IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

SPECIAL SECTION ON ADVANCED DATA MINING METHODS FOR SOCIAL COMPUTING

Received August 6, 2019, accepted August 22, 2019, date of publication August 28, 2019, date of current version September 12, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2938039

hpGAT: High-Order Proximity Informed
Graph Attention Network

ZHINING LIU“T, WEIYI LIUZ, PIN-YU CHEN3, CHENYI ZHUANG?*, AND CHENGYUN SONG '3

!School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
2JD Intelligent Cities Research and JD Intelligent Cities Business Unit, Chengdu 610046, China

3IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA

4 Ant Financial Services Group, Hangzhou 310012, China

3School of Computer Science and Engineering, Chongging University of Technology, Chongqing 400054, China

Corresponding author: Chengyun Song (scyer123@163.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 41804112, and in part by the Scientific
Research Foundation of Chongqing University of Technology.

ABSTRACT Graph neural networks (GNNs) have recently made remarkable breakthroughs in the paradigm
of learning with graph-structured data. However, most existing GNNs limit the receptive field of the node
on each layer to its connected (one-hop) neighbors, which disregards the fact that large receptive field has
been proven to be a critical factor in state-of-the-art neural networks. In this paper, we propose a novel
approach to appropriately define a variable receptive field for GNNs by incorporating high-order proximity
information extracted from the hierarchical topological structure of the input graph. Specifically, multiscale
groups obtained from trainable hierarchical semi-nonnegative matrix factorization are used for adjusting the
weights when aggregating one-hop neighbors. Integrated with the graph attention mechanism on attributes
of neighboring nodes, the learnable parameters within the process of aggregation are optimized in an end-
to-end manner. Extensive experiments show that the proposed method (hpGAT) outperforms state-of-the-art
methods and demonstrate the importance of exploiting high-order proximity in handling noisy information

of local neighborhood.

INDEX TERMS Graph neural network, high-order proximity, network embedding.

I. INTRODUCTION

Graph neural networks have been successfully applied to
handling non-Euclidean data such as graph-structured data
(e.g. social networks, 3D point clouds, and biological net-
works) [1]. Unlike grid-structured data (e.g., images or audio
waveforms), graph-structured data would require neural net-
works to support irregular inputs. Hence, directly apply-
ing a typical grid-structured based deep learning method to
graph-structured data could be suboptimal.

To overcome such obstacle, graph convolution has been
proposed [2]. By implementing a convolution operator on
a graph (mostly, on the Laplacian matrix of a graph) in
the spectral domain, one can successfully extract multiscale
information from the irregular inputs. However, these spectral
methods (e.g., [2]-[4]) may suffer from the computation
complexity issues due to their inefficiency in conducting
expensive eigendecomposition of the graph Laplacian matrix.

The associate editor coordinating the review of this article and approving
it for publication was Shirui Pan.

123002

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

To circumvent the computation complexity, recent
works [5]-[8] discard the pervasive high-order informa-
tion on a graph, and instead aggregate the information
of neighbors to the node itself, which turns out to be a
first-order approximation of the computationally-intensive
spectral methods [5]. Notably, these graph neural networks
usually limit the receptive field of the node on each layer
to its one-hop neighbors and hence could be myopic for
aggregation. On the other hand, a large receptive field [9]
is known to be a critical factor in designing state-of-the-art
neural networks. One conventional approach to increasing the
receptive field is by stacking multiple layers, but we find that
doing so will severely deteriorate the learning performance
on the graph-structured data (see Fig.2 for details).

In this paper, we propose a novel approach to appropri-
ately define a large receptive field for GNNs by incorpo-
rating high-order proximity information extracted from the
input graph. We motivate our proposal using Fig.1. Scenario
1 elucidates a typical receptive field (with 1-hop neighbors)
for graph convolution related algorithms. To obtain a dense

VOLUME 7, 2019

https://orcid.org/0000-0002-8422-820X
https://orcid.org/0000-0002-2027-4258

Z. Liu et al.: hpGAT

IEEE Access

Scenario 2. _l-|_ig_h-ord.e.r_r.écepti\;e field informed aggregation

! Receptive Field "7 Aggregated Candidates

@ Label 1 © Label 2 Attention Weight

FIGURE 1. An illustration of high-order proximity information for graph
convolution algorithms. Aggregated candidates indicate the nodes to be
aggregated to the bridge node (marked in white color). The thickness of
yellow arrows reflects the aggregation strength. The receptive field
represents the range of the topological information the bridge node can
perceive. Different color labels indicate different groups.

