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ABSTRACT This paper presents a system enabling a mobile robot to autonomously pick-up objects a
human is pointing at from the floor. The system does not require object models and is designed to grasp
unknown objects. The robot decides by itself if an object is suitable for grasping by considering measures
of size, position and the environment suitability. The implementation is built on the second prototype of
the home care robot Hobbit, thereby verifying that complex robotic manipulation tasks can be performed
with economical hardware. The presented system was already tested in real apartments with elderly people.
We highlight this by discussing the additional complexity for complete autonomous behavior in apartments
compared with tests in labs.

INDEX TERMS Autonomous systems, grasping, human-robot interaction, intelligent robots, mobile robots,

service robots, system integration.

I. INTRODUCTION

Robots have been envisioned as helpers at home for a really
long time. In this direction, great advancements are achieved
every year but, if we look closer, a general multi-purpose
autonomous robotic butler is still far away: it is indeed an
ambitious goal [1]-[5]. An important aspect of service robots
is their potential to support independent living at home for
the elderly, which is becoming a challenge due to the aging
of society. The greatest danger is undoubtedly the risk of
falling [6], [7].

Consequently, the Hobbit robot was developed so as to
increase the old users feeling of safety [8]. In addition to
providing support and calling for help if something hap-
pens, it also incorporates preventive measures: by picking up
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objects from the floor the robot can reduce the user’s chances
of tripping or losing balance.

In order to get closer to the real application, we must leave
the typically fixed experimental setups and start focusing
on real homes. As recently highlighted, it is indeed very
challenging to transfer manipulation abilities from controlled
situations to dynamic and unstructured environments that
require mobility and a seamless integration of different tech-
nologies [9].

We move on and do not let the robot stand in front of
an empty area to grab an object from a nice position, in a
simplified scenario. Instead, we address the whole process:
starting the pick up command via pointing gestures, integrat-
ing autonomous navigation to the selected area, incorporating
methods for the robot to find the object and including a
checking stage to assess whether the object size, properties
and position are adequate for a grasping task. The arm will
start to move, in order to pick up the object, if and only if it
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is possible and safe. Height Accumulated Features (HAF) are
used for grasping previously unknown objects [6].

In the rest of the paper we will discuss and illustrate why
this is significantly more difficult than what other grasp-
ing systems have attempted thus far. Our contribution is
a comprehensive approach for autonomous object grasp-
ing at home. The main novelty is the integration of the
whole pipeline for picking up desired objects in real world
circumstances.

The additional required components include: a mobile
head which must be able to perceive in different directions,
calibration for different distances, recognition of gestures,
long distance detection and abstraction of objects as well as
the robot movement towards a suitable position close to the
object, avoiding obstacles if necessary. Moreover, a proper
behavior coordination to handle different possible situations
is needed. When you really go into the actual homes of users,
it is very important that the robot does not break itself and
only intervenes if there is no significant risk. The robot should
also be able to recover from mistakes, retry the grasping
if necessary or at least should be able to tell whether it
succeeded or not.

Assistive robotics is a complex and wide field, and grasp-
ing objects from the floor from a mobile platform is one of
the biggest challenges. Even though the scope of all of them is
very different, a number of previous publications are related
to this article, so we will briefly mention the ones that best
help understand all the context. The first contributions for
grasping unknown objects in cluttered controlled scenarios
by means of machine learning techniques and specifically
extracted features such as HAF were presented in [10]-[12].
The interested reader is referred to the extended detailed
version with more experiments [6]. The first prototype ver-
sion of the Hobbit robot for multiple tasks and results from
laboratory trials were described in [13]. This version included
a preliminary set of functions to check whether an object
should be grasped or not but the limited arm kinematics and
a slow method to decide if the task was successful or not,
together with limited navigation capabilities, resulted in a not
very impressive overall performance. The sensor setup con-
figuration for the multi purpose assistive robot was discussed
in [14]. The whole robotic system for the elderly based on
the second prototype was already presented in [8]. This work
included a high level general overview of all components and
functionalities of the system. It also presented the lessons
learned from field trials conducted with real users in their
own homes for up to three weeks, mostly from a Human-
Robot-Interaction perspective. Other papers explain certain
parts of the system and their own challenges, such as RGB-D
navigation in real homes [4], [15]. This article focuses on the
advanced capabilities for autonomously picking up selected
objects from the floor. We discuss the motivation and dif-
ficulties, provide a literature review and then explain the
main requirements and detailed components as well as how
we integrated them, finally showing our most relevant and
innovative results.
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The paper is organized as follows. In the next section
we discuss related work. In Section III we describe the
hardware and discuss contradictory design requests for a
multi-functional assistive robot. Section V presents the com-
ponents for the picking up scenario: i.e. navigation, fine
positioning, grasping and failure detection. In Section VI we
present our test results. Thereby we also focus on trial runs
in which the robot should decide not to grasp, since safety
for the user and the robot itself is a main issue for robots
autonomously operating in real human environments.

