
Received July 27, 2019, accepted August 22, 2019, date of publication August 29, 2019, date of current version September 24, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2938391

Automated Assessment of Computer
Programming Practices: The 8-Years
UNED Experience
DANIEL GALAN 1, RUBEN HERADIO 2, HECTOR VARGAS 3, ISMAEL ABAD2,
AND JOSE A. CERRADA 2
1Department of Computer Science and Automatic Control, Universidad Nacional de Educacion a Distancia (UNED), 28040 Madrid, Spain
2Department of Software and Systems Engineering, Universidad Nacional de Educacion a Distancia (UNED), 28040 Madrid, Spain
3School of Electrical Engineering, Pontificia Universidad Catolica de Valparaiso, Valparaiso 2374631, Chile

Corresponding author: Daniel Galan (dgalan@dia.uned.es)

This work was supported in part by the Spanish Ministry of Science, Innovation and Universities, under Project DPI2016-77677-P and
Project DPI2017-84259-C2-2-R, and in part by the Community of Madrid under Grant RoboCity2030-DIH-CM P2018/NMT-4331.

ABSTRACT The increasing popularity of distance education poses exciting new challenges. In particular,
current pedagogical paradigms, such as competency-based education, require students’ continuous evalu-
ation. That is, to master skills, students need to receive constant feedback to guide their experimentation
processes. However, teaching teams are usually under-dimensioned to support the large number of students
that online courses usually have. This paper presents the approachwe have adopted at the National University
of Distance Education to overcome this problem for the case of computer programming practices, which
complements human evaluation with an automatic assessment system. The paper describes our system and
reports its benefits with an empirical study from 2011 to 2018 that involved 14,944 students.

INDEX TERMS Distance education, online education, automated assessment, computer programming
training.

I. INTRODUCTION
Open and Distance Learning (ODL) has become a funda-
mental educational pillar, promoting social and economic
development [1]. The amount of people taking Massive Open
Online Courses (MOOCs) or enrolling in Distance Learn-
ing Universities is growing year by year, even though the
overall number of students registered in higher education
worldwide has decreased [2]. For instance, two of the most
prestigious European distance universities, the British Open
University and the Spanish National University of Distance
Education (UNED) had 174,898 [3] and 165,855 [4] students
in the academic course 2018-19, respectively. In the case of
MOOCs, these figures are even more impressive: Coursera
has more than 40 million students [5], edX 20 million [6],
and XuetangX 14 million [7].

Accordingly, ODL institutions face a critical challenge:
how to support an enormous volume of students without
limiting the educational quality of their courses. For example,

The associate editor coordinating the review of this manuscript and
approving it for publication was Chin-Feng Lai.

it is beyond any doubt that computer science students benefit
notably from performing programming exercises and receiv-
ing the corresponding instructors’ feedback [8], [9]. However,
the number of practices proposed for evaluation tends to
be inversely proportional to the number of students [10].
A workload unmanageable by the teaching team leads to a
deficit in the students’ practical learning and, consequently,
it may affect their academic performance negatively.

This paper presents the approach we have applied to teach
computer programming at UNED, reporting its successful
pedagogical results. We have developed a framework to
review programming assignments automatically. The frame-
work receives two inputs from the instructor: (i) a program
that correctly implements the assignment, and (ii) a set of
input values for the program. Then, it applies combinatorial
testing techniques [11] to combine those values for exten-
sively checking if the student’s and instructor’s programs pro-
duce the same output. Whenever the comparison fails, some
feedback is given to the student. Obviously, the framework
can only verify students’ program functionality, but not other
program quality attributes of interest, such as its legibility,

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 130113

https://orcid.org/0000-0003-3078-3643
https://orcid.org/0000-0002-7131-0482
https://orcid.org/0000-0001-6726-6100
https://orcid.org/0000-0001-5492-5293


D. Galan et al.: Automated Assessment of Computer Programming Practices: The 8-Years UNED Experience

modularity, etc. Therefore, we follow a blended approach
that combines both Automatic Assessment (AA) with human
review.

The benefits of our mixed methodology have been tested
over eight consecutive academic courses (from 2011 to 2018)
with a total of 14,944 enrolled students (1,868 students per
course on average), showing that our automatic system ade-
quately prepares students to competently attempt the more
complex assignments that will be corrected by humans, and
that there is a strong correlation between the completion of
practical assignments and (i) obtaining high exam grades,
and (ii) preventing dropout, which is a critical problem in
ODL (e.g., in the Open University, there has been reported
a 78% students’ dropout rate [12]).