representation of the “bridge node” (marked in white color),
its three neighbors are chosen for aggregation. However,
in this case, an ideal learning algorithm should simultane-
ously emphasize the information from the blue group and
suppress the influence from the green group for aggregation,
otherwise the aggregated information might be too “‘noisy”
if the weighted aggregation was falsely influenced by its
neighbor in the green group. For example, if the three neigh-
boring nodes share the same node attribute, there is no way
to suppress the influence from the green group if calculating
the weights only based on the node attribute.

To alleviate the problem of noisy aggregations, we propose
to design an appropriate receptive field on the graph based
on high-order proximity, which provides rich high-order
topological information for a wide variety of graph analysis
tasks [10]-[15]. Taking Scenario 2 as an example, with the
increased receptive field, the bridge node can better perceive
the topological structure embedded in the graph (without
leveraging the label information) and adjust its local aggrega-
tion process accordingly. Therefore, in this case, high-order
proximity information provides topology-aware aggregation
and can suppress the noise from the green group. We will
further demonstrate the benefit of incorporating high-order
proximity information for aggregation on real-world datasets
(see Fig.3 for details).

Another known issue in graph convolution related frame-
work is that convolving all connected neighbors of a node
without considering their topological roles does not com-
ply with a basic but widely accepted hypothesis in graph
analysis — different neighbors contribute differently to the

VOLUME 7, 2019

node. In 2018, [7] proposed graph attention networks (GAT)
such that each node would aggregate information from
its one-hop neighbors with different attention coefficients.
Nonetheless, despite its remarkable performance improve-
ment and capability for both transductive and inductive learn-
ing on graph-structured data, the receptive field of GAT is still
limited to one-hop neighbors, which again disregards the rich
information from high-order proximity.

Targeting at solving the aforementioned problems, we pro-
pose high-order proximity informed graph attention net-
works, hpGAT. There are several novel designs in hpGAT.
First of all, inspired by a non-negative matrix factoriza-
tion method (semi-NMF) that is trainable on neural network
models [16], [17], we propose to design a group-aware and
flexible receptive field for GNNs. Semi-NMF is an unsu-
pervised method that encodes soft membership information
for each node, which offers a structure-aware receptive field
of arbitrary-order proximity. Second, with different receptive
fields for topological group summarization at varying scales,
we propose a new graph learning module consists of sev-
eral graph attention layers that take high-order proximity to
learn hidden representations of nodes. Finally, to integrate
high-order topological information into the attention mech-
anism, hpGAT jointly optimizes non-negative matrix factor-
ization and node classification. By training hpGAT in an end-
to-end manner and adopting high-order proximity informa-
tion via semi-NMF, the graph attention mechanism would
learn to become more topology-aware and hence less myopic
when aggregating neighboring nodes. In summary, the major
contributions of this paper are summarized as follows:

1) We provide new insights and fine-grained analysis
to study how the GAT model works on the task of
node classification, and highlight the problem of noisy
aggregation when the topological information is not
fully utilized.

2) We propose hpGAT, an end-to-end trainable system
which fuses high-order proximity information embed-
ded in the multiscale representation of the input graph
as well as node attributes weighted by the attention
mechanism.

3) We conduct extensive experiments and analysis to
demonstrate the effectiveness of hpGAT on several
real-world datasets. hpGAT outperforms the state-of-
the-art methods, and its superior performance is corrob-
orated by observing its boosted performance in classi-
fying nodes connecting to different groups.

