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ABSTRACT In this paper, we propose an evolutionary game theoretic approach to coordinated control
of multi-agent systems. In this mathematical framework, agents play games with their neighbors on the
network, and update strategies through local interaction. In order to achieve a certain control objective of
the system, we need to select the appropriate game type, design the calculation and evaluation methods of
fitness, specify the interactive constraints and updating rules. During the evolutionary process of the system,
agents have no predesigned dynamical equations. They adjust their behavior independently for the purpose
of increasing their own benefits. The system achieves its final state in the process of individual interaction
and autonomous decision-making. Taking division of labor problem as an example, we demonstrate the
proposed control approach in detail. The performance of the theoretical method is verified by simulation on
the regular graph, the general connected graphs, and heterogeneous scale-free networks, respectively.

INDEX TERMS Evolutionary game theory, multi-agent systems, coordinated control, complex system
dynamics, division and cooperation.

I. INTRODUCTION
The interaction among multiple agents are ubiquitous phe-
nomena whatever in the animal world, microbial community,
and also human society [1]–[4]. Individuals in a complex
system are closely connected through interaction, commu-
nication, cooperation, adaptation, organization, learning and
division of labor.

Multi-agent system is a typical model for studying the
interactive behaviors among multiple individuals. It has been
used to describe many theoretical and practical problems [5].
Among these issues, the problem of coordinated control of
multiple agents has been extensively concerned [6]. It has a
wide range of practical application background, such as mov-
ing, tracking, formation control of swarms, disaster rescue,
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multiple satellite cluster system and etc. Recently, some
of the typical problems have been studied in the field of
systems and control, such as consensus [7]–[13], cover-
age [14], formation [15]–[17], flocking [18], synchroniza-
tion [19], controllability [20] and so on. Researchers have
proposed various control methods, such as behavior based,
virtual structure, leader-following, graph theory based and
artificial potential field method [21]. In multi-agent systems,
the connection between agents is determined by a fixed or
time-variant topology. Agents communicate with their neigh-
bors and exchange information. Thus information processing
and decision-making are usually based on local information.
The dynamics of agents are characterized by predesigned
differential equations. According to such fixed control law,
agents perform the predetermined action.

In many actual systems, however, agents are ‘‘intelli-
gent’’ and they do not only passively follow predetermined
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dynamical rules. Instead, they rationally consider their own
energy, loss, behavior cost and other factors to pursue their
own interests when they interact with other agents. Individual
rationality has been widely confirmed in biological and social
groups. The rational decision-making of one agent would
improve its fitness. But at the same time, it may affect the
interests of other agents. This may lead to the deviation of
group system from the optimal performance. Therefore, to
achieve the control objective of the whole multi-agent sys-
tems, it is worthwhile to study the competition and conflicts
of interests among agents, the coordination between individ-
ual interests and group interests, and the organization of the
whole system and all its parts.

When it comes to individuals with conflict of interests,
game theory [22], [23] provides an effective mathematical
tool and research framework for the study on the interaction
among individuals. The coordinated control problem is differ-
ent from the classical optimization problem. It is difficult to
improve system performance by simplymaximizing the given
indicators under constraints. This is a more complex situation
involving coordination among multiple agents whose inter-
ests may be conflicting. When the fitness of individual are
closely related with the proportion of its strategy in the pop-
ulation, evolutionary game theory offers a general theoretical
framework [24]–[26]. Such framework has been successfully
used to study issues such as host parasite interaction, ecosys-
tems, animal behavior, social evolution, and human language
evolution [27]–[32].

In this paper, a mathematical framework is proposed to
study the coordinated control of multi-agent systems based
on evolutionary game theory. On the basis of the idea of
natural selection, agents in the system act as the role of
players in the game. Agents have different optional behaviors
to choose as their strategies. They play games with their
neighbors, and update strategies through local interaction.
After each game, agents obtain payoffs based on the game
matrix. The agents rationally adjust their strategies according
to their own interests by evaluating their benefits. The system
evolves while agents autonomously update their strategies.
The overall performance of the system is determined by the
behavior states of all the agents. In order to achieve the control
objective of the system, such as consensus, synchronization
and division of labor, the following elements which are the
key to affecting the evolutionary direction of the system
should be designed. We should select the appropriate game
type, design the reasonable fitness calculation and evalua-
tion methods, specify updating rule and relevant interactive
restrictions. In addition, population size, strategy space, state
set, communication topology, and other relevant parameters
should be determined according to the practical problems.
During the evolutionary process, there is no need to specify
how a particular agent acts. Therefore we need not determine
the dynamical equation of each individual. The agents have
the capability of adaptive decision-making, rather than pas-
sively following a given differential equation. The control
objective of the system could be achieved through adaptive

evolution of the population. It is a controllable, intelligent and
autonomous decision-making process.

II. MULTI-AGENT SYSTEM MODEL
By utilizing evolutionary game theory, we propose a math-
ematical framework to realize the coordinated control of
multi-agent systems.

For a generalized model, we consider a system consist-
ing of n agents. The population is determined by set N =
{1, 2, · · · , n}. For each agent i ∈ N , it is defined as follows:

Agenti = (Si,Bi,Ci,Fi), (1)

where
• ‘‘ Si (State) ’’ reflects the state information of the focal
agent at the current moment, such as the strategy, posi-
tion, velocity, and etc.

