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ABSTRACT For the point-to-point (P2P) iterative learning control (ILC), the tracked-points are usually
known. However, in many cases, time allocation can be regarded as an optimization variable to achieve
optimal control energy. Also, in some situations, only information on certain dimensions in the output
is needed to be tracked. Based on the combination of the above two aspects, this paper studies energy-
optimal time allocation in P2P ILC with specified output tracking. An algorithm based on a two-stage
optimization framework that integrates the norm-optimal ILC and the gradient method is proposed. The
proposed algorithm is further extended to a system with input constraints, and its robustness is analyzed.
Finally, simulation tests on a gantry robot are performed to validate the performance of the proposed
algorithm.

INDEX TERMS Iterative learning control, tracking-time allocation, output tracking, point-to-point.

I. INTRODUCTION
In recent years, reducing the consumption of control energy
is becoming more and more important in industrial produc-
tion [1]. For example, in the operation of industrial robots and
the process of picking up and placing items [2], it is necessary
to consider how to optimize the control energy. When the
system runs a series of point-to-point motions in the tracking
of certain elements in outputs, minimizing the loss of control
energy is meaningful while achieving control objectives.

Iterative learning control(ILC) is an efficient control strat-
egy suitable for systems with repetitive motion properties
to achieve the perfect tracking within a limited time period.
Theoretically speaking, updating the control input by using
information from previous trials can cause the tracking error
to converge to 0 after a sufficient number of trials [3], [4].
ILC is widely used in practice, for instance, in the process of
chemical [5], treatment of disease [6], [7], and industrial robot
manipulation [2]. In particular, research on ILC has attracted
considerable attention from the robotics industry [8].

In some situations, such as in the process of picking
up and placing objects on a robotic arm, only the output
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at certain time points requires consideration [9], [10].
P2P ILC is formulated to complete tracking task only at
certain prescribed time points to address control issues. The
meaningful freedom obtained by reducing unnecessary con-
straints on the output of the system is utilized by P2P ILC to
deal with additional indexes [11].

Generally, the tracking time points are regarded as priori
information [12]. If they are unknown, they can be seen as a
variable of an optimization index, which gradually reaches a
minimum after multiple cycles [13]. As a result, the optimal
time allocation could be computed in accordance with the
cost function, which may combine tracking requirement with
the optimization of the control input energy. In this case,
it extents the P2P ILC framework in existence and allows
the ILC algorithm to select tracking points and update their
values to optimize overall P2P control tasks [14].

In certain situations, some prescribed elements should be
tracked. Element tracking is a significant requirement used to
select certain elements or linear combinations of certain ele-
ments of the output which are vital to the control tasks at each
tracking-time point [15]. Such as in the process of picking up
and placing objects on a robotic arm, the manipulator need
to move from the given ‘‘pick’’ position to a certain plane.
Therefore, only one dimension of information in the ‘‘place’’
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position is worthy of attention. Although [14] proposes an
approach on P2P ILC with energy-optimal time allocation,
but the need for specific output tracking is not considered.
And in this passage, according the method in [14], based
on a two-stage optimization strategy that included NOILC
and the gradient method, the presented framework not only
achieves output tracking but also acquires the energy-optimal
time allocation with prescribed output tracking. Furthermore,
in contrast to the a priori time allocation choice, the frame-
work enables task fulfillment with the minimum performance
function. This approach improves production efficiency and
reduces unnecessary industrial energywaste in practical oper-
ations [16]. At the same time, the framework realizes the
perfect tracking of selected time points to implement the
purpose of ILC [17].

Compared with the previous conference paper by us [18],
this article has been expanded in the following two aspects.
On the one hand, the limitations of input and output are
widely existed in the process of industrial production control.
Therefore, it is of great significance to solve the energy-
optimal time allocation of the P2P ILC for prescribed out-
put tracking with input constraints. This paper presents a
framework for input-limited problems and a two-stage algo-
rithm is designed to handle it. In the simulation, taking input
saturation limitation as an example, the input, the conver-
gence of the input norm, and the output tracking results
of the internal points are all presented. On the other hand,
the robustness of the algorithm is analyzed. In the case of
uncertain parameters in the system, the tracking error can still
converge to zero. Surely, the detailed proof is given in the
paper.