Il. RELATED WORKS

Deep neural networks have been successfully applied in
a number of high impact domains, but most of them are
specialized for handling grid-structured data, which do not
align well with graph-structured data due to irregular inputs.
How to generalize neural networks to work on arbitrarily
structured graphs is still a challenging problem. Aiming at
solving this, a surge of research interest has been devoted to

123003

IEEE Access

Z. Liu et al.: hpGAT

studying deep learning on graphs. Based on recent research
finds, [18] proposed to divide the existing deep learning meth-
ods on the graph into three main categories: semi-supervised
methods, unsupervised methods, and recent advancements.
Specifically, semi-supervised methods include Graph Neural
Networks [19] and Graph Convolutional Networks (GCNs)
[3], [5], unsupervised methods are mainly composed of
Graph Autoencoders [20]-[23] and recent advancements
include Graph Recurrent Neural Networks [24]-[26] and
Graph Reinforcement Learning [27]. For more details,
we refer the reader to [18], [28], [29]. Among these methods,
the GCNs have attracted a great deal of attention and serve as
an important role in building up many other complex graph
neural network models. Generally speaking, existing GCNs
can be categorized into two types: spatial-domain based and
spectral-domain based.

Spatial-domain based methods mainly focus on imitat-
ing the convolution operation of a conventional convolution
neural network on grid-structured data (mostly based on
the aggregation of the information of neighboring nodes)
and extending the convolution operation to adapt to graphs.
Through introducing a diffusion-convolution operation, [30]
presented diffusion-convolutional neural networks, which
outperforms probabilistic relational models and kernel-on-
graph methods in the task of node classification. Refer-
ence [31] proposed a unified framework named Message
Passing Neural Networks (MPNNGs) for the graph convolu-
tion operation using a message passing function. Specifi-
cally, each node sends messages to its neighbors based on
its current embedding representation and generates its new
embedding representation based on messages received from
immediate neighbors. Reference [6] introduced GraphSAGE,
which generates embedding representations in an inductive
way for each node by sampling a fixed number of nodes
from its spatial neighborhood and aggregating their node
features. Three aggregators (mean, LSTM and pooling) are
optional, which are all integrated with trainable parameters.
Furthermore, to enhance the scalability of GraphSAGE, [32]
proposed PinSAGE with efficient random walks and graph
convolutions. But these aggregators used in the two afore-
mentioned do not explicitly filter information, which could
easily introduce irrelevant information into the final embed-
ding representations. To address this problem, [7] introduced
the graph attention mechanism (GAT) to allow different
weights for different neighbors of each node, which further
improves the performance of node classification. Further-
more, [33] included another self attention pooling layer to
generalize the graph representation from the various aspects
of a matrix graph embedding, which leads to the dual atten-
tion graph convolutional networks. Recently, [34] proposed
Graph Networks (GNs), which is a more general framework
with three aggregation functions and three update functions.
Other than graph topology and node attributes, GNs also
include edge representations and the whole graph represen-
tation into consideration, which further improve the perfor-
mance. In addition, there is also a surge of interest in the

123004

spatial-temporal graph modeling through integrating graph
convolution with recurrent neural networks or convolution
neural networks [35].

Spectral-domain based methods mainly take advantage
of the spectral representations of graphs. By extending the
operator of the convolution to the spectral domain based on
the spectrum of the graph Laplacian, [3] defined a diag-
onal matrix as trainable parameters for each layer. How-
ever, the time complexity of this method is intensive due to
expensive eigendecomposition of the graph Laplacian matrix,
and these filters are non-spatially localized, which is not
an efficient way for representation learning. Later, [2] pro-
posed a novel parameterization by introducing a smoothing
kernel for better capturing spatial locality. Reference [4]
proposed to approximate the filters using the Chebyshev
expansion that can be computed recursively from the graph
Laplacian. With the help of this approximation, eigende-
composition is no longer required and the locality of fil-
ters can be ensured. Similarly, [36] proposed to use Cayley
polynomials of the graph Laplacian to approximate local-
ized filters on graphs, which offer better frequency local-
ization than Chebyshev polynomials. Moreover, [S] proved
that the first-order approximation of spectral convolutions
on graphs is efficient enough to build representative con-
volutional filter functions by stacking multiple layers. With
these simplifications, spectral-domain based methods have
shown close connections to spatial-domain based methods for
their similarity in aggregating information from neighboring
nodes.

In summary, spatial-domain based methods and spectral-
domain based methods both show promising results on var-
ious graph related analytics tasks. But spatial-domain based
methods outperform spectral-domain based methods in terms
of efficiency, generality and flexibility [29].