• ‘‘ Bi (Behavior) ’’ denotes the action or decision of the
agent, which determines how agents adjust their state.
For example, the rate of velocity change, the change of
direction, and so on. For agents with a series of behav-
iors, it is defined as follows Bi = (bi1, bi2, · · · , bim). In
some specific problems, the agent’s behavior and state
may be merged into account.

• ‘‘ Ci (Communication) ’’ denotes the interactive rela-
tionship among agents. For example, it can be defined
as a communication topology graph which reflects the
information connection between agents and their neigh-
bors. In particular, we can define a neighborhood set to
show the neighbors of agents.

• ‘‘ Fi (Fitness)’’ depicts the ability of the agent to adapt
to the competition under the sense of natural selection.
The most straightforward form is the agent’s payoff in
the game. Through the assessment of fitness, the agent
adjusts its strategy in order to obtain higher benefits.

The communication topology graph of multi-agent sys-
tems can be defined as G = (N , ε), where the set of nodes
is N = {1, 2, · · · , n}, and the set of edges is ε ⊆ N × N .
Each agent, i ∈ N , independently chooses its behavior in the
next step based on local information. In particular, when the
communication topology is a directed graph, an ordered pair
(i, j) represents the directed edge in the graph. If the agent i is
able to receive the state information of the agent j, the agent
j is a neighbor of i. The neighborhood of agent i is defined as
Ki = {j ∈ N : (i, j) ∈ ε}, and we assume that i is not its own
neighbor. For undirected graphs, if (i, j) ∈ ε, then (j, i) ∈ ε.

We assume that agents play a symmetric 2× 2 game with
all their neighbors. Then they obtain payoffs according to the
payoff matrix as follows:

A B
A a b
B c d

. (2)

For the game interaction, anA strategy holder interacting with
another A player will receive the benefit of a. When A holder
plays against a B player, the payoff will be b. Similarly, the
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B player receives c from the A player and d from another
B player. Based on this, denoting that:

9 :=

[
9A
9B

]
:=

[
a b
c d

]
. (3)

We define the state of the population as

ξ := [ξA, ξB]T , (4)

where each component ξx (x = A,B) represents the propor-
tion of agents who take the strategy x in the whole population,
i.e.

ξ ∈ �0 := {ξ |0 ≤ ξA ≤ 1, 0 ≤ ξB ≤ 1, ξA + ξB = 1}. (5)

Thus, the change of each component in the population
can be described by the replicator dynamics equation as
follows [33]:

ξ̇x = rx(ξ,9) ξx , x = A,B, (6)

rx(ξ,9) : = 9x ξ − ξ
T 9 ξ, (7)

where 9x ξ represents the expected payoff of strategy x and
ξT 9 ξ represents the average payoff of the whole population
(also equals to the average payoff of a randomly selected
agent). Therefore, the subpopulation of agents whose payoff
higher than the average payoff will expand, while the lower
ones will decrease. We can analyze the equilibrium points
of the above replicator dynamics equations and determine
the evolutionarily stable strategy of the system. Note that the
replicator dynamics is evolving in the internal of the simplex.
If a trajectory comes from the inside of the simplex, it will
always keep in the internal of the simplex. Maybe it will
converge to the boundary of the simplex, but it will never
reach the boundary. Hence, new strategies could not happen.

The interaction among agents determines the fitness of
individuals. At each time step t ∈ {0, 1, · · · }, the agent i
obtains its fitness value according to the designed fitness
function Fi(·) based on the information of the focal agent and
its neighbors j ∈ Ki. The fitness function indicates that how
agents handle the information. It reflects the adaptation abil-
ity of intelligent agents. Design of fitness function {Fi(·)}i∈N
is one of the main tasks in this control method.

During the evolutionary process, agents evaluate their
fitness and then update their strategies. Different updating
rules can be used to characterize the evolution of popula-
tion, such as imitation process [34]–[36] and self-learning
process [37]–[40]. In imitation process, the agent i compares
its fitness with its neighbors’. In self-learning process, the
agent compares its fitness with an aspiration, which is a
predetermined baseline. By comparison, the agent updates its
strategy in order to improve the fitness. The update process
could be either learning the behavior of a better neighbor,
randomly switching strategies in the strategy space, or main-
taining its current strategy. The design of updating rules is
closely related to specific practical problems. It needs to be
based not only on the objective of the whole system, but also
on the actual constraints of agents, e.g. the communication

ability. It is noteworthy that the self-learning updating rule
requires less information than imitation. It does not need
the fitness information of neighbor agents. In such case, the
reasonable aspiration value should be designed to meet the
requirements of the system.

Here, we present an adaptive updating rule based on the
replicator dynamics equation (6), which is similar to theWin-
Stay-Lose-Shift strategy [41], [42]. The state of strategy x at
the moment t is defined as follows:

η(x, t) :=

{
1, if rx(ξ,9) ≥ 0
0, if rx(ξ,9) < 0,

(8)

where η(x, t) = 1 and η(x, t) = 0 mean that the payoff
of strategy x is higher or lower than the average payoff,
respectively. Agents make decisions based on the following
conditional probabilities:

Pr(Si(t) = x | η(x, t) = 1) = 1

Pr(Si(t) = switch(x) | η(x, t) = 1) = 0

Pr(Si(t) = x | η(x, t) = 0) = 1+ ωrx(ξ,9)