The remainder of this paper is organized as it follows:
Section II summarizes related work and highlights the
contributions of this paper; Section III describes our AA
framework; Section IV reports our methodology’s empiri-
cal evaluation; Finally, Section V provides some concluding
remarks.

II. RELATED WORK
According to [13], [14], the first AA system for computer pro-
gramming assignments was developed by Hollingsworth [15]
in 1960. This system evaluated assembly code written in
punch cards. Since then, and particularly in the last years,
many other AA systems have appeared: Automata [16],
Dr. Scratch [17], EduPCR [18], an AA system for learning
object-oriented programming [19], VPL [20], Grading Java
Assigments [21], GradeIT [22], an AA for OpenGL [23], and
so on.

Despite the large number of available AA systems, there
are few literature reviews [24]–[27] that provide an overview
of the field. Nevertheless, AA systems are usually classified
into dynamic, static, and hybrid, according to the type of
analysis they perform [28], [29]:

• Dynamic analysis is the most popular one. It involves
executing the code varying the input parameters. Then
the system compares the output with the one generated
by a code that is known to be correct. If they match then
the program is considered to pass the analysis. Many
systems adopt this method, such as CodeMaster [30],
the AA gamified approach [31], and Flexible Dynamic
Analyzer [32].

• Static analysis is characterized by studying the code
without executing it, that is, it focuses exclusively on
the program structure. It informs about the degree of
compliance with the specifications requested. The fact
that a program is correct in its dynamic analysis (pro-
duces the expected results) does not mean that it is
also correct statically (the programming structure is not
adequate). Due to the complexity of this method, few
projects implement it [14], [33], [34].

• Hybrid analysis combines both methods above to
provide a complete code analysis. Hybrid systems

are often the result of unifying previously developed
analyses [35]–[37].

Concerning the pedagogical value of AA systems, in 2019,
Restrepo-Calle et al. [38] reports an empirical validation
examining the final students’ marks along three different
semesters. Other authors have focused their attention on how
students’ perceive and appreciate AA online tools [39], [40].

This paper presents a dynamic system that requires instruc-
tors a minimum effort: they only need to provide a valid
version of the program students need to solve, and some input
values for the program. In turn, it generates a combinatorial
test suit that widely checks students programs. In contrast to
most published empirical studies, that validate AA systems
on small samples of tens of students over one academic course
[17], [38]–[40], this paper reports the experience of thousands
of students over eight courses.

III. A SOFTWARE TESTING APPROACH FOR AUTOMATED
PRACTICE ASSESSMENT
This section presents our AA framework from a practi-
cal point of view: introducing a programming exercise that
students’ need to solve, discussing the rationale behind
the input values instructors must provide, and showing
how the framework combines those values to test students’
answers.

A. RUNNING EXAMPLE
Imagine an assignment where students are requested to write
a C++ program that prints on the screen the calendar sheet
of any month and year between 1601 and 3000. The program
first asks the user for the month and year to be shown, and
then it displays a sheet like Listing 1, finishing its execution.
The program should not print anything when the inputs are
out of their range, and it must always end (i.e., indefinite loops
are forbidden).

The following hints are given to the students to fulfill their
assignment:

• January 1st, 1601 was Monday.
• Regular years have 365 days. Leap years have 366 days
(February 29th is the extra day).

• A year is leap if it is multiple of 4, except if it can be
exactly divided by 100. The exception does not apply
when the year is also multiple of 400. For instance,
1604 is leap because it is divisible by 4, but not by 100.
1800 is not leap, because it is multiple of 4 and 100, but
not of 400. Finally, 2000 is leap as it is divisible by 4,
100, and 400.

From a methodological point of view, students are
instructed to use the stepwise refinement strategy [41], break-
ing down the problem into functions and procedures. They are
encouraged to write a function to determine whether a year is
a leap or not, and another to calculate the day of the weekwith
which amonth of a year begins. They are also advised to carry
out an auxiliary procedure to print the days of the calendar

130114 VOLUME 7, 2019



D. Galan et al.: Automated Assessment of Computer Programming Practices: The 8-Years UNED Experience

FIGURE 1. Differential testing approach for practice automated
assessment.

Listing 1. Execution example of the calendar program .

sheet in the format requested. Finally, they are recommended
to use the C++ enum type to handle the days of the week.

