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ABSTRACT Bilateral filtering (BF), which is an edge-preserving filtering (EPF) method, has been widely
recognized as a simple and efficient approach for hyperspectral image (HSI) feature extraction. However,
due to the limitation of spatial resolution and the influence of the complexity of land feature distribution in
HSIs, updating the target pixel through weighted averaging of neighbouring pixels is prone to generating
mixed pixels, i.e., the updated target pixel is mixed with the feature of other land objects in addition to
that of the target object, decreasing the quality of the image feature extraction. To address this problem,
in this study, we propose a superpixel-based BF algorithm, SuperBF. This algorithm divides a HSI into many
homogeneous regions via superpixel segmentation and then separately filters each homogenous region via
BF; this approach ensures that the pixel structure in the template after BF is similar to that in the filtering
process, reduces the probability of generating mixed pixels, and thus improves the quality of the image
feature extraction. To verify the effectiveness of this proposed method, a support vector machine (SVM)
classifier is used to classify the extracted SuperBF features. Experiments on three commonly employed HSI
datasets demonstrated that SuperBF is significantly superior to the traditional BF-based hyperspectral feature
extraction method and some new feature extraction methods.

INDEX TERMS Superpixel, bilateral filtering, feature extraction, hyperspectral images.

I. INTRODUCTION
Ahyperspectral image is a digital image of hundreds of
narrow spectral bands and visible infrared spectral bands
acquired by satellite sensors [1]–[4]. It can not only
provide spatial characteristic information about ground
objects [5]–[8] but also contain rich spectral characteristic
information that reflects the unique physical properties of
the ground objects [9]–[12], which enables accurate detec-
tion and recognition [13], [14] and attribute analysis of the
ground objects, even when the label information is contam-
inated by noise [15]–[17]. HSI has an active role due to
its unique advantages in the fields of precision agriculture,

The associate editor coordinating the review of this manuscript and

approving it for publication was Guitao Cao .

forest protection, marine monitoring, and military reconnais-
sance [18]–[21].

Feature extraction of HSIs is a key technology in remote
sensing science; numerous studies in this area have been
reported [22]. Chen et al. [23] used propagation filtering
to extract HSI features and improve the performance of a
classifier. Jiang and Ma [24] proposed a superpixel princi-
pal component analysis (SuperPCA) approach to integrate
spatial context information about a HSI into unsupervised
dimensionality reduction via superpixel segmentation and
extract the discriminative, compact, and noise-resistant fea-
tures. SuperPCA is a simple but very effective method. Just
like PCA, it can be easily added to the pre-processing of exist-
ing methods. Li et al. [25] proposed a classification paradigm
that utilized the texture features of HSIs and used a local
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FIGURE 1. Schematic of SuperBF-based Classification for HSIs (S is the number of regions after ERS segmentation).

binary pattern (LBP) to extract local image texture features,
obtaining excellent classification results. Zhou and Wei [26]
proposed a deep hierarchical model of a spectral space net-
work (SSN) and extracted spatial and spectral features of
HSIs. The results showed that the SNN has excellent robust-
ness and accuracy. Pan et al. [27] proposed the R-VCANet
deep learningmethod, which can combine spectral and spatial
features using a rolling guide filter (RGF) and extract the
depth features of HSIs using the new vertex component anal-
ysis network (VCANet). The obtained features had a more
powerful expression ability.

Recently, bilateral filtering (BF) was used to update
the target pixel by weighted averaging of the neighbour-
ing pixels through the spatial distance and the pixel value
distance within the template, which has been demon-
strated to be effective for feature extraction of HSIs [29].
Kang and Li [30] proposed a spectral-spatial feature extrac-
tion classification method that is based on edge-preserving
filtering (EPF) and employs BF and guided filtering to
ensure that a smooth probability is aligned with the edge
of the real object; the method obtains reasonable results.
Shen et al. [31] proposed a spectral-spatial feature extrac-
tion method for extreme learning machine (ELM) classi-
fiers, which can improve the accuracy of the kernel-based
ELM classifier by extracting spectral-spatial features via BF.
Wang et al. [32] applied a combination of BF and graphic
cutting technology to extract spectral-spatial features and
improve the classification performance. Soomro et al. [33]
combined elastic net regression and BF to extract spectral-
spatial features, which improved the accuracy of the
classifier.