Il. RELATED WORK

The problem of picking up objects lying on a plane was
addressed by Xu et al. [16]. In this work, the authors used an
iRobot Create with an additional 1-DOF arm and a compliant
finger to sweep an object onto a flat surface mounted on the
robot and hold it there. For this approach a non-prehensile
manipulator was employed. No sensor data were consid-
ered for controlling the predefined manipulation sequence,
the robot was assumed to be already placed at a position
from where the grasping script would succeed. A success
rate of 94.71% in 680 trials -combining 4 floor types with
34 objects of particular relevance to assistive applications
in 5 different poses each (4 x 34 x 5 = 680)- showed
very good results. Even for objects like coins, credit cards,
keys, a dollar bill and a pill the system had an impressive
performance. In [17] an improved version of the robot which
was able to lift objects for delivery was presented and evalu-
ated with 20 people suffering from ALS. For these trials the
robot was controlled by the test users, who decided where to
place to robot and which pick up step should be started each
time.

In [18] an intelligent assistive robotic 6-DOF manip-
ulator was introduced for grasping objects for people in
wheelchairs. In this work no systematic evaluation of the
grasping process is documented. A number of other publica-
tions also present wheelchair-mounted robot arms (WMRAs)
(e.g. [19]-[22]) to assist users in performing various tasks
including object pick up and object release.

Grasp evaluations on a PR2 robot for known objects and
unknown objects [10]-[12] in a predefined setup achieve
good success rates, but these works are assuming special
conditions and do not deal with a number of issues that make
the picking up task presented in this paper more complex:
navigation (including localization and obstacle avoidance),
accurate fine positioning relative to the object, changing
position of the robot camera and limited perception qual-
ity due to a higher distance between the camera and the
object.

Several autonomous mobile robots have been developed to
fetch and deliver objects to people [23]-[26]. None of these
publications evaluates the robot to grasp objects from the
floor, and none of these publications evaluates the process of
approaching an object and grasping it as a combined action.

Recent work by Levesque et al. focused on grasping
difficult unknown objects -including thin objects- with a
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commercial arm and a commercial gripper [27]. A con-
trolled scenario was established, with no navigation and no
sophisticated perception required. The width and thickness
of the detected objects was checked to decide the most robust
method in each case. Kasaei et al. highlighted the impor-
tance of tightly integrating perception and manipulation for
enhanced robustness in service robotics [28]. They developed
a learning based framework, exploiting a Working Memory
and Perceptual Memory system and incorporating human
instruction capabilities. A commercial robotic arm and an
external RGB-D sensor were used for the evaluation. No nav-
igation was involved in this work.

Another approach [29] uses an in-hand camera to detect
three objects at fixed positions, evaluating 3 different
interface-methods to chose the object to be grasped. The pro-
cedure works as follows: the user selects an object, the robot
moves there, the robot places the arm above the object,
the object is segmented from the in-hand camera image,
the gripper is positioned and it goes down until tactile sensors
touch the object, then the gripper is closed. A success rate
of 94.8% was achieved, given that the robot could repeat the
grasp trial up to 4 times when it failed. A total of 134 trials
were performed with 8 users. The interesting follow up work
presented in [30] proposed a highly specialized system for
the purpose of picking up. This new version included laser
based object pointing, navigation using odometry and col-
lision checks, with very promising results. Using odometry
presents well known limitations that map based navigation
overcomes.