B. AA FRAMEWORK
Figure 1 sketches the operation of our framework. At a high
abstraction level, it receives a student’s program, checking
its functional correctness. In software testing terminology,
this kind of systems are called oracles [42]. In particular,
our oracle is built under the differential testing approach
[43]–[45], that is, the student’s solution is compared to the
instructor’s one by running multiple test cases, and then
checking if the two program outputs coincide (within a
customizable precision range). Whenever a test case fails,
the oracle gives feedback to the student, justifying why
her/his program is not correct.

Guaranteeing that the student’s program is absolutely cor-
rect would most times require an infinite test suite that
accounts for every possible valid program input. In particular,
testing the calendar program would require:{
[1601, 3000] ∧ [1, 12] ⇒16, 788 valid possibilities
(−∞, 1600] ∨ [3001,+∞) ⇒∞ invalid possibilities

This problem has also been studied by the software testing
community. Specifically, the domain testing approach [46]
overcomes the endless test case problem using equivalence
classes:

• The range of every input variable is broken into subsets
conceptually tantamount, called equivalence classes, for
the program under test.

• Only a few class members need to be selected for the test
cases. In particular, it has been empirically shown [42],
[46] that most program bugs are concentrated around the
class boundaries (i.e., the extreme values).

In our running example, there are two input variables: year
and month; and their corresponding equivalence classes are
the following ones:



year


valid classes


[1600, 3000]
regular year
leap year

invalid classes

{
< 1600
> 3000

month


valid classes


months with 30 days
months with 31 days
February (28 or 29 days)

invalid classes

{
< 1
> 12

To sum up, the instructor should define the equivalence
classes for the program under consideration, and from them,
derive the input values, which are the test cases prime mate-
rial. Unfortunately, an exponential-growth problem arises
again: a test suite including every possible combination of n
variables, each one with v1, v2, . . . , vn possible values, has
size v1 · v2 · . . . · vn. The calendar program only has two
input variables, but more complicated programs may require
a larger number of variables, ending up with a huge test suite.
We manage this problem adopting the combinatorial testing
approach.

Combinatorial testing is based on an interesting empirical
fact [11], [47]–[50]: ‘‘most program failures appear to be
caused by interactions of only a few variables, and hence
tests that cover all such few-variable interactions can be
very effective’’. From the input values the instructor pro-
vides, our framework generates a pairwise coverage, which
includes every possible combination of values for each pair
of variables. It is worth noting that a variety of experi-
ments have shown that pairwise testing detects approximately
90% of the program failures [11], [51], reducing the test
suite size considerably. If all n variables had v possible val-
ues, the test suite size for all possible combinations would
be vn, whereas for the pairwise combinations would be
v2 · log n [51].

Our framework is currently implemented as an extension
of the Code::Blocks open-source IDE [52], and it is freely
available at:

http://www.issi.uned.es/fp/archive/cmasmenos.exe

VOLUME 7, 2019 130115



D. Galan et al.: Automated Assessment of Computer Programming Practices: The 8-Years UNED Experience

IV. EMPIRICAL VALIDATION: THE 8-YEARS UNED
EXPERIENCE
This section reports the application of our framework into
a semestral subject of the Bachelor’s Degree in Computer
Science and Engineering at UNED. The subject funda-
mentally implements the CS 115 Introduction to Computer
Programming course defined in the CS2013 [53] curricula
recommendations given by the IEEE Computer Society and
the Association for Computing Machinery.

The degree follows the European Bologna Declara-
tion [54], which promotes the competency-based educational
paradigm. The adoption of this paradigm supposed a great
challenge: approximately 2,000 students had to be continu-
ously evaluated by a teaching team composed of only three
professors. To overcome this problem, we designed four vol-
untary programming assignments of increasing complexity:
the first three assignments were automatically corrected with
the framework described in Section III, and the last one by
the teaching team. Whereas the results of the first assign-
ments were Boolean (i.e., students’ programs are function-
ally correct or not), the human corrected exercise received a
numerical grade, which ranged from zero to ten and reflected
the fulfillment of a variety of functional and non-functional
quality attributes. Finally, students were allowed to carry
out an assignment only if they had successfully passed the
previous ones.

Students have a single submission date for each of the
practices presented. In the case of AA practices, they receive
feedback about whether their program works or not, and,
if not, in what case it has failed. Completing these assign-
ments means that they have been delivered on time and work
correctly. In the case of the practice corrected by the teaching
team, students receive the numeric grade and they have the
possibility of carrying out a personal review to understand all
their failures before the final exam.