This study provides the following contributions: Firstly,
the selection of time points and output are combined into
one optimization framework. Secondly, in regard to the
P2P iterative learning control with the prescribed output
tracking, a two-stage design framework is proposed to acquire
the optimal time allocation that corresponds to the minimum
control input energy. Last but not least, the proposed algo-
rithm is extended to a system with input constraints and its
robustness is proven.

This paper is structured as the following: In Section 2,
the problem formulation is given. A two-stage optimiza-
tion algorithm on the basis of the NOILC and a gradient
method is presented for the solution of the problem pro-
posed in Section 3. As discussed in Section 4, the proposed
algorithm is extended to a system with input constraint.
Section 5 presents the analysis and relative proof of the
robustness of the algorithm. The simulation results are shown
in Section 6. In the last Section, the conclusions and further
research content in the future are provided.

II. PROBLEM FORMULATION
The problem is rigorously formulated as an optimization
problem in the Hilbert space by utilizing an abstract-operator
expression of system dynamics [19]–[21]. A continuous-time
linear time-invariant system is considered as discussed below.

A. SYSTEM EXPRESSION
First, consider an m-output l-input n-state continuous linear
time-invariable system as below:

ẋ = Ax (t)+ Bu (t) , x (0) = x0
y(t) = Cx(t), t ∈ [0, T ] (1)

which can be rewritten as the following operator form:

y = Gu+ d, G : L l2 [0,T ]→ Lm2 [0,T ]

y, d ∈ Lm2 [0,T ] u ∈ L l2 [0,T ] (2)

where L l2 [0,T ] and L
m
2 [0,T ] are the Hilbert spaces of the

input and output, respectively.
The system operatorG and signal d are defined as follows:

(Gu) (t) =
∫ t

0
CeA(t−s)Bu (s) ds, d (t) = CeAtx0. (3)

For convenience and to avoid missing generality, x0 = 0 is
assumed. Therefore, d = 0.
OnlyM tracked time points ti(i = 1, . . . ,M ) are necessary

to be considered, and they can be denoted as the following
vector form:

3 = [t1, t2, · · · , tM ] (4)

Consider the following map ζ → ζ p with

ζ p =

F1ζ (t1)...

FMζ (tM )

 ∈ Rf1+···+fM , (5)

where each Fj has fj × m dimensions and full row rank. The
inclusion of Fj is the significant extension used to select at
each tracking-time point certain elements or linear combina-
tions of certain elements of the output which are important to
the tracking requirement.

By the definition, the dynamics could be modeled as
below:

yp = (Gu)p = Gp3u =

 G1u
...

GMu

 , (6)

with a linear operator Gp3 : L
l
2 [0,T ]→ <

f1+···+fM .
Each operator Gj : Lm2 [0,T ]→ <fi is defined as follows:

Gju = Fj

∫ tj

0
CeA(tj−s)Bu (s) ds. (7)

The extended tracking reference at certain time points can be
defined as follows:

rp =


F1r1
F2r2
...

FM rM

 ∈ <f1+···+fM . (8)

In addition, the tracking error is denoted as follows:

ep (t) = rp − yp = (r − y)p. (9)
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An inner product of the Hilbert space<f1+···+fM is defined by
the following equation:

〈v,w〉[Q] =
M∑
i=1

viQiwi, ‖w‖2[Q] = 〈w,w〉[Q]. (10)

where the fj × fj matrices Qj, 1 ≤ j ≤ M are symmetric and
positive definite. the set {Q1,Q2, · · · ,QM } is denoted by [Q],
and v,w are the elements of the space.
An inner product of L l2 [0,T ] is also defined:

〈u1, u2〉R =
∫ T

0
uT1 (s)Ru

T
2 (s) ds, (11)

where the input energy ‖u‖2R = 〈u, u〉R and the l×l symmetric
and positive definite matrix R is the weighting matrix of the
input space.