Pr(Si(t) = switch(x) | η(x, t) = 0) = −ωrx(ξ,9), (9)

where switch(x) = B if x = A; otherwise, switch(x) = A
if x = B. If the payoff is higher than the average payoff
(i.e. η(x, t) = 1), the agent keeps its current strategy
unchanged; otherwise (i.e. η(x, t) = 0), the agent switches its
strategy with probability −ω rx(ξ,9). ω > 0 represents the
selection intensity. It reflects the influence of the difference
between fitness on the individual decision-making [36], [43],
[44], and satisfies−ω rx(ξ,9) < 1. Thus, after one time step,
the state of population changes:

[
ξA(t + 1)
ξB(t + 1)

]
=



[
ξA(t)− ω rB(ξ (t), 9) ξB(t)
ξB(t)+ ω rB(ξ (t), 9) ξB(t)

]
if η(A, t) = 1, η(B, t) = 0,[
ξA(t)+ ω rA(ξ (t), 9) ξA(t)
ξB(t)− ω rA(ξ (t), 9) ξA(t)

]
if η(A, t) = 0, η(B, t) = 1.

(10)

Based on the above model, the system evolves while
agents adjust their behaviors according to their own interests.
Through reasonably designing all the elements in the game,
the system can achieve the corresponding control objectives.
In the following, we take the problem of division of labor
for example to demonstrate how to realize the coordinated
control of multi-agent systems by utilizing our framework.

III. EVOLUTIONARY GAME CONTROL METHOD
FOR DIVISION OF LABOR
A. PROBLEM BACKGROUND
The applications of multi-agent systems often involve highly
complex tasks where agents of different types or skills are
required to work together. In social groups, this kind of coop-
eration for complex tasks is common, such as the division of
labor in the human society [45]. In the animal world, such

VOLUME 7, 2019 124297



J. Du: Evolutionary Game Coordinated Control Approach to Division of Labor in Multi-Agent Systems

division of labor is also prevalent. For example, lionesses act
as different roles spontaneously when they hunt together [46].
Two lionesses, the wings, attack a group of prey from either
side panicking them to run forward. They run right into one
or two other lionesses, positioned as centres, who are waiting
for them. This kind of group hunt is highly successful. It is
not possible with only one role of participants, but it is better
with more roles. Similar cooperative hunting is also seen in
other species, such as chimpanzee in the forest and wild dogs
in Africa. In the insects population, the division of different
types of work is common in the aggregation of bees and ants.
In the artificial complex system, especially the swarm robotic
systems, the division of labor is highly required [47]–[49].
For example, target tracking (similar to group hunting) [50],
robot soccer race [51], maintenance of mechanical compo-
nents with multiple steps, disaster detection and rescue, and
etc.

It is worth noting that the characteristics of such examples
are that the assigned tasks must be completed by different
roles together, either role is unable to complete the task alone.
This requires the agents in the system to spontaneously form
two or more subgroups with different actions and cooperate
with each other. Through specialized division of labor, the
objective of the system could be completed. When dealing
with such a coordinated control problem, an important task
is how to divide the population on a complex connection
network in order to achieve an effective strategy distribu-
tion and enable agents with different strategies to combine
organically. For instance, a multi-agent system is built to
complete a machine assembly task with two steps. It is nec-
essary to put agents at the neighbor position of their com-
plementary counterparts. A reasonable distribution helps to
improve the overall efficiency of completing the assembly
task.

In the following, we study how to realize the division of
labor in multi-agent systems. Our aim is that different types
of agents are distributed as evenly as possible around the
complementary individuals.

B. MATHEMATICAL DESCRIPTION
We consider a multi-agent system with a population size
of n (N = {1, 2, · · · , n}), where agents are denoted as
{Agenti|i ∈ N }. Based on the design method described in
Section II, we define the agent as Agenti = (Si,Bi,Ci,Fi).
The state, Si, represents the action taken by the agent. Here
the state space consists of two different behaviors, Si ∈
{A,B}. The agents can choose strategy A or B. The behav-
ior, Bi, is determined by the evaluation of fitness. Agents
make decisions in probability based on the comparison of
payoffs among agents. In this model, we only consider the
behavior choice of agents, but not pay attention to the change
of the connection relationship between individuals. Thus
the connection among agents is represented as the prede-
fined static communication topology. The communication,
Ci, denotes the neighbor set of Agenti, that is, Ci = {j ∈
N |aij > 0}, where aij is the element in the adjacency matrix

A = [aij] ∈ Rn×n. When aij > 0, Agenti can obtain the
information of Agentj, otherwise aij = 0.
The control objective of the division of labor problem is

to make the agent and its neighbor show different states.
Therefore, when the agents play games with their neighbors,
they should obtain higher payoffs when their strategies are
different than they hold the same strategy. Hence, we select
the 2×2 game whose Nash equilibria require each participant
to take the opposite strategy of its counterpart. Thus, it should
satisfy a < c and b > d in the payoff matrix (2). Snowdrift
game (or hawk-dove game) [52], [53] may satisfy such con-
dition, since the evolutionarily stable strategy of players in
such game is to take the opposite strategy of its opponent.