A. EXPERIMENTAL SETUP
Our study tries to answer the following Research Questions
(RQs), which are essential to judge our methodology:
RQ1. Do programming assignments in general, and those

automatically corrected in particular, have any influ-
ence on students’ drop out?

RQ2. Does our AA system properly prepares students to
cope skillfully with complex assignments corrected
by humans?

RQ3. Does the assignments’ completion influence the final
exam grade?

Due to ethical restrictions, our empirical study did not fol-
low an experimental design that supports concluding causal
conclusions. Students instead of being randomly assigned to
treatment and control groups, could freely decide to perform
the practices.

The R language was used for data management and analy-
sis [55]. In particular, the built-in t.test function and the
following packages were used:

FIGURE 2. Number of students per year.

• ggplot2 [56] for getting plots.
• lsr [57] for computing Cohen’s d effect size.
• car [58] to perform the Levene’s test for variance
homogeneity.

B. RESULTS AND DISCUSSION
The results of our empirical study are available at:

https://github.com/rheradio/IntProgResults

Figure 2 shows the number of students enrolled in the
course (in lilac color) from 2011 to 2018, distinguishing also
the number of dropouts (in orange), the students who carried
out the practices (in green) and, finally, the students who
passed the final exam (in yellow).

1) RQ1. DO PROGRAMMING ASSIGNMENTS IN GENERAL,
AND THOSE AUTOMATICALLY CORRECTED IN PARTICULAR,
HAVE ANY INFLUENCE ON STUDENTS’ DROP OUT?
Table 1 summarizes the descriptive statistics concerning our
students’ dropout. It confirms a distance learning critical
problem: a remarkably high dropout rate, much higher than
in traditional face-to-face education. Some studies indicate
that dropout rates in e-learning are between 10% and 20%
higher than in traditional education [59]. Other studies report
even higher rates. For example, Simpson [12] reported a 78%
dropout rate at the British OpenUniversity. Our rate (68.03%)
is consistent with this last paper.

TABLE 1. Descriptive statistics for students’ dropout.

Figure 3 represents the number of students that completed
and did not complete the assignments, distinguishing if they
dropped out. The figure shows that (i) none of the students
that finished the voluntary practices dropped out, and (ii)
most of the students that did not complete the assignments
dropped out.

130116 VOLUME 7, 2019



D. Galan et al.: Automated Assessment of Computer Programming Practices: The 8-Years UNED Experience

TABLE 2. Inference statistics that confirm, every year, a difference between the students’ final grades depending on whether they have completed the
voluntary assignments.

FIGURE 3. Amount of students that completed the assignments versus
those that dropped out.

2) DOES OUR AA SYSTEM PROPERLY PREPARES STUDENTS
TO COPE SKILLFULLY WITH COMPLEX ASSIGNMENTS
CORRECTED BY HUMANS?
The box-plot in Figure 4 summarizes the students’ grades for
the assignment corrected by the teaching team.As completing
the first three practices was a mandatory requirement to carry
out this last assignment, all students in the figure were trained
with our AA system. As the figure shows, the system seems
to adequately prepare students, since most of them obtained
high grades.

3) RQ3. DOES THE ASSIGNMENTS’ COMPLETION
INFLUENCE THE FINAL EXAM GRADE?
Figure 5 compares the final exam grades of the students that
completed the practices to those that did not. Table 2 confirms
the visual information with inference statistics. Each year,
the exam grades of both students’ groups are compared. To do
so, a t-test is performed for every year. But first, a Levene’s
test for variance homogeneity is undertaken to check if the
t-tests need any adjustment. As all Levene’s tests fail (the

FIGURE 4. Grades of the practice corrected by the teaching team.

FIGURE 5. Students’ final grades depending on whether they have
completed the voluntary assignments (blue) or not (red).

p-value is less than 0.5), the Welch’s correction is applied.
It can be seen that, in every course, the difference between the
groups is statistically significant (p-value less than 0.5) and
the effect size is enormous (Cohens’s d much greater than
0.8 [60]). To sum up, there is a strong correlation between
completing the assignments and obtaining high grades in the
final exam.

VOLUME 7, 2019 130117



D. Galan et al.: Automated Assessment of Computer Programming Practices: The 8-Years UNED Experience

V. CONCLUSION
Current assessment systems for computer programming prac-
tices cannot entirely replace human judgment, as they are
unable to assess a variety of non-functional quality attributes
that students need to acquire (e.g., program legibility, mod-
ular conceptual cohesion, etc.). In our university, we were
aware of these shortcomings, but also of the many advantages
that these systems provide.