B. ENERGY-OPTIMAL TIME ALLOCATION IN P2P ILC
Here, an explicit formulation of the problem is given. First,
the admissible set of the time allocation is given. The
tracking-time allocation belongs to a set, i.e., 3 ∈ 2, and
the set 2 denotes the permissable range of the tracked time
points as follows:

2 =
{
3 ∈ RM : 0 < t1− ≤ t1 ≤ t1+ ≤ . . . ≤ tM+

}
, (12)

in which
[
ti−, ti+

]
denotes the given interval constraints

for ti.
Then, the energy-optimal time allocation problem in P2P

ILC with the prescribed output tracking can be denoted as
iteratively acquiring an energy-optimal time allocation 3k
and an input uk with the tracking requirement that the output
values at these time points, i.e., ypk , precisely approach a series
of reference values rp, i.e.,

lim
k→∞

ypk = rp. (13)

Meanwhile, the objective cost function f (u) = ‖u‖2R, which
indicates the input control energy, is also minimized.

III. TWO-STAGE DESIGN FRAMEWORK
The energy-optimal time allocation for prescribed output
tracking is designed by the following two-stage optimization
framework.

A. FRAMEWORK DESCRIPTION
As discussed in this section, a two-stage framework is devel-
oped to obtain the energy-optimal time allocation 3 in
P2P iterative learning control for prescribed output tracking.
Although the explicit expression of the objective cost function
f (u, y) does not include time allocation 3, it can be related
to the tracking condition Gp3 (u) = rp. In addition, input u is
in an infinite dimensional space L l2 [0,T ], and time allocation
3 is in the finite dimensional admissible set 2.

As a result, the optimization problem can be described as
follows:

min
3∈2

{
min
u
f (u) , subject to GP3u = rp, y = Gu

}
(14)

The following minimum for u is defined as

u∞ (3) : 2→ L l2 [0,T ] . (15)

Then, the expression of the equivalence problem is

min
3∈2

f (u∞ (3)) , (16)

which can be resolved by the two-stage framework as below:
Stage one: The optimal input can be solved in a fixed

tracking allocation 3, as follows:

u∞ (3) = arg
u
min ‖u‖2R

subject to rp = Gp3u. (17)

Stage two: The optimal tracked time allocation can be
solved in accordance with the objective cost function, which
includes the fixed-time optimal solution u∞ (3), as follows:

3∗ = arg min
3∈2
‖u∞ (3)‖2R . (18)

B. IMPLEMENTATION OF FIRST STAGE
Based a P2PNOILC(norm optimal ILC) algorithm, the stage-
one optimization problem is formulated to design P2P itera-
tive learning controller in the sense of minimum input control
energy.

At the (k + 1)th batch, the problem below can be resolved
by using P2P NOILC algorithm:

uk+1 = argmin
u

{∥∥ep∥∥2Q + ‖u− uk‖2R : ep = rp − Gp3u
}
(19)

to acquire the control input uk+1. In accordance with the anal-
ysis given by [15], the property of this algorithm is clarified
in the following theorem:
Theorem 1: For the system (1), if it is state-controllable and

the matrix C has full row rank, under the control input (19),
then the extended tracking error epk can converge to 0, and the
input sequence {uk} has a limit, i.e.,

lim
k→∞

epk = 0, lim
k→∞

uk = u∞. (20)

Proof: First, in the convergence analysis of the tracking
error, GeG∗e is positive definite in the defined Hilbert space.
For the following condition,〈

α, GeG∗eα
〉
[Q] =

∥∥G∗eα∥∥2 = 0, (21)

where α is defined as a vector with M components.
Then

G∗eα = 0, ∀t ∈ [0,T ] . (22)

For the interval (tM−1,T ),

BT pM (t) = 0. (23)

can be obtained, where pM (t) is defined in the following
equations (29) and (30).
αT =

[
αT1 , . . . , α

T
M

]T is written with αj ∈ <fj and

pM (tM ) = CTFTMQMαM = 0. (24)
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Hence, by applying the rank condition,

αM = 0. (25)

is obtained.
Then, an inductive demonstration is performed to show the

whole αj = 0.
It has done the proof.
The control input can be expressed as below:

uk+1 = uk + G
p∗

3 e
p
k+1 = uk + G

p∗

3 (I + Gp3G
p∗

3 )−1epk , (26)

where Gp
∗

3 is the relevant adjoint operator of Gp3.
Next, the computation for the adjoint operator Gp

∗

3 is
shown.