However, due to the limitation of spatial resolution and
the influence of the complexity of land feature distribution
in hyperspectral remote sensing images, updating the tar-
get pixel through the weighted averaging of neighbouring
pixels is prone to generating mixed pixels, i.e., the updated
target pixel is mixed with the feature of other land objects
in addition to that of the target object, decreasing the qual-
ity of image feature extraction. A superpixel BF algorithm
(SuperBF) was proposed to extract HSI features. The specific
framework is shown in Fig. 1 schematic of SuperBF-based

Classification for HSIs. First, the HSI is segmented into
many different regions via superpixel segmentation, and each
region is considered to be a homogeneous region with a
similar structure [34]. Second, each of the segmented homo-
geneous regions is filtered using BF. As the structural simi-
larity of the pixels in the segmented homogeneous regions is
extremely high, the possibility that the updated target pixel
contains the features of other categories decreases, thus low-
ering the probability of mixed pixel generation. To verify the
validity of the extracted features, the extracted features are
classified using a common support vector machine (SVM)
classifier.

The remainder of the article is organized as follows.
The second section briefly introduces the entropy rate super-
pixel segmentation (ERS) algorithm and the related topic
of BF; it also describes the feature extraction algorithm for
HSIs based on SuperBF. The third section shows the exper-
imental results and analysis. The fourth section presents the
conclusion.

II. SUPERBF-BASED FEATURE EXTRACTION ALGORITHM
FOR HYPERSPECTRAL IMAGES
A. ERS METHOD
In reference [35], the source image is replaced with a
weighted undirected graph. Each pixel of the source image
is treated as a node of the undirected graph. The similarity
between the two nodes is employed as the weight between the
two nodes. An objective function that combines the entropy
rate of a random walk on a graph and a balancing term is
employed. The segmentation result is obtained by iteratively
maximizing this objective function. This method projects the
image to an undirected graph G = (V ,E), where V is the set
of vertices of the graph, E is the set of edges of the graph,
and the weights of the edges represent the similarity among
the vertices, which is quantified by the weight function ω :
E → R+ ∪ {0}. The graph is divided into connected subsets
by selecting a subset of A ⊆ E , and the undirected graph
G = (V ,E) is composed of smaller connected components /
subgraphs. In the objective function of ERS, the superpixel
segmentation is optimized by combining the entropy rate term
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FIGURE 2. Schematic of BF and SuperBF weighting (The red box is (2δα + 1)× (2δα + 1) BF template, the area within the purple boundary is a
homogeneous region, and different colours denote different categories.).

H (A) and the balancing term B (A).

A∗ = argmaxTr {H (A)+ αB (A)} , s.t.A ⊆ E . (1)

where α is used to balance the contribution of the entropy
rate term H (A) and the balancing term B (A). This function
ensures a higher degree of similarity and homogeneity among
the pixels within the segmentation regions. The first term can
help form a uniform and compact cluster, while the second
term can be used to encourage the clusters of similar size.

B. PRINCIPLE OF BF
BF is a type of nonlinear filter. The weighting coefficient is
a nonlinear combination of a spatial distance measurement
function and a grey value distancemeasurement function. The
specific equations are expressed as follows:

Os =
1
Zs

∑
t∈Ns

ωs,t It (2)

Os =
1
Zs

∑
t∈Ns

Gδα (‖s− t‖)Gδγ (‖Is − It‖) It (3)

ωs,t = Gδα (‖s− t‖)Gδγ (‖Is − It‖) (4)

