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ABSTRACT The increasing popularity of distance education poses exciting new challenges. In particular,
current pedagogical paradigms, such as competency-based education, require students’ continuous evalu-
ation. That is, to master skills, students need to receive constant feedback to guide their experimentation
processes. However, teaching teams are usually under-dimensioned to support the large number of students
that online courses usually have. This paper presents the approachwe have adopted at the National University
of Distance Education to overcome this problem for the case of computer programming practices, which
complements human evaluation with an automatic assessment system. The paper describes our system and
reports its benefits with an empirical study from 2011 to 2018 that involved 14,944 students.

INDEX TERMS Distance education, online education, automated assessment, computer programming
training.

I. INTRODUCTION
Open and Distance Learning (ODL) has become a funda-
mental educational pillar, promoting social and economic
development [1]. The amount of people taking Massive Open
Online Courses (MOOCs) or enrolling in Distance Learn-
ing Universities is growing year by year, even though the
overall number of students registered in higher education
worldwide has decreased [2]. For instance, two of the most
prestigious European distance universities, the British Open
University and the Spanish National University of Distance
Education (UNED) had 174,898 [3] and 165,855 [4] students
in the academic course 2018-19, respectively. In the case of
MOOCs, these figures are even more impressive: Coursera
has more than 40 million students [5], edX 20 million [6],
and XuetangX 14 million [7].

Accordingly, ODL institutions face a critical challenge:
how to support an enormous volume of students without
limiting the educational quality of their courses. For example,
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it is beyond any doubt that computer science students benefit
notably from performing programming exercises and receiv-
ing the corresponding instructors’ feedback [8], [9]. However,
the number of practices proposed for evaluation tends to
be inversely proportional to the number of students [10].
A workload unmanageable by the teaching team leads to a
deficit in the students’ practical learning and, consequently,
it may affect their academic performance negatively.

This paper presents the approach we have applied to teach
computer programming at UNED, reporting its successful
pedagogical results. We have developed a framework to
review programming assignments automatically. The frame-
work receives two inputs from the instructor: (i) a program
that correctly implements the assignment, and (ii) a set of
input values for the program. Then, it applies combinatorial
testing techniques [11] to combine those values for exten-
sively checking if the student’s and instructor’s programs pro-
duce the same output. Whenever the comparison fails, some
feedback is given to the student. Obviously, the framework
can only verify students’ program functionality, but not other
program quality attributes of interest, such as its legibility,
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modularity, etc. Therefore, we follow a blended approach
that combines both Automatic Assessment (AA) with human
review.

The benefits of our mixed methodology have been tested
over eight consecutive academic courses (from 2011 to 2018)
with a total of 14,944 enrolled students (1,868 students per
course on average), showing that our automatic system ade-
quately prepares students to competently attempt the more
complex assignments that will be corrected by humans, and
that there is a strong correlation between the completion of
practical assignments and (i) obtaining high exam grades,
and (ii) preventing dropout, which is a critical problem in
ODL (e.g., in the Open University, there has been reported
a 78% students’ dropout rate [12]).

The remainder of this paper is organized as it follows:
Section II summarizes related work and highlights the
contributions of this paper; Section III describes our AA
framework; Section IV reports our methodology’s empiri-
cal evaluation; Finally, Section V provides some concluding
remarks.

II. RELATED WORK
According to [13], [14], the first AA system for computer pro-
gramming assignments was developed by Hollingsworth [15]
in 1960. This system evaluated assembly code written in
punch cards. Since then, and particularly in the last years,
many other AA systems have appeared: Automata [16],
Dr. Scratch [17], EduPCR [18], an AA system for learning
object-oriented programming [19], VPL [20], Grading Java
Assigments [21], GradeIT [22], an AA for OpenGL [23], and
so on.

Despite the large number of available AA systems, there
are few literature reviews [24]–[27] that provide an overview
of the field. Nevertheless, AA systems are usually classified
into dynamic, static, and hybrid, according to the type of
analysis they perform [28], [29]:

• Dynamic analysis is the most popular one. It involves
executing the code varying the input parameters. Then
the system compares the output with the one generated
by a code that is known to be correct. If they match then
the program is considered to pass the analysis. Many
systems adopt this method, such as CodeMaster [30],
the AA gamified approach [31], and Flexible Dynamic
Analyzer [32].