Ill. PRELIMINARIES AND MOTIVATION

A. GRAPH ATTENTION NETWORKS (GAT)

Given a graph G = (V,E, X), where V and E represent
the node set and edge set, respectively, and X € R"*¢
(n is the number of nodes and c is the length of each feature
vector) is the matrix representing node attributes. A com-
mon semi-supervised learning task is to infer the labels of
a subset of nodes given G and known labels of the other
nodes.

GAT [7] solves this problem by designing a graph attention
layer (GAL). Let P = {p1,p2,....pn) € R"™4 (d is the
dimension of the latent representation) denote the input to this
layer, which are the node representations generated from the
previous layer (the input of first layer is the node attributes X,
and we omit the layer index for brevity).

GAT first applies a learnable linear transform on represen-
tations (parameterized by W e R%*¢) of each two connected
node pairs to compute the attention coefficients with the
function f : RY x R? — R:

eij = f (Wpi, Wp)) ey

VOLUME 7, 2019

Z. Liu et al.: hpGAT

IEEE Access

The attention coefficients are then normalized across the
neighbors of the targeted node i by using softmax function:
aj = L(e’/))
> expleig)
qeN;

where N; is the set of neighboring nodes of node i, including
node i itself.

With the attention coefficients, the final output of node i in
the graph attention layer is the aggregated node representa-
tions from N;:

K
=] o | 2w 3
k=1 jeN;

where || denotes vector concatenation, o is the sigmoid func-
tion and K is the number of heads (each head has inde-
pendent transformation parameters). Technically speaking,
we can view GAT as a trainable version of label propagation
algorithm. The correlation between these two algorithms is
discussed in the APPENDIX.

B. THE LIMITATION ON GAT

For each node, GAT leverages its 1-hop neighbors to perform
weighted aggregation to obtain the hidden representation of
the node itself, which implicitly indicates that for a typical
GAT with two layers, the receptive field of a node is in fact
limited to its 2-hop neighbors. As discussed above, increas-
ing the range of receptive field helps a learning algorithm
perceive richer topological information. Hence, for GAT, one
naive way to increase the receptive field is by simply stacking
more layers.

In this section, we first use real-world datasets to report the
unsatisfactory performance of a typical node classification
task by stacking more layers in GAT, then we give an expla-
nation on the pessimistic outcomes we have observed. The
experiment setup is the same as in the Experiments section
except for that we use one head instead of eight for each graph
attention layer due to the limited GPU memory.

Fig.2 shows the accuracy when stacking multiple lay-
ers. Here, different colors indicate different datasets, X-axis
demonstrates the number of layers a GAT has, and the Y-axis
is the accuracy. We conclude from the results that (i) On all
datasets, when increasing the number of layers in GAT from
1 to 2, the performance increases accordingly, indicating that
GAT gains more topological information from two layers than
asingle layer. (ii) However, by continuing adding more layers
into GAT, the performance begins to decrease.

The outcome of the noticeable performance decay in all
datasets indicates a limitation of GAT — stacking more layers
does not yield the expected effect of the increased receptive
field. For GAT, according to Eq.3, the core step in updating
the representation p; of a node i in a layer is achieved by
weighted aggregation on the representations of all its neigh-
bors j € MN;. This process can be regarded as a typical
Laplacian smoothing process that implicitly increases the
receptive field of a node.

VOLUME 7, 2019

0.8 e (aoncoon00000 T . Choonncerreee O Y
Dl
0.7 -
RPN "

5 06- & b -.. T -
© |
5 0.5 . CWereeeeeennan -
S 04 } —

0.3-

Dataset M.
0.2 - o0e Cora =
mBa BlogCatalog
0.1 - #0¢ Citeseer

*kx Flickr
1 2 3 4 5 6
Layers

FIGURE 2. The accuracy of node classification task when stacking layers
in GAT. Limited by the GPU memory, we use one head (K = 1) for each
graph attention layer.

However, by repeatedly applying Laplacian smoothing
many times (i.e. stacking more layers), the whole model will
suffer from the over-smoothing problem. References [37],
[38] have proved that by repeatedly applying Laplacian
smoothing, the features of nodes within each connected com-
ponent of the graph will converge to the same values. For
GAT, as stacking layers is equivalent to applying Laplacian
smoothing, it will also suffer from the over-smoothing prob-
lem on the learned node representations, leading to perfor-
mance degradation.