The adjoint operator in Hilbert space is described as below:
Assuming X and Y are Hilbert spaces and the operator T :

X → Y is defined. So, for any x ∈ X , y ∈ Y , the adjoint
operator T ∗ : Y → X meets the condition below:

〈Tx, y〉 =
〈
x,T ∗y

〉
. (27)

Analogously, for any element ωi (i = 1, . . . ,M) in the
Hilbert space <f1+f2+ ···+fM , the equation〈
(ω1, . . . , ωM ) ,G

p
3u
〉
[Q] =

〈
Gp
∗

3 (ω1, . . . , ωM ) , u
〉
R
, (28)

can be obtained and leads to the following:(
G∗i ωj

)
(t) =

{
R−1BT eA

T (tj−t)CTFTj Qjωj; 0 ≤ t ≤ tj
0; t > tj

(29)

where G∗i is any one operator of G
p∗

3 .
This can also be rewritten into the following form:(

G∗i ωj
)
(t) = R−1BT pi (t) , (30)

where pj (t) = 0 in
(
tj,T

]
, and in

[
0, tj

)
ṗj (t) = −AT pj (t), pj

(
tj−
)
= CTFTj Qjωj. (31)

the map Gp
∗

3 : (ω1, . . . , ωM ) → u (ω1, . . . , ωM ) → u is
defined as follows:

u (t) =
M∑
i=1

(
G
∗

i ωi

)
(t) = R−1BT p (t) , (32)

where p(t) =
M∑
i=1

pi (t).

These equations can be summarized as follows:
u (t) = R−1BT p (t)
ṗ (t) = −AT p(t)
p(T ) = 0
p
(
tj−
)
= p

(
tj+
)
+ CTFTj Qjωj, 1 ≤ j < M

(33)

Finally, an analytic solution for u∞ (3) is presented.
The method of Lagrange multipliers is used with the fol-

lowing associated Lagrangian expression to compute the ana-
lytic solution of the optimization problem (17):

ϕ (u) = ‖u‖2R + 2
〈
λ,Gp3u− r

p〉
[Q]. (34)

The global optimal input u∞ that minimizes ϕ is defined, and
the following conclusion holds:

ϕ (u∞) ≤ ϕ (u∞ + τ) , ∀τ ∈ L l2 [0,T ] . (35)

Thus,

ϕ (u∞ + τ)− ϕ (u∞)

= ‖u∞ + τ‖2R − ‖u∞‖
2
R

+ 2
〈
λ,Gp3 (u∞ + τ)− r

p〉
[Q] − 2

〈
λ,Gp3u∞ − r

p〉
= ‖τ‖2R + 2〈u∞, τ 〉R + 2

〈
λ,Gp3τ

〉
[Q]

= ‖τ‖2R + 2〈u∞, τ 〉R + 2
〈
Gp
∗

3 λ, τ
〉
R

= ‖τ‖2R + 2
〈
u∞ + G

p∗

3 λ, τ
〉
R
≥ 0,∀τ ∈ L l2 [0,T ] . (36)

Substituting τ = −(u∞ + Gp
∗

3 λ) into Eq. (35) yields the
following:

−

∥∥∥u∞ + Gp∗3 λ∥∥∥2R ≥ 0. (37)

Then:

u∞ = −G
p∗

3 λ. (38)

Eq. (38) is then combined with the following equation:

Gp3u∞ = rp, (39)

which yields:

λ = −
(
Gp∧G

p∗
∧

)+
rp (40)

where + denotes pseudoinverse.
Finally,

u∞ (3) = Gp
∗

3

(
Gp3G

p∗

3

)+
rp. (41)

The stage-one optimization problem can also be imple-
mented by using the following method, which includes the
implementation of the feedback plus feedforward.

Eq. (26) is equal to

uk+1(t) = uk (t)+ GP
∗

3 e
p
k+1(t). (42)

and Gp
∗

3 e
p
k+1(t) can be rewritten as

Gp
∗

3 e
p
k+1(t) = R−1BT pk (t),

ṗk (t) = −AT pk (t), pk (T ) = 0,

pk (tj−) = pk (tj+)+ CTFjTQjFjek+1(tj), (43)

in accordance with the costate equation (33).
Therefore, (42) becomes

uk+1(t) = uk (t)+ R−1BT pk (t), (44)

write

pk (t) = −K (t) [xk+1(t)− xk (t)]+ ξk+1(t). (45)

where K (t), ξk+1(t) are supposed to be continuously differ-
entiable in each interval (tj, tj+1) but might be uncontinuous
at t = tj and K (t) is symmetric.