• Static analysis is characterized by studying the code
without executing it, that is, it focuses exclusively on
the program structure. It informs about the degree of
compliance with the specifications requested. The fact
that a program is correct in its dynamic analysis (pro-
duces the expected results) does not mean that it is
also correct statically (the programming structure is not
adequate). Due to the complexity of this method, few
projects implement it [14], [33], [34].

• Hybrid analysis combines both methods above to
provide a complete code analysis. Hybrid systems

are often the result of unifying previously developed
analyses [35]–[37].

Concerning the pedagogical value of AA systems, in 2019,
Restrepo-Calle et al. [38] reports an empirical validation
examining the final students’ marks along three different
semesters. Other authors have focused their attention on how
students’ perceive and appreciate AA online tools [39], [40].

This paper presents a dynamic system that requires instruc-
tors a minimum effort: they only need to provide a valid
version of the program students need to solve, and some input
values for the program. In turn, it generates a combinatorial
test suit that widely checks students programs. In contrast to
most published empirical studies, that validate AA systems
on small samples of tens of students over one academic course
[17], [38]–[40], this paper reports the experience of thousands
of students over eight courses.

III. A SOFTWARE TESTING APPROACH FOR AUTOMATED
PRACTICE ASSESSMENT
This section presents our AA framework from a practi-
cal point of view: introducing a programming exercise that
students’ need to solve, discussing the rationale behind
the input values instructors must provide, and showing
how the framework combines those values to test students’
answers.

A. RUNNING EXAMPLE
Imagine an assignment where students are requested to write
a C++ program that prints on the screen the calendar sheet
of any month and year between 1601 and 3000. The program
first asks the user for the month and year to be shown, and
then it displays a sheet like Listing 1, finishing its execution.
The program should not print anything when the inputs are
out of their range, and it must always end (i.e., indefinite loops
are forbidden).

The following hints are given to the students to fulfill their
assignment:

• January 1st, 1601 was Monday.
• Regular years have 365 days. Leap years have 366 days
(February 29th is the extra day).

• A year is leap if it is multiple of 4, except if it can be
exactly divided by 100. The exception does not apply
when the year is also multiple of 400. For instance,
1604 is leap because it is divisible by 4, but not by 100.
1800 is not leap, because it is multiple of 4 and 100, but
not of 400. Finally, 2000 is leap as it is divisible by 4,
100, and 400.

From a methodological point of view, students are
instructed to use the stepwise refinement strategy [41], break-
ing down the problem into functions and procedures. They are
encouraged to write a function to determine whether a year is
a leap or not, and another to calculate the day of the weekwith
which amonth of a year begins. They are also advised to carry
out an auxiliary procedure to print the days of the calendar

130114 VOLUME 7, 2019



D. Galan et al.: Automated Assessment of Computer Programming Practices: The 8-Years UNED Experience

FIGURE 1. Differential testing approach for practice automated
assessment.

Listing 1. Execution example of the calendar program .

sheet in the format requested. Finally, they are recommended
to use the C++ enum type to handle the days of the week.

B. AA FRAMEWORK
Figure 1 sketches the operation of our framework. At a high
abstraction level, it receives a student’s program, checking
its functional correctness. In software testing terminology,
this kind of systems are called oracles [42]. In particular,
our oracle is built under the differential testing approach
[43]–[45], that is, the student’s solution is compared to the
instructor’s one by running multiple test cases, and then
checking if the two program outputs coincide (within a
customizable precision range). Whenever a test case fails,
the oracle gives feedback to the student, justifying why
her/his program is not correct.