This article presents a robot that is able to provide a number
of additional functions using cheap components. The ability
to provide many functions with contradictory requirements
for the hardware design creates demanding challenges on its
own. To the best knowledge of the authors we are the first
ones to present a realistic autonomous pickup evaluation on a
sophisticated multi-functional robot that is additionally low
priced in production (final total price of the whole system
around 15000 Euro).

IIl. MULTI-FUNCTIONAL LOW COST

ROBOT HARDWARE

Multi-functionality and low cost production go hand in hand
with suboptimal conditions for specific grasping tasks. Fur-
thermore, the required autonomy of an unsupervised service
robot for private homes demands a very robust hardware
system that is not easily damaged. As a result, the design
should include a low number of potentially breakable sen-
sors, motors and other devices. An overcautious behavior is
preferred. An achievement of the presented work is to cope
with unavoidable compromise conditions regarding a grasp-
ing task. In this section we introduce the robot components,
explain the shortcomings regarding a pickup task and mention
possible improvements and their implications regarding low
cost, multi-functionality or system complexity requirements.
A total price below 15000 Euro was achieved for the whole
robot.
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A. MOBILE PLATFORM

The second prototype of Hobbit is based on a differential
drive system with two driving wheels on the front side (main
driving direction) and a castor wheel close to the back side.
A holonomic robot could compensate fine positioning errors
of the robot and hence dynamically compensate shortcomings
of the manipulator kinematics. However, using an omnidirec-
tional platform would significantly increase the robot cost,
making it difficult to satisfy affordability requirements.

B. PERCEPTION (RGB-D CAMERAS)

Hobbit PT2 uses 2 Asus Xtion Pro cameras. One camera is
mounted in the front area of the robot’s base, 35 cm high, and
is used for localization. The second camera is positioned at
the head, 125 cm above the ground, and is used for obstacle
avoidance, object learning, user and gesture detection and
for picking up objects. The position of the head camera is

suboptimal for picking up objects from the floor regarding:
« Height, since there is reduced resolution due to the

sensor distance to the floor
« Field of view, since there are self occlusions and there is
little overlap between the graspable area of the manipu-

lator and the detection area of the sensor
The low cost depth camera imposes a minimal distance for

user detection and for object learning requiring manipulation,
and also for obstacle avoidance, so the sensors configuration
was chosen as a compromise solution to achieve the desired
multi-functionality [14]. Additional cameras, such as a cam-
era for visual servoing in the robot hand, or technical add-ons,
to get more degrees of freedom for positioning the cameras,
would create a conflict with the low cost, low complexity and
high robustness demands.

Localization can be crucial for a complex pickup task. It is
needed for the robot to decide which objects lay in a graspable
area (e.g. not too close to walls) and to plan a collision free
path towards the object. The base camera used for localization
has a field of view of about 60°, which is rather small com-
pared to laser scanners with at least 180° field of view, and it
presents a significantly shorter maximum range, which may
hinder localization. However, the cost is significantly lower
and we found this kind of domestic navigation not perfect but
feasible [4]. Details, limitations and advantages of our sensor
setup for navigation are included in [4], [14].

C. HEAD AND NECK

The head, designed and built by Blue Danube Robotics,
is equipped with the top Asus Xtion Pro sensor mentioned
above, an infrared camera, two Raspberry Pis with displays to
show emotions and two speakers. Two servos enable horizon-
tal and vertical head movement. The head is still a prototype
and considerable force is needed for active head movement.
In certain positions, the head load results in inaccurate servo
feedback. Small deviations of the servo feedback result in arm
to head calibration errors which can lead to failed grasps.
Again, a trade-off between cost and functionality led to the
chosen hardware setup.
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FIGURE 1. The robot gripper. Left: while the arm is moving in order to
grasp an object. Middle: before grasping an object. Right: after grasping
an object.