Zs =
∑
t∈Ns

Gδα (‖s− t‖)Gδγ (‖Is − It‖) (5)

where O is the output pixel grey value after filtering; I is
the input pixel grey value; Is and It represent the grey values
of the pixels s and t , respectively; ωs,t is the weight of the
pixel t; Zs is the filter normalization factor; δα is the filter
radius; δγ is the filter ambiguity; Ns is the template with the
centre as pixel s and the window size as (2δα+1)× (2δα+1);
and pixel t represents a pixel at any position in the template.
Gδα (‖s− t‖) is a spatial proximity measurement function,
‖s− t‖ is the Euclidean distance between any pixel t and the
target pixel s in the template, Gδγ (‖Is − It‖) is a pixel grey

scale similarity measurement function, and ‖Is − It‖ is the
pixel value distance between any pixel t and the target pixel s
in the template. These twomeasurement functions are defined
by Gaussian function:

Gδα (‖s− t‖) = exp

(
−‖s− t‖2

2δ2α

)
(6)

Gδγ (‖Is − It‖) = exp

(
−‖Is − It‖2

2δ2γ

)
(7)

C. SUPERBF-BASED FEATURE EXTRACTION
ALGORITHM FOR HSIS
According to Eq. 2 through Eq. 7, when BF is performed
for HSIs, if the distance between the non-structural similar
pixels and the target pixel is relatively small, i.e., ‖s− t‖ is
small, its influence on the output value may be greater than
that of the pixel points with a similar structure and large dis-
tance; accordingly, the proportion of non-structurally similar
pixels in the updated target pixels will increase, making the
method more prone to generating mixed pixels. As shown
in Fig. 2a, BF assigns the weights to all non-structural similar
pixels (such as the blue and the brown areas), which has
a large negative impact on the output value and increases
the abundance of non-structurally similar pixels, inevitably
resulting in mixed pixels. In addition, the features of HSIs
differ from those of general images. HSIs have many homo-
geneous regions, and the pixels in each homogeneous region
are more likely to be structurally similar [36]. As shown
in Fig. 2b, due to the limitations of BF and the characteristics
of HSIs, homogenous regions can be reasonably segmented
based on the homogeneity characteristics of HSIs, the area
within thepurple boundary is a homogeneous region; then
the homogenous regions can be separately filtered by BF,
the homogeneous region of the yellow part is filtered, which
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Algorithm 1 Algorithm of SuperBF-Based HSI Feature
Extraction
Data: HSI I = (I1, I2, · · · , In) ∈ Rd×n, d is the

dimension, n is the number of pixels, is the filter
radius, δα is the filter radius, δγ is the filter
ambiguity, and S is the number of regions after
ERS segmentation.

Result: O = (O1,O2, · · · ,On) ∈ Rd×n.
1 Segment the HSI into S homogeneous regions using
Eq. 8;

2 for i = 1:S do
3 Input the i-th homogeneous region;
4 Count the number m of pixels in the i-th

homogeneous region;
5 for s =1:m do
6 Calculate the weight coefficients of any pixel t

in the BF template of the i-th homogeneous
region using Eq. 6 and Eq. 7 and Eq. 4;

7 Calculate the pixel value Os of the pixel s output
by the BF filter operation using Eq. 2;

8 end
9 end
10 Output O = (O1,O2, · · · ,On) ∈ Rd×n.

substantially enhances the restriction of BF for non-structural
similar pixels and thus greatly decreases the abundance of
non-structurally similar pixels in the update target pixels; and
this process effectively avoids the generation of mixed pixels
and renders BF-extracted HSI features more significant and
distinguishable.

According to these ideas, a SuperBF algorithm was pro-
posed in this study; the algorithm reasonably divides an
image into homogeneous regions via superpixel segmen-
tation. As ERS has excellent performance in many HSI
superpixel segmentation methods, this study applied ERS
to perform hyperpixel segmentation on HSIs. The specific
equation is expressed as

I = US
k κk s.t. κk ∩ κg = ø, (k 6= g) (8)

where S represents the number of superpixels, and κk is the
k th superpixel.