C. ADVANTAGE IN HIGH-ORDER PROXIMITY

Recently, high-order proximity has shown to be effective
in many graph learning tasks, especially in the research of
network embedding. We refer readers to [39] for a compre-
hensive review. For example, [40] directly used the k-step
transition probability matrix A¥ = [, A as the high-order
proximity matrix, where A is the normalized adjacency matrix
representing the transition probability matrix of a single-step
random walk. Reference [41] proposed a hierarchical feature
aggregation model, where they initially aggregate features at
different depth (a.k.a multiple-hop neighbors) of a node on
each hierarchy.

Generally speaking, the ultimate goal of all these meth-
ods is to appropriately define the receptive field of a node
on the graph, since a well-defined receptive field including
high-ordered proximity allows a node to perceive richer and
broader knowledge of the graph topology. However, naively
using multiple-hop proximity or k-step transition matrix A
as a way to increase the receptive field may obfuscate the
essential topological information of a node, and thus may
incur additional noises in the learning and analysis phases.

Take Fig.3 as an example. For node a, when naively aggre-
gating its first-order neighbors (blue circle shadow), the node
is myopic and can only perceive neighbors around itself. To
increase the receptive field by using A2, node a can grasp
more information (gray rectangle shadow). However, this
procedure may also include some irrelevant nodes and results
in noisy or even uninformative aggregation. Consequently,
it is crucial to properly define an appropriate receptive field.

123005

IEEE Access

Z. Liu et al.: hpGAT

"2 Naively using 1-hop Neighbors as receptive filed

Using neighbors from A? as receptive filed

b] High-order proximity informed receptive field

FIGURE 3. Different aggregation of node a can affect its perception of the
network. A properly defined high-order proximity receptive field (yellow
shadow) can provide a with more informative topological understanding
than 1-hop neighbors (blue shadow), or an excessive receptive field
covering the too many hops (gray shadow).

In this example, if the receptive field can perceive the topo-
logical information in advance, it is easy to find that a critical
pattern that there exists a subgraph containing node a and the
blue nodes. Based on this preferred receptive field (yellow
rectangle shadow), node a can put more aggregation weights
on its neighbors within the same subgraph, instead of aggre-
gating other irrelevant nodes.

IV. METHODOLOGY

As discussed before, the limitation in GAT is its small recep-
tive field (i.e., 1-hop neighbors). Moreover, simply stack-
ing multiple layers under the framework of GAT leads to
over-smoothing. To encourage the attention mechanism to
be aware of the embedded high-order topological structures
while maintaining its efficiency in local neighborhood aggre-
gation, we propose a novel approach to overcome the limita-
tion in GAT by introducing high-order proximity in the atten-
tion mechanism. Specifically, in addition to computing atten-
tion coefficients between every connected node pair using
their node attributes, their pairwise topological relationships
on high-order proximity are also included in the process of
end-to-end learning.

In what follows, we first illustrate how to extract those pair-
wise relationships in the perspective of high-order proximity
derived from the adjacency matrix, then we introduce a new
graph attention layer based on high-order proximity. Finally,
we introduce the proposed method, hpGAT.

A. EXTRACTING HIGH-ORDER PROXIMITY INFORMATION
Inspired by a non-negative matrix factorization method
(semi-NMF) that is trainable on neural network models [16],
[17], we propose to learn a set of low-dimensional represen-
tations that encode high-order proximity of the input graph,
which can be learned from its adjacency matrix. To do this,
we introduce a trainable factorization on the adjacency matrix
A with two sets of matrices {Z;}}"_; and {H,;|r }i (m denotes
the number of hierarchy of the matrix factorization, and
the notation H,j indicates that the matrix Hj contains only
non-negative elements), which follow:

ARZ1Zs. .. ZyH,} 4)
and
H | ~Z,H}
')

HY ~ Z3Hy = Z3 - Z,H,}
H ~ZHy =2, Z,H,)}

123006

community 1 community 2 community 3 community 4

community 1 community 2

A

k-means

k-means High-level latent .