D. ARM

As manipulator, we used a 6-DoF IGUS arm with step-
per motors to move the joints via Bowden cables made
of Dyneema. The best grasping results can in general be
achieved if the gripper is approaching a grasping position for
an object in a straight trajectory, without changing the gripper
orientation. This way pre-mature contact between gripper and
object due to calibration errors or not perceived object data
can be minimized. For the 6-DoF arm, the area where inverse
kinematic solutions for straight gripper trajectories with fixed
gripper orientations can be found is strongly limited, even for
short (10 cm approx.) trajectories. Using a 7-DoF arm to solve
this issue would conflict with system robustness require-
ments, specifically due to the Bowden cable construction.
Cost requirements would not be respected either if making
such a decision. The arm is non-compliant, so a cautious
behaviour is required for non supervised actions.

E. GRIPPER

Hobbit is equipped with a Festo fin-ray gripper with one
degree of freedom developed by Hella Automation (see
Fig. 1). The design and construction of the plastic fingers
is suitable for form-adaptable grasps. Even though there are
shortcomings compared to more advanced grippers that offer
less gripper force and maximum payload, given that the price
of advanced grippers [31] exceeds the overall price of the
Hobbit robot, the fin-ray gripper was deemed a reasonable
choice.

IV. OBJECT AND ENVIRONMENT SPECIFICATIONS FOR
GRASPING

We specify what type of objects can be grasped and which
environmental conditions are admitted.

o Object size: the smallest side of the object is at least
of 20 mm and not larger than 100 mm, the opening width
of the gripper. Objects should be shorter than 30 cm to
fit into the tray of the robot.

o Object weight is up to 500 g for the fully extended arm.

o The surface properties of the objects are opaque and
matte. Glossy parts of the surface may contain reflec-
tions that do not allow object recognition. Object surface
properties should be different to the background surface
properties, for example with different colours.
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« Soft deformable objects such as a kitchen cloth or foam
pieces are admitted

« Environmental conditions are such that illumination
should correspond to an indoor lighting situation with
no direct sun light and no light from electric bulbs
with more than 500 Lux (equivalent to cloudy daylight).
This condition is also acceptable if there is no ambient
illumination, for example, at night.

« Object situation in the environment: The robot must be
able to approach the location of the object (enough space
to come close enough to the object). There needs to be
free space between the robot and the object so that the

robot arm can freely reach the object.
Most other works existing in the literature also present

similar limitations and restrictions but do not always explic-
itly mention them. Jain and Kemp [30], for instance, check
whether the object to be grasped fits or not between the
fingers of the gripper, discarding objects larger than 12 cm
along the direction of minimum variation. Gualtieri et al. [22]
highlight limitations related to the point of view and distance
from the camera to the object in order to plan a trajectory for
information gathering.

V. COMPONENTS FOR THE PICKING UP SCENARIO
For a whole picking up scenario we propose several compo-
nents, considering a number of possible situations that are
usually encountered in the real world. The implemented state
machine is depicted in Figure 2 for illustration purposes,
to show how all these components were integrated within our
system. Please note that a controlled individual pickup task
would require just a minimum subset of this system diagram.
The overall process works as follows. In the first place,
the pick up function may be triggered by pressing a button
from the tablet user interface mounted on the robot or by the
voice command ‘“Hobbit, Pick up”’. Then the robot asks the
user to point at an object. If the gesture is properly recognized,
the robot starts to navigate towards a pose from which the
selected object can be perceived. Once there, the robot head
moves so as to look at the approximate position of the object.
If the object is detected, simple discrete motion commands
are applied for a fine positioning of the robot relative to the
object, in order to reach a final pose from which grasping
is possible. If grasping the object is deemed safe, the robot
executes the arm trajectory and subsequently checks whether
the object was successfully picked up. If not, it will try again.