In this article, we have presented a new automatic assess-
ment system that is built upon software testing techniques,
and reported its successful application into a rather populated
course supported by a reduced number of teachers.

REFERENCES
[1] D. P. Moreira, ‘‘From on-campus to online: A trajectory of innovation,

internationalization and inclusion,’’ Int. Rev. Res. Open Distrib. Learn.,
vol. 17, no. 5, pp. 1–14, 2016.

[2] A. M. Collins and R. Halverson, Rethinking Education in the Age of
Technology: The Digital Revolution and Schooling in America. New York,
NY, USA: Teachers College Press, 2018.

[3] The Open University Facts. Accessed: Jul. 19, 2019. [Online]. Avail-
able: http://www.open.ac.uk/about/main/strategy-and-policies/facts-and-
figures

[4] Universidad Nacional de Educación a Distancia Statistics. Accessed:
Jul. 19, 2019. [Online]. Available: https://app.uned.es/evacal/genmat.aspx

[5] Coursera Info. Accessed: Jul. 19, 2019. [Online]. Available: https://
about.coursera.org/press

[6] edX Info. Accessed: Jul. 19, 2019. [Online]. Available: https://www.
edx.org/about-us

[7] XuetangX. Accessed: Jul. 19, 2019. [Online]. Available: http://www.
xuetangx.com/global

[8] S. Grover and S. Basu, ‘‘Measuring student learning in introductory block-
based programming: Examining misconceptions of loops, variables, and
Boolean logic,’’ in Proc. ACM SIGCSE Tech. Symp. Comput. Sci. Educ.,
2017, pp. 267–272.

[9] D. Krpan, S. Mladenović, and M. Rosić, ‘‘Undergraduate programming
courses, students’ perception and success,’’ Procedia-Social Behav. Sci.,
vol. 174, pp. 3868–3872, Feb. 2015.

[10] T. Soffer and R. Nachmias, ‘‘Effectiveness of learning in online academic
courses compared with face-to-face courses in higher education,’’ J. Com-
put. Assist. Learn., vol. 34, no. 5, pp. 534–543, 2018.

[11] D. R. Kuhn, R. N. Kacker, and Y. Lei, Introduction to Combinatorial
Testing. Boca Raton, FL, USA: CRC Press, 2016.

[12] O. Simpson, ‘‘22%—Can we do better?’’ CWP Retention Literature Rev.,
vol. 47, 2010.

[13] V. C. Lee, Y.-T. Yu, C.M. Tang, T.-L.Wong, and C. K. Poon, ‘‘ViDA:A vir-
tual debugging advisor for supporting learning in computer programming
courses,’’ J. Comput. Assist. Learn., vol. 34, no. 3, pp. 243–258, 2018.

[14] A. Bey, P. Jermann, and P. Dillenbourg, ‘‘A comparison between two
automatic assessment approaches for programming: An empirical study
on MOOCs,’’ J. Educ. Technol. Soc., vol. 21, no. 2, pp. 259–272, 2018.

[15] J. Hollingsworth, ‘‘Automatic graders for programming classes,’’ Com-
mun. ACM, vol. 3, no. 10, pp. 528–529, 1960.

[16] G. Singh, S. Srikant, and V. Aggarwal, ‘‘Question independent grading
using machine learning: The case of computer program grading,’’ in Proc.
22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2016,
pp. 263–272.

[17] J. Moreno-León, G. Robles, and M. Román-González, ‘‘Dr. scratch: Auto-
matic analysis of scratch projects to assess and foster computational think-
ing,’’ Rev. Educ. Distancia, vol. 15, no. 46, pp. 1–23, 2015.

[18] Y.Wang, H. Li, Y. Feng, Y. Jiang, andY. Liu, ‘‘Assessment of programming
language learning based on peer code review model: Implementation and
experience report,’’ Comput. Educ., vol. 59, no. 2, pp. 412–422, 2012.

[19] N. A. Rashid, L. W. Lim, O. S. Eng, T. H. Ping, Z. Zainol, and
O. Majid, ‘‘A framework of an automatic assessment system for learning
programming,’’ in Advanced Computer and Communication Engineering
Technology. New York, NY, USA: Springer, 2016, pp. 967–977.

[20] D. Thiébaut, ‘‘Automatic evaluation of computer programs usingMoodle’s
virtual programming lab (VPL) plug-in,’’ J. Comput. Sci. Colleges, vol. 30,
no. 6, pp. 145–151, 2015.