We denote πij as the payoff of Agenti when playing game
with its neighbor Agentj (j ∈ Ci). Then the fitness of Agenti
is (k is the number of its neighbors):

Fi =
1
k

∑
j∈Ci

(aij πij). (11)

We employ Fermi process as the updating rule. Individuals
compare their fitness with their neighbors’ average
fitness (F) and update their strategies. Here, we assume that
the initial state of the population is randomly assigned and
do not consider mutation or exploration of strategy. Thus,
the probability for Agenti switching its state Si in the state
space {A,B} is: [1 + e−ω (F−Fi)]−1, where ω is the selection
intensity. Such stochastic learning rule is widely used in
biological evolution and social learning [54], [55]. During the
evolutionary process, we adopt asynchronous updating rules,
that is, all the agents update their strategies successively at
the same time step.

To show the effect of control, we define an indicator J ,
which represents the proportion of connection pairs with
different strategies among all the connections in the topology
network.

J =
6n
i=1kY
6n
i=1k

, (12)

where

kY =

{
kB if Si = A;
kA if Si = B.

(13)

kA and kB are denoted as the number of A and B holders in
one’s neighbors, respectively. Obviously, J ∈ [0, 1], and the
closer J approaches 1, the better the effect of division of labor
is. In the case of limit, if limt→∞ J = 1 holds, it means that
the system achieves a perfect division of labor.

IV. THEORETICAL ANALYSIS
The objective of division of labor problem is to find out the
conditions under which the system achieves an evenly distri-
bution of agents with different strategies in the topology net-
work. To further understand the evolution of the system, we
discuss the evolutionary dynamics in the population endowed
with two strategies.
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We study a population of n agents, all of which are dis-
tributed on the vertices of the communication topology, which
is a static undirected graph. Each agent chooses one of the two
strategies, A and B, as its initial strategy. The game is played
between the focal agent and all its neighbors. Its fitness is
defined as the average of the payoffs obtained from all the
games in which it is involved. The payoffs gained by each
player are shown in the matrix (2).

Based on the system which is characterized by (3)-(7),
evolution trends of the system can be analyzed. By studying
the equilibrium points of the replicator dynamics (6), we can
obtain the conditions under which the system is in a sta-
ble state. Several prominent examples of two-player games,
which are motivated by many real-world systems and widely
used in various disciplines, are considered. Among them are
the prisoner’s dilemma game, the snowdrift game, and the
coordination game.

Further, we analyze the games in structured populations
and obtain the conditions for the two strategies to be evenly
distributed on the network.

A. ONE STRATEGY DOMINATES THE OTHER
First, we discuss the situation in which one strategy is domi-
nant in the game.
Theorem 1: For any given initial strategy distribution,

ξx ∈ (0, 1) (x = A,B), if the condition (a− c)(b− d) > 0 is
satisfied, then the system will evolve into the state of full of
one strategy. Moreover,

(i) if a < c and b < d , the system evolves into the state of
full B, ξA = 0 and ξB = 1;

(ii) if a > c and b > d , the system evolves into the state of
full A, ξA = 1 and ξB = 0.

Proof: From (6), the fractions of strategies A and B
follow the equations:{

ξ̇A = rA(ξ,9) ξA,
ξ̇B = rB(ξ,9) ξB.

(14)

By substituting ξA + ξB = 1 and inserting (3), (4) and (7)
into (14),

ξ̇A = ξA(1− ξA)[(a− b− c+ d)ξA + (b− d)]. (15)

When a < c and b < d , b − d < 0. Then, if ξA approaches
zero from the right in the small neighborhood of zero,
ξ̇A < 0. Therefore, state ξA = 0 is stable equilibrium.
However, owing to a − c < 0, when ξA approaches 1 from
the left in the small neighborhood of 1, ξ̇A < 0. Hence, state
ξA = 1 is unstable. For ξA = d−b

a−b−c+d , if a− b− c+ d > 0,
ξA =

d−b
d−b+a−c = 1 + c−a

d−b+a−c > 1. Since ξA ∈ [0, 1] is
assumed, then ξA = d−b

d−b+a−c is not the equilibrium. Thus,
(a−b− c+d)ξA+ (b−d) < 0 holds strictly. Hence, ξA = 0
is the unique stable equilibrium. Under such case, the system
evolves into the state of full B.

Similarly, when a > c and b > d , if ξA approaches 1 from
the left in the small neighborhood of 1, ξ̇A > 0, so ξA =
1 is the stable equilibrium. While ξA approaches zero from

the right in the small neighborhood of zero, ξ̇A > 0, namely
ξA = 0 is unstable. Under this case, the system evolves into
the state of full A. �
Remark 1: Theorem 1 depicts the population’s decision-

making behavior in the evolutionary dynamics when there
exists a dominant strategy in the game depicted by (2). It indi-
cates that if (a − c)(b − d) > 0, two different strategies can
never coexist stably in such a system for any initial state and
selection intensity. When a < c and b < d , the payoff of B
strategy agent is higher than that of A strategy player. Thus, in
order to achieve higher fitness, all the agents would rationally
adopt the B strategy in the last. Under this case, the full B
state is the Nash equilibrium. The result is consistent with the
classical game theory. Themost typical example of such game
is the prisoner’s dilemma [56], in which defection (B strategy
here) is the only one pure Nash equilibrium.