A. PERCEPTION OF POINTING GESTURE

For detection of the user and recognition of a pointing gesture
we use the work presented by Michel et al. in [32] combined
with a full body skeleton tracking solution. This method is
based on the detection and tracking of body parts across
RGB-D frames, using a layered representation of a hand
model and comparing a set of possible candidates in terms
of geometric shape and trajectory properties. For the picking
up application, the user’s arm which is further away from
the center of the human body is always the one selected.
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To rule out unintentional or wrong pointing gestures and
enhance the accuracy of the detections, several checks are
performed. In the first place, a plausibility check is applied to
determine whether the pointing gesture is pointing towards
the floor. Then a pointing gesture is only accepted as valid
if the pointing direction is similar enough to the previous
one. Pointing gestures are calculated at a rate of 15 frames
per second. This provides a 2D goal to be reached in a safe
manner by the map based navigation system, as described
below.

B. NAVIGATION

As outlined before, autonomous navigation in real user homes
using RGB-D perception presents numerous challenges. We
integrated MIRA [33] navigation methods into our ROS
based framework and extended it for several functionalities.
GMapping [34] was used for building occupancy grid maps
of the user homes in an initial setup phase. New detected
obstacles not included in the map are remembered for a while
to overcome the short range blind detection area of the sensor.
Our developments, adopted solutions and identified issues are
analyzed in more detail in [4], [15].

C. FINE POSITIONING

To guarantee an exact position of the robot to bring the arm
in a position where the gripper could approach the object
in a straight line before closing, the accurate movement to
the grasping position can be done as a relative movement
to the object instead of using global navigation. This is
crucial since the overlapping region where the head camera
can perceive objects and the 6-DoF arm can generally exe-
cute straight movements towards the floor without changing
the orientation of the gripper is limited to a more or less
15 cm x 10 cm area.

D. GRASP POINT DETECTION

For calculating grasps, we use the method of Height Accumu-
lated Features ( [6]). Height Accumulated Features provide
a compact representation of local shapes that reduces the
complexity of a perceived point cloud input, increases the
value of the given information and hence enables the use of
machine learning for grasp detection of unknown objects in
cluttered and non cluttered scenes. Basically, the best position
where to place a 2-finger gripper given an arbitrary surface of
an object is learned.

E. GRASP PLANNING

For the calculation of a grasp trajectory the simulation envi-
ronment OpenRAVE [35] is used. The perceived floor plane
is detected and removed and the remaining object data is
segmented and added to the simulation environment for col-
lision checking and hence to calculate how close the gripper
can get to the object. To optimize the grasp success rate,
experience shows that a straight gripper movement perpen-
dicular to the closing direction of a two finger gripper gives
the best results and can best compensate small errors due to
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FIGURE 3. To decide if an object was grasped, we check whether a
pattern can be detected on the gripper. The marker will only be detected
if the gripper is closed without an object in between the fingers (see the
first picture). In any other case the marker cannot be detected (see
pictures 2-5).

not perceived object surfaces or inaccurate data (e.g due to
camera calibration or erroneous angles of pitch-yaw servos).
Experiments in OpenRAVE showed that straight movements
without changing the gripper orientation from a height around
20cm down to the floor are strongly limited for our 6-DoF
robot arm. The tested area is reduced to the visible area of the
head camera. The Bi-directional Rapidly-Exploring Random
Trees (BiRRT) [36] method used for arm path planning in
OpenRAVE achieves good results for a 10 cm x 15 cm
area. This algorithm combines two RRTs connected at the
start and goal configurations and was originally designed for
7 DOF arms motion planning. Due to the randomized nature
of this state-of-the-art method, valid trajectories are not guar-
anteed. To enhance the probability of getting valid trajectories
the gripper approach angle is modified after 40 attempts to
find a suitable trajectory. After 200 tries the system notifies
that no suitable trajectory was found. Due to accurate fine
positioning and the variation of the gripper approach angle,
trajectories are generally found by our system. These results
were hard to achieve by our previous version based on global
navigation only.