122598 VOLUME 7, 2019



X. Zhao, Y. Wang: Energy-Optimal Time Allocation in P2P ILC With Specified Output Tracking

The conditions for K (t) and ξk+1(t) are acquired through
two steps:

1) In accordance with the jump conditions of (43),

−K (tj−)[xk+1(tj)− xk (tj)]+ ξk+1(tj−)

= −K (tj+)[xk+1(tj)− xk (tj)]+ ξk+1(tj+)

+CTFTj QjFjek+1(tj) (46)

the error ek+1(tj) can be further expressed as

ek+1(tj) = rj − yk+1(tj)=ek (tj)−C[xk+1(tj)−xk (tj)]. (47)

then

[K (tj−)− K (tj+)][xk+1(tj)− xk (tj)]

+ [ξk+1(tj−)− ξk+1(tj+)]

= CTFTj QjFjC[xk+1(tj)− xk (tj)]+ C
TFTj QjFjek (tj) (48)

which shows the jump condition

K (T ) = 0,

K (tj−)− K (tj+) = CTFTj QjFjC, j = 1, . . . ,M .

(49)

ξk+1(T ) = 0,

ξk+1(tj−)− ξk+1(tj+) = CTFTj QjFjek (tj), j = 1, . . . ,M .

(50)

2) Next, (45) is differentiated at any point t other than the
tracked time points in 3, ẋk and ẋk+1 are replaced to yield
the general Riccati and predictive differential equations

K̇ (t)+ ATK (t)− K (t)BR−1BTK (t)+ K (t)A = 0, (51)

ξ̇k+1(t)+ AT ξk+1(t)− K (t)BR−1BT ξk+1(t) = 0. (52)

with the jump condition above defined at time instants
t ∈ {tj}1≤j≤M . In general, stage-one optimization problem
is implemented as follows:

1) Calculate the Riccati feedback matrix offline from the
following equations:

K̇ (t)+ ATK (t)− K (t)BR−1BTK (t)+ K (t)A = 0,

K (T ) = 0,

K (tj−)− K (tj+) = CTFTj QjFjC, j = 1, . . . ,M . (53)

2) Calculate the predictive feedforward term offline from the
following equations:

ξ̇k+1(t)+ AT ξk+1(t)− K (t)BR−1BT ξk+1(t) = 0,

ξk+1(T ) = 0,

ξk+1(tj−)− ξk+1(tj+)

= CTFTj QjFjek (tj), j = 1, . . . ,M . (54)

3) Carry out the control law:

uk+1(t) = uk (t)+R−1BT [−K (t) [xk+1(t)−xk (t)]+ξk+1(t)].

(55)

In the implementation of the first stage, both analytic solu-
tion and updating algorithm can be used. In fact, the updating

algorithm is more robust due to the inclusion of state feed-
back. In addition, an updating algorithm is also used to obtain
the control input with batch variations.

C. IMPLEMENTATION OF SECOND STAGE
In the second stage, a gradient method is carried out to
acquire an approximate optimal solution. Start with an ini-
tial choice of time allocation 30, the time allocation 3j =[
t j1, t

j
2, · · · , t

j
M

]
is iteratively calculated to the jth loop by

using the gradient-descent algorithm [22] as below:

3j=3j−1 − γ
∂f
(
3j−1

)
∂3j−1

= 3j−1−γ



∂f
(
3j−1

)
∂t j−11

∂f
(
3j−1

)
∂t j−12
...

∂f
(
3j−1

)
∂t j−1M


, (56)

where γ is a scalar step width.
If the step width γ satisfies the condition as below,

γ ≤ 2/σ̄
(
H
(
f
(
3j−1

)))
. (57)

where σ̄
(
H
(
f
(
3j−1

)))
is the largest singular value of the

Hessian matrix H
(
f
(
3j−1

))
, the value of the object cost

function will decrease monotonically [23]. Therefore, it can
be seen as a reference for the selection of the step width.With
the appropriate step width, a solution to the second stage
optimization problem could be acquired by using the gradient
method [16], [17], [24].
Lemma 1 [14]: By using the analytical solution (24) to the

first stage optimization problem, the second stage optimiza-
tion problem (16) can be expressed as below:

‖u∞ (3)‖2R = rTp
(
Gp (3)Gp(3)∗

)+rp. (58)

Obtaining the optimal time point set through the gradi-
ent method requires knowledge of the gradient of the input
energy function at a given time-point set, i.e., ∂f /∂3, which
can be directly computed by using Eq. (56).