B. TWO STRATEGIES COEXIST
Next, we consider a < c and b > d in the payoff matrix (2).
The game types represented by this matrix include the snow-
drift game, hawk-dove game and chicken game [30], [52],
[53]. The snowdrift game can be described as follows. We
assume that two drivers are caught with their cars in a snow-
drift on the way home. Each individual can choose whether or
not to cooperate in shoveling a way out. Those who cooperate
share the workload. Those who do not cooperate may take
a rest while the others do the shoveling. When the snow is
removed, everyone will manage to get to their destination. If
one of them refuses to cooperate, the other driver is better off
to cooperate unilaterally, rather than spend the night freezing.
Hawk-dove game comes from a situation where animals fight
for a territory: ‘‘Hawks’’ escalate the fight, risking serious
injury, whereas ‘‘doves’’ flee when the opponent escalates.
In the chicken game, two cars are heading for a collision. The
loser chickens out, while the winner stays on track. Big loss
occurs when both stay on track.
Theorem 2: For any given initial strategy distribution,

ξx ∈ (0, 1) (x = A,B), if the condition a < c and b > d can
be satisfied, the system will converge to the unique interior
equilibrium. That is, limt→∞ ξA =

d−b
a−b−c+d holds.

Proof: Based on (15), the stability of equilibria, ξA = 0,
ξA = 1 and ξA = d−b

a−b−c+d , can be analyzed. Owing to a < c
and b > d , we have b−d > 0 and a−b−c+d < 0.When ξA
approaches zero from the right side in the small neighborhood
of zero, ξ̇A > 0. Therefore, state ξA = 0 is unstable
equilibrium. Similarly, when ξA approaches 1 from the left
side in the small neighborhood of 1, ξ̇A < 0. Hence, state
ξA = 1 is also unstable. For ξA = d−b

a−b−c+d =
b−d

(b−d)+(c−a) ,
it belongs to (0, 1). When ξA approaches such equilibrium
point from the right side in its small neighborhood, ξ̇A <

0. While ξA approaches it from the left side in its small
neighborhood, ξ̇A > 0. Therefore, ξA = d−b

a−b−c+d is the stable
equilibrium. Moreover it is the unique equilibrium of the
system. �
Remark 2: According to the Theorem 2, when a < c and

b > d , the two different strategies have the possibility of
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coexistence in the system. Such payoff matrix of the game
predicts the Nash equilibria as (A,B) and (B,A). That is,
agents tend to choose strategies that are contrary to their
co-players.

Different from the prisoner’s dilemma game, where
defection is a best reply no matter whether the co-player is
cooperator or not. In the snowdrift game mentioned above,
each strategy is a best reply to the other. The analysis in
classical game theory shows that the Nash equilibria for
the snowdrift game are: when your counterpart chooses to
cooperate, you’d better choose defect; when the opponent
chooses to defect, you’d better choose cooperate.

C. TWO STRATEGIES ARE BISTABLE
Subsequently, we study the case of a > c and b < d , which
represents the coordination game [57]. A typical case for a
coordination game is choosing the sides of the road upon
which to drive. Two drivers meet on a narrow road. Both have
to swerve in order to avoid a head-on collision. But if they
choose differing maneuvers they will collide. Another type
of coordination game commonly called battle of the sexes. In
this game couples prefer engaging in the same activity over
going alone, but their preferences differ over which activity
they should engage in. The French philosopher, Jean Jacques
Rousseau, presented a typical coordination game, called the
stag hunt game [46]. Two hunters can either jointly hunt a
stag or individually hunt a hare (less benefit). Hunting stags
is quite challenging and requires mutual cooperation. If either
hunts a stag alone, the chance of success is minimal. Hunting
stags is most beneficial for society but requires a lot of trust
among its members.
Theorem 3: If a > c and b < d are satisfied, the system

will converge to one of the two equilibria: 0 and 1. Moreover,
the initial strategy distribution influences the final state of the
system.

(i) If initial fraction of strategy A satisfies 0 < ξA <
d−b

a−b−c+d , limt→∞ ξA = 0 holds. The system evolves into the
state of full B;

(ii) If initial fraction of strategy A satisfies 1 > ξA >
d−b

a−b−c+d , limt→∞ ξA = 1 holds. The system evolves into the
state of full A.

Proof: If a > c and b < d , we have a− b− c+ d > 0
and b − d < 0. Based on (15), we can study the stability
of equilibria: ξA = 0, ξA = 1 and ξA = d−b

a−b−c+d . If ξA
approaches zero from the right side in the small neighborhood
of zero, ξ̇A < 0. Therefore, state ξA = 0 is a stable equilib-
rium. Similarly, when ξA approaches 1 from the left side in
the small neighborhood of 1, ξ̇A > 0. Hence, state ξA = 1 is
also stable. For ξA = d−b

(a−c)+(d−b) , when a > c and d > b, it
belongs to (0, 1).When ξA approaches such equilibrium point
from the right side in its small neighborhood, ξ̇A > 0. While
ξA approaches it from the left side in its small neighborhood,
ξ̇A < 0. Hence, ξA = d−b

a−b−c+d is an unstable equilibrium.
When initial ξA > d−b

a−b−c+d , since ξ̇A > 0, the system evolves
towards equilibrium ξA = 1. When initial ξA < d−b

a−b−c+d ,

owing to ξ̇A < 0, the system evolves towards equilibrium
ξA = 0. �
Remark 3:When a > c and b < d , the best strategy choice

for an agent is playing the same strategy with their co-player.
Thus, the state of full A and full B are bistable. According to
the Theorem 3, two strategies can not coexist in the system.
The state with full of only one kind of strategy would be
reached. Besides, if the updating rules are not limited to only
imitating the strategies existing in the population, the initial
strategy distribution cannot totally decide the final state of the
system.