F. VISUAL GRASP SUCCESS EVALUATION
We developed three methods for grasp success evaluation
based on vision. For the first method an easy-to-detect marker
was cut and fixed on an elastic overlay specifically developed
for the fin-ray fingers of our robot [37]. The marker parts
were placed so that the pattern can be observed only when the
gripper is closed (see Fig. 3). If an object is grasped there must
be a gap between the fingers and hence the marker will not
be detected, which is a first indication of a successful grasp.

In rare situations the deformable fingers kept a slightly
curved shape even without holding an object, which made
us switch to an even more reliable grasp detection method.
This second method is based on the detection of the gripper
from visual RGB-D cues, directly checking if an object is
detected between the gripper fingers [38].

A third method relies on moving the last link of the arm to
check if there is still an object at the place where it was before
(see Fig. 4). For the experiments in Section VI we used this
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(a) Grasping the object (b) Lifting it up (c) Moving the object

FIGURE 4. Checking whether grasping was successful or not. (a) Grasping
attempt. (b) The object is lifted. (c) The object is moved forward to check

if something has changed at the previous position of the object on the
floor.

last method only, since it is completely sufficient for the test
scenarios with single objects on the floor and it showed the
highest reliability.

V1. TESTS AND EXPERIMENTS

The system was tested in the lab, in several event demos and
in real home user trials. Different challenges were encoun-
tered and methods to deal with them were designed, imple-
mented, adjusted and tested.

A. LAB EXPERIMENTS
In the lab environment we executed a number of experiments
to evaluate different aspects of our system.

1) EXPERIMENT 1

In the first experiment we mainly tested the global naviga-
tion capabilities, conducting ten tests with the robot. The
object to be grasped was a piece of foam with dimensions
4 cm x 5 cm x 12 cm which was placed exactly 2m in front
of the robot. A perfect gesture command was sent to the robot
(no real detection), simulating a user who would exactly point
at the position of the object. In all the experiments the robot
was able to follow a path to the object, i.e. to a position from
where it could find and properly segment the object. However,
the final position reached by the robot by means of global
navigation was not accurate enough with respect to the object
for the limited workspace described in V-E. In eight out of the
ten test runs the robot had to be manually turned a bit by the
experimenter until the object could be found in the area where
grasping was possible. Then the object was autonomously
grasped by the robot in all the tests. In one out of the ten
trials the first grasp failed (probably because the scene was
perceived while the robot was still being manually rotated).
Since the checking procedure described in V-F detected the
failure, the grasp was repeated and the second attempt was
successful.

2) EXPERIMENT 2

In a second experiment we calculated a suitable position for
grasping relative to a found object. The robot can then reach
this position from the global navigation goal by rotating the
given angle and moving forward the given distance (as long
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as no obstacles are in the way). A final rotation may also be
applied if necessary.

Ten tests were again conducted for the same object as
in the first experiment. The position of the object and the
gesture were fixed and provided likewise. In nine out of the
ten runs the whole process was successfully completed in
a fully autonomous manner: the object was reached, found,
accurately approached for grasping, accepted, grasped, veri-
fied and moved to the robot tray. In one of these nine trials
the robot had to grasp a second time, after the gripper failed
to move towards the floor (probably due to a hardware issue).
In the tenth run, the experimenter was forced to turn to robot a
bit, until it could see the object. After this help, the robot pro-
ceeded autonomously and successfully completed the task.
A subsequent analysis of this single failure showed that a rota-
tion angle of —9.48° was calculated for the fine positioning
movement. It turned out that the minimal degree for discrete
motion rotations in MIRA was set to 10°, so the robot did not
turn at all and slightly missed a suitable position for grasping.
For further test runs this limitation could be easily solved.

3) EXPERIMENT 3

In the third experiment the object to grasp was a
3cm x 5 cm x 9 cm Aspirin box lying on the floor. This
time we varied the position of the obstacle around 50cm in
each direction (except the z-axis) and let the experimenter
point to the object, so the system had to detect the pointing
gesture itself. We conducted ten test runs. From the first five
runs four were successful and one time the arm did not react
when it should go down, which caused the termination of this
run without any more attempts.