[21] H. Kitaya and U. Inoue, ‘‘An online automated scoring system for java
programming assignments,’’ Int. J. Inf. Educ. Technol., vol. 6, no. 4, p. 275,
2016.

[22] S. Parihar, Z. Dadachanji, P. K. Singh, R. Das, A. Karkare, and
A. Bhattacharya, ‘‘Automatic grading and feedback using program repair
for introductory programming courses,’’ in Proc. ACM Conf. Innov. Tech-
nol. Comput. Sci. Educ., 2017, pp. 92–97.

[23] B. C. Wünsche, Z. Chen, L. Shaw, T. Suselo, K.-C. Leung, D. Dimalen,
W. van der Mark, A. Luxton-Reilly, and R. Lobb, ‘‘Automatic assessment
of OpenGL computer graphics assignments,’’ in Proc. 23rd Annu. ACM
Conf. Innov. Technol. Comput. Sci. Educ., 2018, pp. 81–86.

[24] K. M. Ala-Mutka, ‘‘A survey of automated assessment approaches
for programming assignments,’’ Comput. Sci. Educ., vol. 15, no. 2,
pp. 83–102, Jun. 2005.

[25] M. Striewe and M. Goedicke, ‘‘A review of static analysis approaches for
programming exercises,’’ in Proc. Int. Comput. Assist. Assessment Conf.
New York, NY, USA: Springer, 2014, pp. 100–113.

[26] H. Keuning, J. Jeuring, and B. Heeren, ‘‘Towards a systematic review of
automated feedback generation for programming exercises,’’ in Proc. ACM
Conf. Innov. Technol. Comput. Sci. Educ., 2016, pp. 41–46.

[27] D. M. Souza, K. R. Felizardo, and E. F. Barbosa, ‘‘A systematic litera-
ture review of assessment tools for programming assignments,’’ in Proc.
IEEE 29th Int. Conf. Softw. Eng. Educ. Training (CSEET), Apr. 2016,
pp. 147–156.

[28] C. Douce, D. Livingstone, and J. Orwell, ‘‘Automatic test-based assess-
ment of programming: A review,’’ J. Educ. Resour. Comput., vol. 5, no. 3,
p. 4, 2005.

[29] P. Ihantola, T. Ahoniemi, V. Karavirta, and O. Seppälä, ‘‘Review of recent
systems for automatic assessment of programming assignments,’’ in Proc.
10th Koli Calling Int. Conf. Computing Educ. Res., 2010, pp. 86–93.

[30] C. G. von Wangenheim, J. C. Hauck, M. F. Demetrio, R. Pelle,
N. da Cruz Alves, H. Barbosa, and L. F. Azevedo, ‘‘CodeMaster–
automatic assessment and grading of app inventor and snap! Programs,’’
Inform. Educ., vol. 17, no. 1, pp. 117–150, 2018.

[31] G. Polito and M. Temperini, ‘‘A gamified approach to automated assess-
ment of programming assignments,’’ in Challenges and Solutions in Smart
Learning. Singapore: Springer, 2018, pp. 3–12.

[32] D. Fonte, D. D. Cruz, A. L. Gançarski, and P. R. Henriques, ‘‘A flexible
dynamic system for automatic grading of programming exercises,’’ in
Proc. 2nd Symp. Lang., Appl. Technol., in OpenAccess Series in Infor-
matics (OASIcs), vol. 29. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2013.

[33] D. Jackson and M. Usher, ‘‘Grading student programs using ASSYST,’’ in
ACM SIGCSE Bull., vol. 29, no. 1, pp. 335–339, 1997.

[34] A. Hentschel, C. Körner, R. Plösch, S. Schiffer, and S. Storck, ‘‘Method
for the computer-assisted analysis of software source code,’’ U.S. Patent
9 274 924, Mar. 1, 2016.

[35] S.M.Arifi, I. N. Abdellah, A. Zahi, andR. Benabbou, ‘‘Automatic program
assessment using static and dynamic analysis,’’ in Proc. 3rd World Conf.
Complex Syst. (WCCS), Nov. 2015, pp. 1–6.

[36] S. Krusche and A. Seitz, ‘‘ArTEMiS: An automatic assessment manage-
ment system for interactive learning,’’ in Proc. 49th ACM Tech. Symp.
Comput. Sci. Educ., 2018, pp. 284–289.