Guaranteeing that the student’s program is absolutely cor-
rect would most times require an infinite test suite that
accounts for every possible valid program input. In particular,
testing the calendar program would require:{
[1601, 3000] ∧ [1, 12] ⇒16, 788 valid possibilities
(−∞, 1600] ∨ [3001,+∞) ⇒∞ invalid possibilities

This problem has also been studied by the software testing
community. Specifically, the domain testing approach [46]
overcomes the endless test case problem using equivalence
classes:

• The range of every input variable is broken into subsets
conceptually tantamount, called equivalence classes, for
the program under test.

• Only a few class members need to be selected for the test
cases. In particular, it has been empirically shown [42],
[46] that most program bugs are concentrated around the
class boundaries (i.e., the extreme values).

In our running example, there are two input variables: year
and month; and their corresponding equivalence classes are
the following ones:



year


valid classes


[1600, 3000]
regular year
leap year

invalid classes

{
< 1600
> 3000

month


valid classes


months with 30 days
months with 31 days
February (28 or 29 days)

invalid classes

{
< 1
> 12

To sum up, the instructor should define the equivalence
classes for the program under consideration, and from them,
derive the input values, which are the test cases prime mate-
rial. Unfortunately, an exponential-growth problem arises
again: a test suite including every possible combination of n
variables, each one with v1, v2, . . . , vn possible values, has
size v1 · v2 · . . . · vn. The calendar program only has two
input variables, but more complicated programs may require
a larger number of variables, ending up with a huge test suite.
We manage this problem adopting the combinatorial testing
approach.

Combinatorial testing is based on an interesting empirical
fact [11], [47]–[50]: ‘‘most program failures appear to be
caused by interactions of only a few variables, and hence
tests that cover all such few-variable interactions can be
very effective’’. From the input values the instructor pro-
vides, our framework generates a pairwise coverage, which
includes every possible combination of values for each pair
of variables. It is worth noting that a variety of experi-
ments have shown that pairwise testing detects approximately
90% of the program failures [11], [51], reducing the test
suite size considerably. If all n variables had v possible val-
ues, the test suite size for all possible combinations would
be vn, whereas for the pairwise combinations would be
v2 · log n [51].

Our framework is currently implemented as an extension
of the Code::Blocks open-source IDE [52], and it is freely
available at:

http://www.issi.uned.es/fp/archive/cmasmenos.exe
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IV. EMPIRICAL VALIDATION: THE 8-YEARS UNED
EXPERIENCE
This section reports the application of our framework into
a semestral subject of the Bachelor’s Degree in Computer
Science and Engineering at UNED. The subject funda-
mentally implements the CS 115 Introduction to Computer
Programming course defined in the CS2013 [53] curricula
recommendations given by the IEEE Computer Society and
the Association for Computing Machinery.

The degree follows the European Bologna Declara-
tion [54], which promotes the competency-based educational
paradigm. The adoption of this paradigm supposed a great
challenge: approximately 2,000 students had to be continu-
ously evaluated by a teaching team composed of only three
professors. To overcome this problem, we designed four vol-
untary programming assignments of increasing complexity:
the first three assignments were automatically corrected with
the framework described in Section III, and the last one by
the teaching team. Whereas the results of the first assign-
ments were Boolean (i.e., students’ programs are function-
ally correct or not), the human corrected exercise received a
numerical grade, which ranged from zero to ten and reflected
the fulfillment of a variety of functional and non-functional
quality attributes. Finally, students were allowed to carry
out an assignment only if they had successfully passed the
previous ones.

Students have a single submission date for each of the
practices presented. In the case of AA practices, they receive
feedback about whether their program works or not, and,
if not, in what case it has failed. Completing these assign-
ments means that they have been delivered on time and work
correctly. In the case of the practice corrected by the teaching
team, students receive the numeric grade and they have the
possibility of carrying out a personal review to understand all
their failures before the final exam.

A. EXPERIMENTAL SETUP
Our study tries to answer the following Research Questions
(RQs), which are essential to judge our methodology:
RQ1. Do programming assignments in general, and those

automatically corrected in particular, have any influ-
ence on students’ drop out?

RQ2. Does our AA system properly prepares students to
cope skillfully with complex assignments corrected
by humans?

RQ3. Does the assignments’ completion influence the final
exam grade?