For the last five runs the gripper touched the object before
trying to grasp it. Collisions between the gripper and the
object would not be possible if the object point cloud data
were complete and accurate, since then the simulation would
stop the arm before a collision could take place. Besides
camera calibration errors (especially related to head camera
pitch angle servo values), an important cause for premature
collisions between gripper and object was the acquisition of
incomplete object surface data. Fig. 5 shows an example of
a bad quality data point cloud that was perceived from the
Aspirin box in these tests. This experiment was conducted
in a corridor with direct sun incidence and we concluded
that the lightning conditions were the main reason for these
problematic perception results.

4) EXPERIMENT 4
For autonomous robots safety is crucial. To decide and eval-
uate when it is safe to avoid grasping or robot movement is
even more important than successful grasps, since incautious
robot movements can cause material damage of household
items or the robot hardware itself, and in the worst case can
injure the target users, who are physically not in the best
conditions.

In experiment number four we tested if objects are gras-
pable. For grasping from the floor the system first detects
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FIGURE 5. Perceived object mesh for the Aspirin box. Next to it we added
the approximate orientation and size of the real box. Due to the missing
surface a suboptimal grasp was detected, which led to premature
collisions between the gripper and the object.

FIGURE 6. Objects which are too close to a wall or a fixed obstacle
should not be grasped.

FIGURE 7. The used suitcase is too large for grasping and is properly
excluded by the feasibility check.

and removes points from the floor plane and segments the
remaining data. The system decides whether the segmented
objects are suitable for grasping by criteria such as position,
maximal height, minimal and maximal number of received
points per segmented object, distance to walls or other fixed
obstacles. For this experiment we placed one or two objects
near a door or a wall (see Fig. 6) and used a heavy big suitcase
(see Fig. 7) to test the grasping feasibility decision making of
the robot.

In Fig. 8 we show one reason why it is so important
to exclude objects near fixed obstacles such as a wall, and
thereby define regions for grasping. We can see the foot of
a small table that is partially perceived by the robot. The
perceived part has a valid height and size due to fact that the
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(a) Object to grasp (b) Scene from head view

FIGURE 8. The foot of the small table was partially perceived. Only by
checking if the object is near a wall or a fixed obstacle the system can
rule the object out as feasible for grasping (after the corresponding
approximation to the object).

.

(a) A chair blocking the object.

(b) A user blocking the robot arm.

FIGURE 9. Situations in which additional obstacles or a user make
grasping unsafe.

rest of the small table was not perceived because it was not in
the field of view.

In all ten test runs the system decided not to grasp an object,
due to its size or distance to the wall. In two cases the object
was placed directly at the wall and was therefore not seg-
mented and hence not eligible for grasping. The experiment
also showed that objects that are not intended to be grasped
are often segmented (in the experiments up to 6 objects were
segmented). These objects can often be rejected due to the
position where they are found, since when the robot starts
to search for the object it already knows roughly where it is
supposed to be.

5) EXPERIMENT 5

In the last experiment we tested if the robot avoids grasping
when an additional obstacle such as a chair (9(a)) or a user
(9(b)) is blocking the space needed for grasping.

Ten tests were performed and in all ten test cases the arm
movement was not executed due to the new obstacles located
inside the working space of the robot arm.

Table 1 presents a summary of the previously described
results for these experiments conducted in the lab environ-
ment. Hardware problems include critical and not critical
ones, i.e. those that could not be overcome in a second attempt
and those which were followed by another try. Successful
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TABLE 1. Summary of lab experiments. More details and explanations can be found in the text.

Description

Hardware problems

Global navigation, perfect gesture sent
Global navigation + fine positioning, perfect gesture sent
Global navigation + fine positioning, real gesture
Grasping avoidance due to distance or size
Grasping avoidance due to obstacles

L R S
SO o~ O

Human assistance needed | First attempt grasping failures | Successful cases
8 (small rotation) 1 10
1 (small rotation, fixed) 1 10
0 0 4
0 - 10
0 - 10

(e) Finding the object (f) After fine positioning

(g) Grasping the object (h) Releasing the object

FIGURE 10. Grasping an object initially out of the field of view. Check the multimedia material for the whole process video.

cases include those that required human assistance as well as
those that required a second grasping attempt, provided that
they were considered good in the end.