However, in brief, the convergence property of the algo-
rithm depends on the choice of the initial value. Therefore,
the choice of initial time allocation is crucial. In this study,
the central time allocation is selected as the initial value,
in which all the initial tracked time instants are in the middle
of corresponding time intervals. The initial time allocation is
defined as below:

30 =

[
t01 , t

0
2 , · · · , t

0
M

]T
, (59)

where t0i =
(
t−i + t

+

i

)
/2.

D. ITERATIVE ALGORITHM IMPLEMENTATION
First of all, an initial time allocation 30 is selected, and the
steps of first and second stages are then performed to obtain
the following algorithm:
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Step 1 At the start of the jth circle, the first stage design
step is performed, and the terminal control input energy value
of f

(
3j−1

)
is obtained.

Step 2 The second stage design step is performed by using
gradient method to renew the time allocation:

3j = 3j−1 − γ
∂f
(
3j−1

)
3j−1

. (60)

Step 3 Let j→ j+ 1, turn back to the first procedure until
the boundary condition∣∣f (3j

)
− f

(
3j−1

)∣∣ < δ
∣∣f (3j−1

)∣∣ . (61)

is satisfied. Parameter δ can be selected in accordance with
tracking precision and performance requirements [19], [25].

IV. INPUT CONSTRAINT PROBLEMS
As discussed in the previous section, a two-stage optimization
algorithmwas designed. The previous optimization algorithm
must be extended to the system with input constraints.

A. PROBLEM FORMULATION WITH INPUT CONSTRAINTS
System input limitations are commonly encountered in actual
production and daily life because of physical limitations and
performance specifications. In summary, several types of
input restrictions exist as follows [26]:

1) Input saturation constraint

� =
{
u (t) ∈ Rl : |u (t)| ≤ M (t) , t ∈ [0,T ]

}
. (62)

2) Input amplitude constraint

� =
{
u (t) ∈ Rl : λ (t) ≤ u (t) ≤ η (t) , t ∈ [0,T ]

}
. (63)

3) Input sign constraint

� =
{
u (t) ∈ Rl : 0 ≤ u (t) , t ∈ [0,T ]

}
. (64)

Hence, the optimization problem with input constraint is

min
3∈2

{
min
u
f (u) , subject to Gp3u = rp, y = Gu, u ∈ �

}
(65)

B. TWO-STAGE ALGORITHM WITH INPUT CONSTRAINTS
For optimization problem (65), a two-stage algorithm with
input constraints is developed as follows:
Stage 1: In a fixed tracking allocation, the optimal input

can be obtained from:

min
u
‖u‖2R

subject to rp = Gp3u. (66)

where the solution is defined as û∞ (3).
Stage 2: The optimal time allocation can be solved by:

min
3∈2

{∥∥û∞ (3)∥∥2} . (67)

Stage one is a constrained optimization problem. An ana-
lytical solution is difficult to acquire for the optimization

problem in stage one. However, the problem can be solved
by the method given by [27]–[29]. This method is divided
into two steps:

First, a general norm-optimal ILC optimization problem
with unconstrained input

ūk+1 = argmin
u

{∥∥ep∥∥2[Q] + ‖u− uk‖2[R]} . (68)

is solved.
Then, the input is projected into the constraint set

uk+1 = argmin
u∈�
‖u− ūk+1‖ . (69)

This approach is easier to be implemented and calculated than
the constrained optimization problem.

V. ANALYSIS OF THE ROBUSTNESS
The robustness of the algorithm is discussed in this section.
Tracking error can still converge to 0 even if uncertain param-
eters exist in the system [30]–[33].

Consider a linear time-invariant system with the form:

y = G (λ) u. (70)

λ ∈ �, where � is a bounded set, which means there exists
M <∞ such that ‖λ‖∞ ≤ M .