[37] D. Insa and J. Silva, ‘‘Automatic assessment of java code,’’ Comput. Lang.,
Syst. Struct., vol. 53, pp. 59–72, Sep. 2018.

[38] F. Restrepo-Calle, J. J. Ramírez Echeverry, and F. A. González, ‘‘Continu-
ous assessment in a computer programming course supported by a software
tool,’’ Comput. Appl. Eng. Educ., vol. 27, no. 1, pp. 80–89, 2019.

[39] L. de Oliveira Brandão, Y. Bosse, and M. A. Gerosa, ‘‘Visual program-
ming and automatic evaluation of exercises: An experience with a STEM
course,’’ in Proc. IEEE Frontiers Edu. Conf. (FIE), Oct. 2016, pp. 1–9.

[40] D. M. D. Souza, S. Isotani, and E. F. Barbosa, ‘‘Teaching novice program-
mers using ProgTest,’’ Int. J. Knowl. Learn., vol. 10, no. 1, pp. 60–77, 2015.

[41] N. Wirth, ‘‘Program development by stepwise refinement,’’ Commun.
ACM, vol. 14, no. 4, pp. 221–227, 1971.

[42] G. J. Myers, The Art of Software Testing. Hoboken, NJ, USA: Wiley, 2011.
[43] C. Kästner, ‘‘Differential testing for variational analyses: Experience from

developing kconfigreader,’’ 2017, arXiv:1706.09357. [Online]. Available:
https://arxiv.org/abs/1706.09357

130118 VOLUME 7, 2019



D. Galan et al.: Automated Assessment of Computer Programming Practices: The 8-Years UNED Experience

[44] M. A. Gulzar, Y. Zhu, and X. Han, ‘‘Perception and practices of differential
testing,’’ in Proc. 41st Int. Conf. Softw. Eng., Softw. Eng. Pract., May 2019,
pp. 71–80.

[45] D. Lehmann and M. Pradel, ‘‘Feedback-directed differential testing of
interactive debuggers,’’ in Proc. 26th ACM Joint Meeting Eur. Softw. Eng.
Conf. Symp. Found. Softw. Eng., 2018, pp. 610–620.

[46] C. Kaner, S. Padmanabhan, and D. Hoffman, The Domain Testing Work-
book. New York, NY, USA: Context Driven Press, 2013.

[47] D. R. Kuhn, D. R. Wallace, and A. M. Gallo, ‘‘Software fault interactions
and implications for software testing,’’ IEEE Trans. Softw. Eng., vol. 30,
no. 6, pp. 418–421, Jun. 2004.

[48] K. Z. Bell and M. A. Vouk, ‘‘On effectiveness of pairwise methodology
for testing network-centric software,’’ in Proc. Int. Conf. Inf. Commun.
Technol., Cairo, Egypt, 2005, pp. 221–235.

[49] M. Grindal, J. Offutt, and S. F. Andler, ‘‘Combination testing strategies:
A survey,’’ Softw. Test., Verification Rel., vol. 15, no. 3, pp. 167–199, 2005.

[50] D. R. Kuhn and V. Okum, ‘‘Pseudo-exhaustive testing for software,’’ in
Proc. 30th Annu. IEEE/NASA Softw. Eng.Workshop, Columbia,MD, USA,
Apr. 2006, pp. 153–158.

[51] R. Kuhn, R. N. Kacker, and Y. Lei, ‘‘Practical combinatorial testing,’’ Nat.
Inst. Standards Technol., Gaithersburg, MD, USA, Tech. Rep. NIST SP
800-142, 2010.

[52] Code Blocks: Open Source, Cross Platform, Free C, C++ and
Fortran IDE. Accessed: Jul. 25, 2019. [Online]. Available: http://www.
codeblocks.org/

[53] ‘‘Computer science curricula. Curriculum guidelines for undergraduate
degree programs in computer science,’’ Joint Task Force Comput. Cur-
ricula Assoc. Comput. Mach., New York, NY, USA, Tech. Rep. CS2013,
2013.

[54] ‘‘Joint declaration of the European ministers of education, the Bologna
declaration,’’ Eur. Ministers Charge Higher Educ., Belgium, Tech. Rep.,
1999. [Online]. Available: http://www.ehea.info/cid100210/ministerial-
conference-bologna-1999.html

[55] R: A Language and Environment for Statistical Computing, R Found.
Stat. Comput., Vienna, Austria, 2014. [Online]. Available: http://www.R-
project.org/

[56] C. Ginestet, ‘‘ggplot2: Elegant graphics for data analysis,’’ J. Roy. Stat.
Soc., A, (Statist. Soc.), vol. 174, no. 1, pp. 245–246, 2011.