In the coordination game, or the stag-hunt game, there are
two pure strategy equilibria. Both players prefer one equilib-
rium which Pareto dominates the other. However, the inef-
ficient equilibrium is less risky as the payoff variance over
the other player’s strategies is lower. Specifically, one equi-
librium is payoff-dominant while the other is risk-dominant.
Suppose B is risk dominant, which means that a+b < c+d .
But A is Pareto efficient, which means that a > d . Hence,
strategy B has the bigger basin of attraction, but a homoge-
neous population of A has a higher payoff than that of B.

D. THE CONDITION FOR STRATEGIES COEXISTING IN
EQUAL PROPORTIONS ON THE NETWORK
In the following, we study the coexistence conditions of two
strategies on the network structures. We utilize the method
of pairwise approximation [58], [59] and perturbation the-
ory [60] to analyze the expected proportion of strategy A
and B respectively in the structured population. Using the
pair approximation, a simplest decoupling approximation to
take account of spatial correlation, we can obtain analytical
results for stationary densities, and critical parameters for
equilibrium.
Theorem 4: If the network structured system evolves to the

equilibrium 1/2, namely limt→∞ ξA = limt→∞ ξB = 1/2,
which means two strategies coexisting in the system and
having the same fraction in the population, the following
conditions should be satisfied:

(i) a < c and b > d ;
(ii) a+ b = c+ d .
Proof: The pair approximation technique, models space

implicitly, by focusing on the interaction between nearest
neighbors and tracking the dynamics of pairs of neighbors
instead of single individuals.

Denoting pA and pB as the frequencies of strategy A and B
in the population; pAA, pAB, pBA and pBB as the frequencies
of pairs of two neighbor agents, AA, AB, BA and BB, respec-
tively. Let qX |Y denote the conditional probability to find an
X -player given that the adjacent node is occupied by a Y -
player. Here, both X and Y stand for A or B.

The identities

pA + pB = 1

qA|X + qB|X = 1

pXY = qX |Y × pY
pAB = pBA, (16)
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imply that the whole system can be described by only two
variables, pA and pAA, in pair approximation.
The agent plays game with all its neighbors according to

payoff matrix (2). The fitness of agents with A and B strategy
are denoted as FA and FB, respectively:

FA = 1
k (kA a+ kB b)

FB = 1
k (kA c+ kB d), (17)

where kA and kB (kA + kB = k) represent the number of
individuals in the agent’s neighborhood holding strategy A
and B, respectively.
Next, we calculate the probabilities that variables pA and

pAA change during one time step. A B strategy agent is
randomly selected from the entire population with probability
pB. Therefore pA increase by 1/n with probability:

Prob(4pA=
1
n
)=pB

∑
kA+kB=k

k!
kA! kB!

qkAA|B q
kB
B|B

1+ e−ω(F−FB)
. (18)

Regarding pairs, the number of AA-pairs increases by kA and
therefore pAA increases by kA/(kn/2) with probability:

Prob(4pAA =
2kA
kn

) = pB
k!

kA! kB!

qkAA|B q
kB
B|B

1+ e−ω(F−FB)
. (19)

Similarly, an A player is selected with probability pA. There-
fore pA decreases by 1/n with probability:

Prob(4pA=−
1
n
)=pA

∑
kA+kB=k

k!
kA! kB!

qkAA|A q
kB
B|A

1+e−ω(F−FA)
. (20)

Regarding pairs, the number of AA-pairs decreases by kA and
therefore pAA decreases by kA/(kn/2) with probability:

Prob(4pAA = −
2kA
kn

) = pA
k!

kA! kB!

qkAA|A q
kB
B|A

1+ e−ω(F−FA)
. (21)

Let us suppose that one replacement event takes place in
one unit of time.When the population size is much larger than
the average degree of the network and under weak selection,
the time derivatives of pA and pAA are given by:

ṗA =
1
n
Prob(4pA =

1
n
)+ (−

1
n
)Prob(4pA = −

1
n
)

=
pB − pA

2n
+ ω ×

1
4n

[F(pB − pA)− c pAB

− d pBB + a pAA + b pBA]+ O(ω2), (22)

and

˙pAA =
k∑

kA=0

2kA
kn

Prob(4pAA =
2kA
kn

)

+

k∑
kA=0

(−
2kA
kn

)Prob(4pAA = −
2kA
kn

)

=
pAB − pAA

n
+
∂pAA
∂ω

∣∣∣∣
ω=0

ω + O(ω2), (23)

where

∂pAA
∂ω

∣∣∣∣
ω=0
=

k∑
kA=0

2kA
kn

pB
k!

kA! kB!
qkAA|B q

kB
B|B

F − FB
4

−

k∑
kA=0

2kA
kn

pA
k!

kA! kB!
qkAA|A q

kB
B|A

F − FA
4

=
1
2n

[F(pAB − pAA)− cpABqA|B
k − 1
k

− cpAB
1
k
− dpABqB|B

k − 1
k
+ apAAqA|A

k − 1
k

+ apAA
1
k
+ bpAAqB|A

k − 1
k

]. (24)

For ω = 0, the equilibrium of (22)-(23), (p∗A(ω), p
∗
AA(ω)),

is given by (1/2, 1/4). By (16), we further have p∗A(ω) =
p∗B(ω) = 1/2 and p∗AA(ω) = p∗AB(ω) = p∗BA(ω) = p∗BB(ω) =
1/4. According to the perturbation theory, the equilibrium
(p∗A(ω), p