The control input uk+1 can be resolved using the norm-
optimal ILC algorithm as below:

uk+1 = argmin
u

[∥∥epk+1∥∥2L + ‖u− uk‖2S] . (71)

where L is the weighting matrix of the output, and S is
the weighting matrix of the input. They are symmetric and
positive definite. epk+1 is the tracking error on the (k + 1)th

iteration.
Theorem 2: For the system (70), using the control input

law (71), if the tracking reference r ∈ R (G) or R (G) is dense
in Y , then the tracking error can converge to 0.

Proof: The quadratic performance criterion of the norm
optimal iterative learning control (NOILC) is

Jk+1 =
∥∥epk+1∥∥2L + ‖uk+1 − uk‖2S

=
(
epk+1(λ)

)TLepk+1(λ)+1uTk+1S1uk+1
=
(
epk (λ)

)TLepk (λ)− 2
(
epk (λ)

)TLG (λ)1uk+1
+1uTk+1

(
S + G(λ)TLG (λ)

)
1uk+1. (72)

The NOILC algorithm has the following property:∥∥epk+1∥∥2 ≤ Jk+1(uk+1) ≤ ∥∥epk∥∥2. (73)

This property follows from optimality and the fact that the
nonoptimal choice of uk+1 = uk would lead to

Jk+1(uk ) =
∥∥epk∥∥2. (74)

Obviously, the algorithm is going in the direction of decreas-
ing the error along the iteration k . In addition, equality holds if
and only if uk+1 = uk , that is, if the algorithm has converged
and input-updating no longer occurs.
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FIGURE 1. Time-point position results for t1 at each loop.

The input update model of the system is

uk+1 = uk + G∗(λ)e
p
k+1. (75)

where G∗ is the relevant adjoint operator of G. The error
update model of the system is

epk+1 = epk − G (λ)1uk+1

=
[
I + G(λ)G∗(λ)

]−1epk . (76)

The monotonicity of the algorithm shows that the following
limit exists

lim
k→∞

∥∥epk∥∥2 = lim
k→∞

Jk (uk) = J∞ ≥ 0. (77)

Using the following inequality

‖y‖ ≤ ‖G (λ)‖ ‖u‖ . (78)

It yields the relations∑
k≥0

‖uk+1 − uk‖2 <
∥∥ep0∥∥2 − J∞ <∞. (79)

∑
k≥0

∥∥epk+1 − epk∥∥2 < ‖G (λ)‖2 (∥∥ep0∥∥2 − J∞) <∞. (80)

and hence

lim
k→∞
‖uk+1 − uk‖2 = 0. (81)

lim
k→∞

∥∥epk+1 − epk∥∥2 = 0. (82)

Let u ∈ U be arbitrary. Also, note from the property of
asymptotically slow variation (81) that uk+1 − uk → 0 in
norm as k →∞.

Hence, as stated in Eq.(81),

lim
k→∞
〈u, uk+1 − uk 〉U = lim

k→∞

〈
u, G∗epk+1

〉
U

= lim
k→∞

〈
Gu, epk+1

〉
Y = 0. (83)

FIGURE 2. Time-point position results for t2 at each loop.

FIGURE 3. Input energy results.

Eq. (83) means that

lim
k→∞

〈
y, epk

〉
Y = 0. (84)

From the Eps. (72) and (75)

Jk+1 =
∥∥epk+1(λ)∥∥2Y + ∥∥G∗(λ)epk+1(λ)∥∥2U

=
〈
epk+1(λ),

[
I + G(λ)G∗(λ)

]
epk+1(λ)

〉
Y (85)

Define the self-adjoint operator

H =
[
I + G(λ)G∗(λ)

]
. (86)

By induction from (76)

epk = H jepk+j. (87)

Hence

epk = H−kep0. (88)

epk+1 = H kep2k+1. (89)

VOLUME 7, 2019 122601



X. Zhao, Y. Wang: Energy-Optimal Time Allocation in P2P ILC With Specified Output Tracking

FIGURE 4. Tracking error at t1.

FIGURE 5. Tracking error at t2.