As shown in Fig. 2b, the superpixel segmentation uses the
spatial continuity of the physical features to segment the HSI
into different spectrally similar homogenous regions. This
approach can considerably reduce the possibility of occur-
rence of pixels with large differences in non-structural simi-
larity in the BF template, enhance the influence of structurally
similar pixels in the BF template on the output value, and
solve the problem of the large negative impact of weighting of
non-structural similar pixels on the output value, effectively
avoiding the generation of mixed pixels.

After ERS is performed on the HSI to obtain S segmented
homogeneous regions, BF is used to filter each segmented
homogeneous region. Algorithm 1 describes the specific

process of the SuperBF-based HSI feature extraction. The
algorithm is divided into two steps. In the first step, ERS is
employed to segment the HSI and divide the pixels with sim-
ilar structure into the same region to segment the image into
multiple homogeneous regions. In the second step, the BF
algorithm is applied to filter the pixels in each homogeneous
region and extract the HSI features.

III. EXPERIMENTAL RESULTS AND ANALYSIS
This study compared the proposed SuperBF-SVM clas-
sification method with several currently popular classi-
fication methods, including SVM [37], BF-SVM [30],
EPF-SVM [30], LBP-ELM [25], HiFi [38], and R-VCANet-
SVM [27]. The SVM algorithm was implemented in the
libsvm [39] library with five-fold cross-validation, and the
default parameters in the references were employed in other
algorithms. PAN et al. constructed a hierarchical guidance
filtering (HiFi) and a matrix of spectral angle distance and
iteratively trained classifiers using the integrated learning
spatial and spectral information from different scales to
achieve good generalization performance. Similar to many
previous studies, the performance of different HSI classifi-
cations was evaluated using overall accuracy (OA), average
accuracy (AA), and kappa coefficients. The OA indicates the
probability that the classification results are consistent with
the reference classification results. The AA refers to the mean
of the percentage of correctly classified pixels for each class.
The kappa coefficient is used for consistency check.

A. DATA SET DESCRIPTION
To verify the effectiveness of the proposed method, three real
HSIs of Indian Pines, Salinas, and University of Pavia were
employed in the experiments.

The image of Indian Pine was acquired by an airborne
visible/infrared imaging spectrometer (AVIRIS) sensor. The
image shows an agricultural pine test site in northwestern
Indiana. The size of the image is 145×145, the spatial res-
olution is 20 m, and the spectral range extends from 0.4 to
2.45 µm. The image contains 224 bands, of which 24 bands
were removed due to water vapour absorption; 200 bands
remain.

The image of Salinas was acquired by an AVIRIS sensor.
The image shows Salinas Valley, California, USA. The size of
the image is 512×217, and the spatial resolution is 3.7 m. The
image contains 224 bands, of which 24 bands were removed;
200 bands remain.

The image of University of Pavia was acquired by the
reflective optical system imaging spectrometer (ROSIS) sen-
sor. The image shows the urban area around the University
of Pavia. The size of the image is 610×340, the spatial
resolution is 1.3 m, and the spectral range extends from
0.43 to 0.86 µm. The image contains 115 bands, of which
12 bands of the noise channels were removed; 103 bands
remain.

To ensure the objectivity of the experiment, the experiment
was repeated 10 times, and the average value was used as
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TABLE 1. Classification accuracy of different methods for Indian Pines.

TABLE 2. Classification accuracy of different methods for Salinas.

TABLE 3. Classification accuracy of different methods for the University of Pavia.

the result. 20 training samples were randomly selected in
each of the three data sets, and the remaining samples were
used as test samples to test the effectiveness of the proposed

method, as indicated in Tables 1 to 3. To test the stability
of the algorithm, 10-50 samples were randomly selected
from the three data sets to use as training samples, and the
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TABLE 4. Classification accuracy of different training samples for Indian Pines.

TABLE 5. Classification accuracy of different training samples for Salinas.

TABLE 6. Classification accuracy of different training samples for University of Pavia.

remaining samples were used as test samples, as indicated
in Table 4 to 6.