∗
AA(ω)) always exists under weak selection. Thus,

there exists function fXY , X ,Y ∈ {A,B}, which is only
dependent on payoff entries, degree of the communication
topology graph and population size, such that:

p∗AA(ω) =
1
4
+ ω × fAA

p∗AB(ω) =
1
4
+ ω × fAB

p∗BA(ω) =
1
4
+ ω × fBA

p∗BB(ω) =
1
4
+ ω × fBB. (25)

Inserting (25) into (22), it leads to

ṗA =
1− 2pA

2n
+ ω ×

1
4n

[F(1− 2pA)

−
1
4
(c− d + a+ b)]+ O(ω2). (26)

The equilibrium can be obtained from ṗA. Since the selec-
tion intensity ω is weak, we neglect the higher order
term O(ω2). Thus the equilibrium p∗A(ω) fulfills

1−2p∗A(ω)
2n +

ω × 1
4n [F(1 − 2p∗A(ω)) −

1
4 (c − d + a + b)] = 0.

Therefore

p∗A(ω) =
1
2
+
ω(a+ b− c− d)

8(2+ ωF)
. (27)

If we choose the entries in the payoff matrix as satisfying a+
b = c+ d , then p∗A(ω) = 1/2.
To achieve the objective that agents with two different

strategies coexist with the same proportion in the system,
according to Theorem 2, the entries in the payoff matrix
should satisfy a < c and b > d . �
Remark 4: Theorem 4 gives the characteristics of a game

matrix that enables a system to evolve into two strategies

VOLUME 7, 2019 124301



J. Du: Evolutionary Game Coordinated Control Approach to Division of Labor in Multi-Agent Systems

FIGURE 1. Simulation results on the regular graph.

coexisting and having the same fraction. The two conditions
correspond to the following functions. (i) The two strategies
can coexist, corresponding to a < c and b > d ; (ii) At the
equilibrium point, the proportions of the two strategies are
the same, corresponding to a + b = c + d . Therefore we
can choose reasonable entry values of the payoff matrix to
build a game both satisfying these conditions to achieve the
basic conditions required by the problem of division of labor.
However, even if the above conditions aremet, it is not always
sufficient to ensure that the networked system can evolve to
the state that all the agents have the opposite state with their
neighbors. More factors, such as randomness and network
structures, need to be taken into account to regulate a perfect
strategy allocation.

V. SIMULATION
We verify the effectiveness of the proposed evolutionary
game method for multi-agent systems through simulation.
We first construct the system by using the conditions derived
from the theoretical analysis section, and verify the feasibility
of the related theories on the regular graph and the general
connected graphs respectively. In particular, for a special
class of connected graphs, it is impossible to completely
implement all the neighbor nodes holding different strategies,
and the proposed method can also give satisfactory results.
For heterogeneous networks (scale-free networks), which are
very common and widely used in practice, we compare the
evolutionary results of several classical game types, including
prisoner’s dilemma, coordination game and also snowdrift
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FIGURE 2. Simulation results on the general connected graph.

game. It is demonstrated that the proposed theoretic method
can effectively guide the selection of game types and payoff
matrices, so as to achieve an effective division of labor.

A. REGULAR GRAPH
Firstly, we consider the case of the regular graph. For a
multi-agent system of population size n = 9, agents are
denoted as Agenti = (Si,Bi,Ci,Fi) (i ∈ N = {1, 2, · · · , 9}).
The state Si ∈ {A,B}, where the agent has two strategies to
choose, A or B. The behavior Bi, is based on the difference
between one’s payoff and the average payoff of its neighbors.
The communication Ci is denoted by the neighbor set of
Agenti, that is, Ci = {j ∈ N |aij = 1}, where aij is the element
in the adjacency matrix A = [aij] ∈ Rn×n. In particular,
for the aij > 0 in the adjacency matrix, we simply consider
aij = 1. When aij = 1, Agenti can obtain the information

of Agentj; otherwise aij = 0. All the agents are put on the
vertex of a regular graph with a von Neumann neighborhood
(4 neighbors lattice), and the adjacency matrix A is given as
follows:

A =



0 1 0 1 0 0 0 0 0
1 0 1 0 1 0 0 0 0
0 1 0 0 0 1 0 0 0
1 0 0 0 1 0 1 0 0
0 1 0 1 0 1 0 1 0
0 0 1 0 1 0 0 0 1
0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 1 0 1
0 0 0 0 0 1 0 1 0


. (28)

The control objective is to put the agents with differ-
ent states as close as possible. According to the theoretical
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FIGURE 3. Simulation results on a special connected graph.

analysis, we select the payoff matrix as follows:

A B
A 0 1
B 1 0

. (29)

This simple payoff matrix fulfills the condition that a+ b =
c + d and a < c, b > d . It reflects that agents obtain
higher payoff when choosing the opposite strategy from their
opponents.

The evolutionary results are shown in Fig. 1, in which
Fig. 1(a) represents the communication topology and an ini-
tial population distribution. Fig. 1(b) shows the evolutionary
result (the distribution of agents on the graph) of the two
strategies (the red circle represents the strategy A, the blue
star represents the strategy B). Fig. 1(c) shows the changes
of state of each agent with time. Finally, the state of the
agents in the system evolves into an optimal distribution, and
each agent holds a different strategy from its neighbors. The
control objective is achieved.