Y23 .
HE Low-level latent / representations
1

representations

y 4 2.7

Adjacency matrix

FIGURE 4. An illustration of how semi-NMF learns a hierarchy of latent
representations that discover different levels of communities. Through
factorizing A ~ Z, ZzH;' ~Z, H;" , two different levels of latent
representations are generated, which are H} and H;' , and clustering on
HY and H;" leads to discover different hierarchies of communities.
Furthermore, the normalized weights of S defined in Eq.8 over the three
neighboring node of the bridge node (marked in white color) are also
given over the corresponding edges. We can see that with the help of
high-level latent representations, a much smaller weight is put on the link
to the green group.

As stated in [16], [17], {HJj}Z":] are restricted to be non-
negative, whose entries are soft membership indicators for
each node at different scales, and {Z }}"_, are the correspond-
ing base matrices that can be considered as group (cluster)
centroids. Taking m = 1 as an example, we factorize A into
two factors: A ~ ZH™. If the orthogonal constraint is also
imposed on H™, such that H+(H+)T = I, then every column
vector would have only one positive element [42], which
making semi-NMF equivalent to k-means with the same loss
function:

n k

loss = Z thi @ — zilI*> = A - ZH+||F ©)

i=1 j=1

where k is the number of clusters, /; is the element at the k™
row and i column of the matrix H, @; and z; are the i and
k™ column of the matrix A and Z, respectively. ||-|| denotes
the L2-norm of a vector and ||-|| is the Frobenius norm of a
matrix.

Therefore, we can view the semi-NMF without the orthog-
onality constraint on the factor H™ as a soft clustering method
where H is the soft membership indicator for each node,
and Z denotes the corresponding cluster centroids. Moreover,
{Z)}, and {H, ,j Y, are constructed following a hierarchi-
cal manner. By doing so, the representations {H k"’ }i | encode
high-order proximity on different hierarchies. Specifically,
we show an example with m = 2 in Fig.4. With H 1+ and H2+ ,
we can discover different levels of communities in the graph
through performing clustering.

B. hpGAL: GRAPH ATTENTION LAYERS WITH
HIGH-ORDER PROXIMITY

With {H,:r }i—,, we calculate the attention coefficients e;
by combining node attributes with a matrix § € R"™"

VOLUME 7, 2019

Z. Liu et al.: hpGAT

IEEE Access

| Node Representations |
'y

| Concatenate / Average Pooling

x
|

hpGAL: high-order proximity graph attention layer
o
GAL GAL GAL
A: Adjacency Matrix [-
X:Node Representation 4 047\,

&
S5y S, N S3

High Level

Z3
: R tati
Middle Level ‘/H; epresentation

Hi Representation

212,

;\ 7,7,75

A

HE

FIGURE 5. lllustration of a hpGAL with three (m = 3) levels of high-order
proximities. Derived from the adjacency matrix A, three blocks (colored
by blue, yellow and green) represent different scales of proximities,
respectively, and the higher-level block is with larger receptive field.
Different heights of these blocks represent the hierarchy among these
blocks. {Zj, }”'_l and H; are trainable matrix derived from the
decomposition of the adjacency matrix which follow Eq.4 and Eq.5.
According to Eq.8, the output of each block is fed into a separate GAL,
along with the node attribute matrix X and the adjacency matrix A.

that denotes the pairwise relationships encoded high-order
proximity:

eij =f(Wpi, Wp)) + Sjj @)

where f = LeakyReLU (ZiT[WﬁiHWﬁ}-]) is defined in
GAT and S;; denotes the (i,j) entry of the matrix § €
{S1, 52, ..., Sn}, which are calculated by

Sk~ HHTH 0A ®)

where k = 1,...,m and © denotes the entry-wise
(Hadamard) product of two matrices. Since H,j *k =
1,...,m) represents soft membership indicators for each
node at a specific scale [16], [17], S; can be viewed as
the similarity between two nodes in the perspective of
high-order proximity. Including S;; in Eq.7 suggests that if
two nodes are more similar in high-order proximity, larger
weights should be imposed on each other when conduct-
ing the aggregation, which is illustrated in the case shown
in Fig.4.