[57] D. Navarro, Learning Statistics With R: A Tutorial for Psychology Students
and Other Beginners. Australia: Bookdown, 2018.

[58] J. Fox and S. Weisberg, An R Companion to Applied Regression, 2nd ed.
Newbury Park, CA, USA: Sage, 2010.

[59] W. Doherty, ‘‘An analysis of multiple factors affecting retention in Web-
based community college courses,’’ Internet Higher Edu., vol. 9, no. 4,
pp. 245–255, 2006.

[60] J. Cohen, Statistical Power Analysis for the Behavioral Sciences. Evanston,
IL, USA: Routledge, 1988.

DANIEL GALAN received the M.Sc. degree in
automation and robotics from the Polytechnic Uni-
versity of Madrid, in 2013, and the Ph.D. degree in
computer engineering and automatic control from
the Universidad Nacional de Educación a Distan-
cia (UNED), in 2017, where he is currently with
the Department of Computer Science and Auto-
matic Control, Computer Engineering School. His
current research interests include robotics, virtual
and remote labs, and virtual reality.

RUBEN HERADIO received the M.Sc. degree in
computer science from the Polytechnic University
of Madrid, Spain, in 2000, and the Ph.D. degree in
software engineering and computer systems from
the Universidad Nacional de Educación a Dis-
tancia (UNED), in 2007, where he is currently
an Associate Professor with the Software Engi-
neering and Computer Systems Department, Com-
puter Engineering School. His current research
and teaching interests include software engineer-

ing, computational logic, and e-learning.

HECTOR VARGAS received the degree in elec-
trical engineering from the De la Frontera Uni-
versity, Temuco, Chile, in 2001, and the Ph.D.
degree in computer science from the Universi-
dad Nacional de Educación a Distancia (UNED),
Madrid, Spain, in 2010. Since 2010, he has been
with the Electrical Engineering School, Pontificia
UniversidadCattolica de Valparaiso. His current
research interests include simulation and control
of dynamic systems, multiagent systems, and
engineering education.

ISMAEL ABAD received the Ph.D. degree in soft-
ware engineering and computer systems from the
Universidad Nacional de Educación a Distancia
(UNED), in 2016. He belongs to the Software
Engineering and Computer Systems Research
Group. This research group has been involved in
software engineering, robotics, and RFID research
projects, since 2004. He is currently an Asso-
ciate Professor with UNED. His current research
interest include ubiquitous computing with hybrid

systems (vision and RFID), and new software architectures for the Indus-
trial IoT.

JOSE A. CERRADA received the M.S. degree in
industrial engineering and the Ph.D. degree from
the Polytechnical University of Madrid, Spain,
in 1979 and 1983, respectively. He is currently
a Full Professor and has been the Head of the
Systems and Software Engineering Department,
Universidad Nacional de Educación a Distancia
(UNED), since 2015. His current research inter-
ests include RFID technologies and software engi-
neering. He is teaching in the area of software

engineering, specifically in the domain of software process management
and improvement. He has participated in more than 30 research projects
(European and Spanish Public Administration).

VOLUME 7, 2019 130119


	INTRODUCTION
	RELATED WORK
	A SOFTWARE TESTING APPROACH FOR AUTOMATED PRACTICE ASSESSMENT
	RUNNING EXAMPLE
	AA FRAMEWORK

	EMPIRICAL VALIDATION: THE 8-YEARS UNED EXPERIENCE
	EXPERIMENTAL SETUP
	RESULTS AND DISCUSSION
	RQ1. DO PROGRAMMING ASSIGNMENTS IN GENERAL, AND THOSE AUTOMATICALLY CORRECTED IN PARTICULAR, HAVE ANY INFLUENCE ON STUDENTS' DROP OUT?
	 DOES OUR AA SYSTEM PROPERLY PREPARES STUDENTS TO COPE SKILLFULLY WITH COMPLEX ASSIGNMENTS CORRECTED BY HUMANS?
	RQ3. DOES THE ASSIGNMENTS' COMPLETION INFLUENCE THE FINAL EXAM GRADE?


	CONCLUSION
	REFERENCES
	Biographies
	DANIEL GALAN
	RUBEN HERADIO
	HECTOR VARGAS
	ISMAEL ABAD
	JOSE A. CERRADA


