
the lowest (horizontal axis) and the highest (vertical axis) BG
levels on daily basis. Namely, each point belongs to the given
minimum and maximum BG levels occurring on the same
simulated day (within a 24 hours long period). The black
dots belong to the measured values (the model output loaded
by the simulated sensor noise), the white dots belong to the
estimated values (produced by the EKF) and the blue dots
belong to the real values (themodel output without any noise),
respectively.

Figure 12. is a scatter plot in which the controlled (green)
and uncontrolled (red) cases are showed. Each dot represents
the mean BG level of a given 24 hours long period in the
same division as in case of Fig. 11. Thus, while the CVGA
represents the extremes, the scatter plot represents the mean
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FIGURE 12. Scatter plot of the appeared mean blood glucose levels
within 24 hours during 30 days long simulation by using the developed
control structure and without it (only natural behavior of the model).

values of the same time period. It is clearly visible that the
controller performed well, since it kept the mean BG level in
a narrow 132 < G(t) < 145 [mg/dL] range.

VIII. DISCUSSION
When we evaluate the results we have to analyze the speci-
ficities of the model first. Neither the control signal, nor
the disturbance signal can be obtained immediately because
of the time coefficients of the applied absorption submod-
els. Therefore, during the controller design only soft control
actions – which can be translated as applying slower poles
in the closed loop – should be used in the given framework
to avoid over compensation, namely, overdosing the insulin.
This can be improved by limiting the input and output signals
by using appropriate LMIs. Although it is hard to find a good
balance among these limitations and need to be done only
after deep investigations which will be the part of our future
work.

To gain insight into the issue of daily treatment, it is
instructive to investigate the Figs. 8. and 9.

The model has its specific equilibrium belonging to
GB and IB. Without any external excitation, the states
approaching the zero, except G(t) and I (t) which are closing
to GB and IB, respectively. This is not a limitation, however,
this property has to be taken into account. This can be seen on
Fig. 8 as well. Without any control input signal, the BG level
provided by the model does not slip away. Instead, after the
exhaustion of the glucose – when the effect of the food intake
is over – the BG level approaches the GB.
The definition of hypoglycemia and hyperglycemia

according to [6], [7], [84] can be found in Table 3.
As it can be seen on Fig. 11. the sensor noise has a deter-

mining role in the control, even if we know that the real BG
level can be very different. In this research we applied higher
additive random noise to simulate the sensor uncertainty.
Without applying some kind of filtering it would be difficult

TABLE 3. Definition of hypo- and hyper-glycemia from the applied model
point of view.

to use the noisy output for control purposes. Thus, by prepar-
ing for the errors caused by the sensor, the control solution can
be more stable. In this way, the usage of the EKF estimation
for control purposes is a reasonable choice as we did in this
research – all of these values are in the acceptable range.
It should be noted that the controller did not allow the BG
level to decrease under 75 [mg/dL] (4, 16 mmol/L), however,
it allowed to reach higher glucose values as a consequence
that we sought ’’soft’ control action via the settings of the
LMIs. Nevertheless, by the applied soft control action our
control solution is able to intervene effectively. Beside it
fully avoids the hypoglycemia, it decreases the duration of
the hyperglycemic periods and the BG level reached by the
model. The duration of the hyperglycemic periods was half as
long with treatment as without it and the maximum BG levels
are significantly lower both in peaks and average as well. As it
is reflected in the blue dots (Fig. 11) the realized BG levels
are fairly acceptable – in accordance with the definitions
summarized by Table 3.

IX. CONCLUSION AND FURTHER RESEARCH
In this paper, we have proposed a closed loop control solution
which was based on the use of different advanced design
techniques. TP model transformation, LPV method and LMI
optimization have been used in relation to the extended min-
imal model in control oriented model form for the controller
realization. The suggested control framework has been com-
pleted with EKF which have provided state estimation and
allowed the state feedback kind of control implementation.

We have tested our solution under various circumstances.
Namely, we have run long-term simulation (30 days) and we
have applied randomized external excitation – CHO intake –
in order to investigate the capabilities of the system.

The data reflect that the blood glucose level (G(t) in the
model) fluctuated in acceptable range over the simulated time
horizon. The mean values belong to the 24 hours periods lie
in the tight 133 < G(t) < 143 [mg/dL] (7, 38 < G(t) <
7, 94 mmol/L) range. Furthermore, the extremes reached
by the blood glucose level after higher CHO intake and
control action were between 280 [mg/dL] (15.54 mmol/L)
and 90 [mg/dL] (4.99 mmol/L), respectively. Therefore,
the proposed control solution performed well under the given
circumstances.

We have applied additive sensor noise during the sim-
ulations which could have heavily influenced the control
performance. In this research we only used additive sensor
noise, however, in our further research we will investigate
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how the performance changes if we add multiplicative noise
as well.

By applying Kalman filtering this negative effect can be
eliminated. As far as these observations are concerned, it
is crucial how to use the measured and filtered (smoothed)
blood glucose levels. In daily practice with regular treatment
it is the patient’s decision how they use the information
coming from the measurements to determine the necessary
insulin amount. In case of automated insulin administration
we have to be sure that the measurements and the filtered
values correctly correspond with each other. Sensor decali-
bration may result in the measurement becoming incorrect
which leads to incorrect filtered values as well. In our future
work we will investigate how recalibration and estimation
possibility can be an automated and implemented in order to
avoid mistreatments due to sensor and filter errors.

In our further research we are going to implement other
LMIs as well to extend the capabilities of the framework.
As we already mentioned these will be connected to the input
and output constraints, moreover, we are planning to add
higher disturbance rejection properties to the system as well.
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