B. PARAMETER ANALYSIS
The algorithm proposed in this study involves three important
parameters: the number of super-pixels S, the size of the

filter δα and the degree of ambiguity δγ . As shown in Fig. 3,
the influence of these three parameters on the OA of SVM
classifier in the three images was analysed. When one param-
eter was analysed, the other two parameters were fixed.When
the numbers of super-pixels S in the three scenarios of Indian
Pine, Salinas, and University of Pavia were 30, 10, and 110,
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FIGURE 3. Influence of three parameters of S, δα and δγ on the three data sets: (a) Indian Pine, (b) Salinas, and
(c) University of Pavia.

respectively, the proposed method obtained the highest OA.
As the number of super-pixels S was increased, the exper-
imental results showed that the total performance initially
increased and then decreased. The superpixels with an exces-
sively small or large S can cause performance degradation of
the proposed SuperBF method because too many superpixels
can cause excessive concentration and all samples belonging
to a uniform region would not be fully utilized, while too
few superpixels can cause excessive decomposition and intro-
duce some non-homogeneous samples from different uniform
regions. The ideal effects were obtained when the δα of the
three scenarios of Indian Pine, Salinas, and University of

Pavia were 20, 52, and 47, respectively. If the δα is too small,
some useful spatial information will be disregarded; if the
δα is too large, an excessive amount of useless information
will be acquired. The classification performance was the best
when the δγ values of the three scenarios of Indian Pine,
Salinas, and University of Pavia were 0.2, 0.09, and 0.09,
respectively. If the δγ is too small, the result will not be
sufficiently smooth; if it is too large, the result will be too
smooth. Therefore, the parameters of the three scenarios in
this study were set as follows: Indian Pine: S = 30, δα = 20,
δγ = 0.2; Salinas: S = 10, δα = 52, δγ = 0.09; University
of Pavia: S = 110, δα = 47, δγ = 0.09.
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FIGURE 4. Classification results of the Indian Pines image.

C. EXPERIMENTAL RESULTS
The improvement for BF in SuperBF is effective. In image
segmentation, an image is segmented into many differ-
ent regions, and each region is considered to be homoge-
nous [35]. The regions form a segmentation map of the
spatial structure that can be employed for spectral-spatial
classification. As BF can filter in these segmentation ranges,
the extracted features are more effective, and the classifica-
tion accuracy is higher. As shown in Figs. 4 through 6 and
Tables 1 through 3, in the three scenarios of Indian Pine,
Salinas and University of Pavia, the OA, AA and kappa of
SurperBF were greater than those of BF. When the number
of training samples was 20, the OA was greater by 14.12%,
6.22%, and 5.25%. Compared with the improved EPF algo-
rithm based on BF, the OA, AA, and kappa of SurperBF were
also greater than those of EPF. When the number of training
samples was 20, the OA was greater by 10.66%, 7.57%, and
6.30%.

The SuperBF classification method is superior to some
advanced methods. As shown in Figs. 4 through 6 and
Tables 1 through 3, with the exception of the AA of
Indian Pine, the SuperBF method obtained the best OA, AA
and kappa. Compared with the three advanced methods of

LBP-ELM, HiFi, and R-VCANet methods of deep learning,
the OA values of the SuperBF classification method was
greater by 5.5%, 3.87%, and 10.46%, respectively, in the
Indian Pine scenario; greater by 4.12%, 8.48%, and 7.40%,
in the Salinas scenario; and greater by 10.01%, 4.82%, and
6.27%, in the University of Pavia scenario. AA was not
the best in Indian Pine as the classification accuracy of
grass_p was only 18.42%, which may be related to the small
number of grass_p; it was similar to grass_m, which causes
misclassification.

The SuperBF classification method has strong robustness.
As shown in Tables 4 through 6 and Figs. 7 through 9, when
the number of training samples was increased from 10 to 50,
the OA, AA and kappa also increased, and the highest OA
and kappa were obtained by SuperBF. Compared with other
classification methods, the OA was greater by a minimum
of 3.87%, and the OA in the Indian Pines scenario was
the highest, which was even greater than that of the SVM
method by 27.42%. Especially in the Salinas scenario, for
the condition in which the OA was greater by more than
90%, with the exception of the SVM method, the OA of
the proposed method exceeded that of other classification
methods by 4.12% to 14.01%.
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FIGURE 5. Classification results of the Salinas image.