Applying this relation yields

Jk+1 =
〈
epk , e

p
k+1

〉
=

〈
H−kep0,H

kep2k+1
〉
=
〈
ep0, e

p
2k+1

〉
. (90)

If r ∈ R (G), then ep0 = rp − Gu0 is in the range of G.
By writing ep0 = Gu, the limit of Jk+1 can be obtained from
the Eq. (84)

lim
k→∞

〈
y, epk

〉
Y = 0. (91)

According to the equation

lim
k→∞

∥∥epk∥∥2 = lim
k→∞

Jk (uk) = J∞ ≥ 0. (92)

The following equation is satisfied

lim
k→∞

∥∥epk∥∥2 = 0. (93)

This finishes the proof.

FIGURE 6. Results for the input under constraints.

FIGURE 7. The result of the input norm.

VI. SIMULATION TEST OF GANTRY ROBOT
A multi axis gantry robot platform is used to validate the
proposed method [34]–[36]. It includes the three vertical
axes above the moving conveyor-belt. The equipment con-
tains three independent axes on a moving conveyor-belt. The
X- and Y axes are in the horizontal plane, while the Z axis
is moving in the vertical direction. The robot uses the robotic
arm to pick up the item from the bottom and place it on the
conveyor belt, and the axis position data corresponding to
the motion trail of the robot arm are recorded by the optical
device during the process. In the manipulator trajectory of the
entire space, it is only necessary to pay attention to the motion
behavior of one or two axes of the robot arm in many cases.
In the example below, only the position information of the
X-axis and the Y-axis needs to be recorded, and the spatial
position of the tracked points moves on a certain plane. The
control goal is to ensure the two tracked points move on a
specific plane.
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FIGURE 8. Output at t1.

FIGURE 9. Output at t2.

Consider the system below:

G (s) =
1

s+ 2
. (94)

only two intermediate points are needed to be tracked
(M = 2), and the constraint of the tracked time points is
0 < t1 < 1.5s < t2 < 2s.

The reference vector for each intermediate point is sever-
ally r1 = [0 0.5]T and r2 = [0.6 0.1]T . F1 = [1 0]
and F2 = [0 1] are defined for the selection of important
elements of the output. As such, rp = [0 0.1]T . The
following parameters are set: initial state value x0 = 0, initial
input value u0 = 0, the weighting matrix of the input space
R = 1, Q1 = Q2 = 500, 000, step length γ = 0.1, and the
value in the terminal condition δ = 0.00002.
The algorithm is computed in continuous time and then

discretized with the sampling interval Ts = 0.001.

The optimal tracking-time points are t1 = 1.3684 s and
t2 = 1.7523 s as illustrated in Figs.1 and 2.
The control input energy monotonously decreases, and the

minimum energy corresponding to the optimal time alloca-
tion is shown in Fig.3, which can be obtained as follows by
using the proposed method:

min
3
‖u∞ (3)‖2 = 8.4142(J ). (95)

The tracking errors of the two internal points are shown
in Figs. 4 and 5. As shown in the figures, the optimal time
allocation is successfully computed, and good tracking per-
formance is obtained.

Then, the input saturation constraint is incorporated into
the system withM (t) = 1. The input constraint is ensured as
shown in Fig. 6.

The convergence of the input norm along the batch axis is
presented in Fig. 7. The limit of the input norm is

lim
k→∞
‖uk‖ = 1. (96)

The outputs of the two tracked points that vary with the
iteration are plotted in Figs. 8 and 9. Output tracking is
achieved in accordance with output tracking requirements of
the two intermediate points. i.e. F1r1 = 0 and F2r2 = 0.1,
the output tracking is achieved.

VII. CONCLUSION
In this paper, to solve the energy-optimal time allocation for
P2P ILC with prescribed output tracking, the selection of
time points and output are combined into one framework
to be optimized. Meanwhile, in view of NOILC and a gra-
dient method, a two-stage iterative algorithm is designed.
Then, a system with input constraint is considered. Finally,
the robustness of the algorithm, particularly its robustness
against parameter uncertainty, is discussed.

The performance of the algorithm when facing other forms
of model uncertainties warrants further analysis. In addition,
widespread system constraints exist in practice. Thus, future
studies on the inclusion of additional constraints, such as
output constraints and input energy constraints, into the given
formulation are needed. Besides, other overall optimization
objectives can also be selected.
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