Due to ethical restrictions, our empirical study did not fol-
low an experimental design that supports concluding causal
conclusions. Students instead of being randomly assigned to
treatment and control groups, could freely decide to perform
the practices.

The R language was used for data management and analy-
sis [55]. In particular, the built-in t.test function and the
following packages were used:

FIGURE 2. Number of students per year.

• ggplot2 [56] for getting plots.
• lsr [57] for computing Cohen’s d effect size.
• car [58] to perform the Levene’s test for variance
homogeneity.

B. RESULTS AND DISCUSSION
The results of our empirical study are available at:

https://github.com/rheradio/IntProgResults

Figure 2 shows the number of students enrolled in the
course (in lilac color) from 2011 to 2018, distinguishing also
the number of dropouts (in orange), the students who carried
out the practices (in green) and, finally, the students who
passed the final exam (in yellow).

1) RQ1. DO PROGRAMMING ASSIGNMENTS IN GENERAL,
AND THOSE AUTOMATICALLY CORRECTED IN PARTICULAR,
HAVE ANY INFLUENCE ON STUDENTS’ DROP OUT?
Table 1 summarizes the descriptive statistics concerning our
students’ dropout. It confirms a distance learning critical
problem: a remarkably high dropout rate, much higher than
in traditional face-to-face education. Some studies indicate
that dropout rates in e-learning are between 10% and 20%
higher than in traditional education [59]. Other studies report
even higher rates. For example, Simpson [12] reported a 78%
dropout rate at the British OpenUniversity. Our rate (68.03%)
is consistent with this last paper.

TABLE 1. Descriptive statistics for students’ dropout.

Figure 3 represents the number of students that completed
and did not complete the assignments, distinguishing if they
dropped out. The figure shows that (i) none of the students
that finished the voluntary practices dropped out, and (ii)
most of the students that did not complete the assignments
dropped out.
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TABLE 2. Inference statistics that confirm, every year, a difference between the students’ final grades depending on whether they have completed the
voluntary assignments.

FIGURE 3. Amount of students that completed the assignments versus
those that dropped out.

2) DOES OUR AA SYSTEM PROPERLY PREPARES STUDENTS
TO COPE SKILLFULLY WITH COMPLEX ASSIGNMENTS
CORRECTED BY HUMANS?
The box-plot in Figure 4 summarizes the students’ grades for
the assignment corrected by the teaching team.As completing
the first three practices was a mandatory requirement to carry
out this last assignment, all students in the figure were trained
with our AA system. As the figure shows, the system seems
to adequately prepare students, since most of them obtained
high grades.

3) RQ3. DOES THE ASSIGNMENTS’ COMPLETION
INFLUENCE THE FINAL EXAM GRADE?
Figure 5 compares the final exam grades of the students that
completed the practices to those that did not. Table 2 confirms
the visual information with inference statistics. Each year,
the exam grades of both students’ groups are compared. To do
so, a t-test is performed for every year. But first, a Levene’s
test for variance homogeneity is undertaken to check if the
t-tests need any adjustment. As all Levene’s tests fail (the

FIGURE 4. Grades of the practice corrected by the teaching team.

FIGURE 5. Students’ final grades depending on whether they have
completed the voluntary assignments (blue) or not (red).

p-value is less than 0.5), the Welch’s correction is applied.
It can be seen that, in every course, the difference between the
groups is statistically significant (p-value less than 0.5) and
the effect size is enormous (Cohens’s d much greater than
0.8 [60]). To sum up, there is a strong correlation between
completing the assignments and obtaining high grades in the
final exam.
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V. CONCLUSION
Current assessment systems for computer programming prac-
tices cannot entirely replace human judgment, as they are
unable to assess a variety of non-functional quality attributes
that students need to acquire (e.g., program legibility, mod-
ular conceptual cohesion, etc.). In our university, we were
aware of these shortcomings, but also of the many advantages
that these systems provide.

In this article, we have presented a new automatic assess-
ment system that is built upon software testing techniques,
and reported its successful application into a rather populated
course supported by a reduced number of teachers.
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