FIGURE 6. Classification results of the University of Pavia image.

The robust expression of the SuperBF classification
method is effective for the problem of images with a small
sample size. Achieving a fine classification of HSIs is

challenging in the case of a small number of samples.
As reported in Tables 4 through 6 and Figs. 7 through 9, when
the number of training samples was small (for example, 10),
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FIGURE 7. Influence of the training samples on the Indian Pines dataset.

FIGURE 8. Influence of the training samples on the Salinas dataset.

FIGURE 9. Influence of the training samples on the University of Pavia dataset.

the OA of many classification methods was not high. In the
Indian Pines scenario, the OA of the SVM classification
method was only 57.43%; in the University of Pavia sce-
nario, the OA of the SVM classification method was only
67.02%. The OA of many methods ranged from 70% to 79%.
In this case, the method proposed in this study was effectively
improved for a small sample size. For example, in the Indian
Pines scenario, when the number of the training samples
was 10, compared with other methods, the OA increased
by 6.24-29.89%; in the Salinas scenario, the OA increased
by 7.47%-15.24%; and in the University of Pavia scenario,
the OA increased by 0.31%-15.12%. In the Salinas scenario,

when the number of the training samples was 10, the OA of
the SuperBF classification method was 97.88%, and the cat-
egory of the real objects was almost completely and correctly
identified. Therefore, the results of SuperBF are very compet-
itive when solving the problem of images with a small sample
size.

Statistical evaluation about the results: To further vali-
date whether the observed gains in kappa is statistically
significant, we use paired t-test to show the statistical eval-
uation about the results. T-test is popular in many related
works. We accept the hypothesis that the mean kappa of
SuperBF-SVM is larger than a comparedmethod only if Eq. 9
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FIGURE 10. Box plot of kappa of different methods on three datasets. (a) Indian Pine (b) University of pavia (c)
Salinas 1. SVM 2. BF-SVM 3. EPF-SVM 4. LBP-ELM 5. HiFi 6. R-VCANet-SVM 7. SuperBF-SVM. The center line is the
median value, the edges of the box are the 25th and 75th percentiles, the whiskers extend to the most extreme
points, and the abnormal outliers are plotted by ‘+’.

is valid:

(ā1 − ā2)
√
n1 + n2 − 2√

( 1
n1
+

1
n2
)(n1s21)+ n2s

2
2

> t1−α[n1 + n2 − 2] (9)

where ā1 and ā2 are the means of kappa of SuperBF-SVM
and a compared method, s1 and s2 are the corresponding
standard deviations, n1 and n2 are the number of realizations
of experiments reported which is set as 10 in this paper.
Paired t-test shows that the increases on kappa are statistically
significant in all the three datasets (at the level of 95%), and
it can be also observed in Figure 10.

IV. CONCLUSION AND FUTURE WORK
This study proposed a simple and effective SuperBF based
algorithm for the feature extraction of HSIs. In this study,
a HSI is divided into multiple homogeneous regions with a
similar structure. The BF can effectively limit the influence of
non-structurally similar pixels on the target pixel during the
filtering process, which improves the effect of BF filtering
and more effectively extracts the HSI features. The exper-
imental results show that the proposed method is superior
to existing advanced feature extraction methods, especially
when solving the problem of images with a small sample size.

Our future work is data imbalance. By convention, in a
sample-size-related imbalanced data set, the classes with
small size are named minority classes, and the ones with
large size are named majority classes. The common situation
in performance assessment is that the correct classification
of large-size classes contributes more than that of small-size
classes. In SuperBF-SVM,AAwas not the best in Indian Pine
as the classification accuracy of grass_p was only 18.42%,
which may be related to the small number of grass_p i.e.
small class. Therefore, we will propose a novel solution to
solve the sample-size-related imbalanced data problem more
effectively. The new solution consists of two parts: one for
large-size and the other for small-size.
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