B. GENERAL CONNECTED GRAPH
Secondly, we consider the case of a general connected graph.
The system still contains 9 agents. The communication topol-
ogy of the system is represented by the following adjacency
matrix:

A =



0 1 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 0
0 1 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 1 0 1 1
0 1 0 0 1 0 1 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0


. (30)

In this case, the connection between agents is no longer
completely regular. The evolutionary results are shown
in Fig. 2, where Fig. 2(a) represents the communication
topology and initial population distribution. Fig. 2(b) shows
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FIGURE 4. Simulation results on the scale-free network.

the evolutionary result of the two strategies (the red circle
represents the strategy A, the blue star represents the strat-
egy B). Fig. 2(c) shows the changes of state of each agent
with time. The results show that the control objectives can
also be achieved.

Thirdly, we consider a more complex case of topology on
the basis of the previous example. In this case, two connection
edges (pink dotted line) are added on the basis of the topology
in Fig. 2(a), which leads to cycles and some nodes with odd
connections. The adjacency matrix is shown as follows:

A =



0 1 0 0 0 0 0 0 0
1 0 1 1 1 1 1 0 0
0 1 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0
0 1 1 0 0 1 0 1 1
0 1 0 0 1 0 1 0 0
0 1 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0


. (31)

It is found that the system in this situation could not evolve
into a perfect state as in regular graphs where agents with

different strategies connect each other. But in this case, our
evolutionary game approach can still give an approximately
even distribution result (see Fig. 3). Fig. 3(a) represents
communication topology and initial population distribution.
Fig. 3(b) shows the evolutionary result of the two strategies
(the red circle represents the strategy A, the blue star rep-
resents the strategy B). Fig. 3(c) shows the trends of state
change of each agent with time. Obviously, the result is not
stable. If different connections can be assigned with different
weights (i.e. non-zero entries in adjacency matrix A not only
equal to 1), it may reinforce the state of relatively important
pair of nodes.

C. SCALE-FREE NETWORK
Next, we study a kind of heterogeneous network topology,
scale-free network, which is more common in practice [61],
[62]. In order to reflect the validity of the selection conditions
obtained from our theoretical analysis, we compare the evo-
lutionary results of several different game types. Fig. 4(a)
depicts the initial scale-free network topology. Such kind of
network is highly uneven and irregular. Most of its nodes
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FIGURE 5. Control index J for different game matrices.

have a small connection degree while a few hub nodes have a
large degree. Hub nodes form several clusters in the network.
The characteristic path length between nodes and clustering
coefficient of the scale-free network are quite different from
those of the regular graph.

Fig. 4(b)-(d) show the results of evolution by choosing
different types of game matrices. Obviously, Fig. 4(b), based
on the conditions we obtained in the theoretical analysis
section (a < c, b > d and a + b = c + d), presents the
best division of labor. The result in Fig. 4(c) is obtained when
a < c and b < d are adopted (matrix (32)), which represents
the prisoner’s dilemma game.

A B
A 3 0
B 5 1

(32)

It is shown that all the agents in the population have evolved
to strategy B, which is the dominant strategy in prisoner’s
dilemma. Owing to the existence of a strategy which is com-
pletely dominant, it is difficult for such game type to achieve
division of labor. The result of the case a > c and b < d is

shown in Fig. 4(d). Matrix (33) is a coordination game and
both strategies are Nash equilibria.

A B
A 5 0
B 3 1

(33)

As a result, the system can not be stable in the coexistence of
strategies, and always evolves towards the direction of full A
or full B. In this case, it is also difficult to reach an effective
division of labor.

Because of the complexity of the network, it is usually
difficult to make all the neighbors present different strategic
states in practical problems. This requires us to utilize a
control index to evaluate the effect of division of labor of
the system. The index J presented in (12) represents the
proportion of strategy pairs constituted by different strategies
to the total number of connections in the network. Fig. 5
shows the change of J in different game types. Fig. 5(a)
corresponds to the case that a < c, b > d and a+ b = c+ d
(matrix (29)). Fig. 5(b) shows another case of a < c and
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b > d , snowdrift game, in which a+ b > c+ d , see (34):

A B
A 4 3
B 5 0

(34)

Although the two strategies can coexist in this case, the effect
of division of labor is much worse than that of a + b =
c + d . Fig. 5(c) and Fig. 5(d) show the change of J in cases
of prisoner’s dilemma (matrix (32)) and coordination game
(matrix (33)), respectively. Owing to the randomness in the
system evolution, even if the system reaches the evolution-
arily stable state, the strategy of one agent may switch to
another. In particular, for the coordination game, the system
may switch repeatedly between two states: full A and full B.

VI. CONCLUSION
In this paper, a coordinated control approach for multi-agent
systems based on evolutionary game theory is proposed. In
this mathematical framework, agents rationally evaluate their
payoffs and autonomously update their strategies through
local interaction for the purpose of increasing their fitness
in the game. The system evolves while the agents compete
with each other in the game. During the evolutionary pro-
cess, we do not need to specify certain agents’ dynamics
or assign them what to do. The overall target of the system
could be reached only through the adaptive evolution of the
population, but not by supervision or enforcement. Taking
the problem of division of labor as an example, we explain
how to implement the proposed control method in detail.
Theoretical analysis and simulation verify the effect of pro-
posed evolutionary game method on the coordinated control
of multi-agent systems.
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