B. GRASPING AN OBIJECT INITIALLY OUT OF THE FIELD
OF VIEW

Our approach for fully autonomous behaviour allows the
robot to grasp objects which are not initially in the camera’s
field of view. This is an especially challenging task which
requires proper integration of perception capabilities and
grasping capabilities with navigation capabilities, including
obstacle avoidance. An example of the whole process in this
situation is depicted in Fig. 10. More information can be
found in the multimedia material.

C. USER TRIALS

User trials with real users in their own apartments were
conducted for up to three weeks per user in Austria, Sweden
and Greece, including a total of eighteen users. For details
regarding the whole system and the user trials information
the reader is referred to [8].

Some of the user comments regarding grasping failures
were: “I tried a couple of times but Hobbit never saw the
object”, “Hobbit is stupid, it can’t see the object even though
Hobbit turns its head in the right direction”, “Why can’t
Hobbit see the object?”’, in accordance to the fact that most of
the problems were indeed related to RGB-D perception and
head calibration limitations.

VOLUME 7, 2019

FIGURE 11. Examples of pick up tasks during pilot trials and review
meetings.

Reasons why a whole pickup task was aborted may be
divided into two main groups, either the user stopped the task
or the robot stopped the task. Regarding the former, often the
users activated other tasks or simply pressed the “Cancel” o
“Back” button on the tablet. Regarding the latter, sometimes
no valid pointing gesture was detected, sometimes no valid
object was detected and sometimes a higher priority task was
initiated.

Prior to conducting the user trials, several pilot studies and
review meetings took place. Testing the system in real domes-
tic environments in a supervised manner gave us insight-
ful experience to deploy, check and evaluate the proposed
integrated methods. Fig. 11 shows a couple of examples of
successful picking up tasks in this kind of setting. The sup-
plemental video shows an example of performance at a real
user’s home and Fig. 12 shows a few additional images of this
and other pick up tasks in real elderly home environments.

Table 2 shows illustrative time measurements of differ-
ent functions involved in a pickup task in real homes.
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TABLE 2. Approximate time results for real experiments.

Autonomous global navigation (s) | Fine positioning (s)
1 11 10
2 15 11
3 8 -
4 12 11
5 8 -

Grasp execution (s) Success evaluation (s) Release on tray (s)
50 15 16
46 15 18
38 15 15
40 15 15
37 14 15

FIGURE 12. Examples of pick up tasks at actual users’ homes.

The autonomous global navigation time provides an estimate
of how far or hidden was the object to be grasped. The absence
of data for fine positioning in cases three and five indicates
that no further movement relative to the object was needed,
even though some time was indeed spent in moving the head
and deciding this. The grasp execution time is the time since
the arm begins to move until it stops for the validation check.
The time spent in success evaluation is the time required to
move the arm and check if the object is still on the floor or not.
The last column of the table shows how long it took to bring
the object to the robot tray. Please note that head movements
and transition times between functions are not included here.

VII. CONCLUSIONS AND FUTURE WORK

This paper addressed the problem of grasping objects from
the floor in real world conditions, focusing on issues related
to fully autonomous behaviour. The robot hardware and
all the required components for a completely autonomous
grasping scenario were described, together with the proposed
architecture. The developed components include: pointing
gestures perception, navigation including obstacle avoidance
capabilities, fine positioning with respect to the object, grasp
point detection, grasp planning and visual-based grasping
success evaluation. Additional methods to check whether an
object should be grasped or not in realistic applications were
conceived, incorporated and evaluated in the lab environment.
Examples of challenging situations and grasping tasks per-
formed in real user homes were also shown.

Future research lines identified after conducting this work
are related to further increasing the level of robustness and to
making the system responses faster, always keeping safety as
the main requirement.
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