Fig.5 represents the overall architecture of a graph learning
module with three-level high-order proximities (i.e., m = 3
and m is a hyperparameter that can be determined based on
unsupervised hierarchical graph clustering methods, which
will be discussed in details in next section). To be specific,
this architecture contains a three-level hierarchical structure
of the adjacency matrix A, where H;", H2Jr and H3+ captures
the low, middle and high-level structures, respectively. For the
k-th-level of the graph attention layer (GAL), we generate
the output based on both S; and node attributes X (or node
latent representations generated by the previous layer) using
Eq.3. Here, we restrict these three GALs to share the same
parameters (i.e., W in Eq.7). Finally, the node representations
are generated by average pooling or concatenating all outputs
from the all GALs.

VOLUME 7, 2019

Algorithm 1 Building a hpGAT Model with 2 hpGALs
Input: Node attributes matrix X, Adjacency matrix A
Output: Predictions Y, Reconstructed adjacency
matrix A,

1 Initializing an empty list A, = {D};

2 Initializing matrices Z1,2,...Z,, and H,};

3 HT < ReLU(H,});

4 S < HHIHT 0 A;

5 Ap < {Ap, S}

6

7

8

9

foreach Ze {Z,,,Z,,_1,...,Z>} do
HY < ReLU(ZH™);
S — HHTHT 0 A;
Ap < {Ap, S}
10 end
11 A, < Eq.4;
12 P« ||a€Ah GAL(X, A, a) // concatenation;
BY « ‘A_1h|2uEAhGAL(PaA» a) // averaging pooling;

C. hpGAT: HIGH-ORDER PROXIMITY INFORMED GAT

Throughout this paper, we build hpGAT with two hpGALs
with multiple independent heads that learn how to attend
the neighbors based on node representations and high-order
proximity. For the first hpGAL, the input is the node attributes
X and the outputs from each head would be concatenated
and fed into the second hpGAL. An average pooling along
with the softmax function is applied upon the outputs from
the second GAL to obtain the predictions Y. In order to
efficiently take advantage of high-order proximity, we train
hpGAT in an end-to-end manner by jointly optimizing the two
tasks of matrix factorization and node classification. With the
known node labels Y, the overall loss function is defined as:

L =LY, Y)+AL,,
. 2
with L, =[A—Al; =[A-Z1Z- ZuH | 9

where L represents the supervised loss, A, is the recon-
structed adjacency matrix, || - | denotes the Frobenius norm,
and A is a hyperparameter that balances the loss of matrix
reconstruction £, and the supervised loss L;.

We summarize the algorithmic procedure of construct-
ing hpGAT in Alg.1. Here, ReLU function ensures the
non-negativity of {H,j iz, (Line 3). With randomly initial-
ized H,f and {Z;}]"_,, we obtain the similarity matrix S
(Line 4) of the highest-order proximity of the graph. Then,
we use a for-loop to recursively calculate S on different
levels (Line 6 to 10) according to Eq.5. Finally, by using
the “concatenation” operator, the first hpGAL produces the
latent representations for all nodes (Line 12), and by using
the “‘average pooling” operator, the second hpGAL outputs
the prediction Y (Line 13).

To optimize the overall objective function in Eq.9,
we choose the stochastic gradient descent optimizer to train
our model. Note that our proposed algorithm does not involve
any explicit matrix decomposition or expensive eigendecom-
position. Comparing to GAT, it only requires a few additional

123007

IEEE Access

Z. Liu et al.: hpGAT

TABLE 1. Detailed information of the datasets.

Name #Nodes #Edges # Attributes # Labels
Cora 2708 10858 1433 7
Citeseer 3327 4676 3703 6
BlogCatalog 5196 171743 8189 6
Flickr 7575 239738 12047 9

learnable parameters (i.e., {Zx }Zzl and {H k+ 1. Therefore,
our proposed hpGAT shares a similar complexity with GAT.
We refer the readers to Section V-E for detailed complexity
analysis between hpGAT and GAT.

V. EXPERIMENTS
In this section, we employ four real-world networks to val-
idate the effectiveness of the proposed model on the task of
node classification.

A. DATASETS AND EXPERIMENTAL SETUP

BlogCatalog and Flickr are two real-world social media
datasets used in [43].! Cora? and Citeseer” are datasets based
on citations between scientific papers. The details of these
datasets are given in Table 1. For the experimental setup,
we train all the algorithms on 20% of node labels in each
dataset and use another 20% as the validation dataset for
hyperparameter tuning. Then, we report the accuracy on the
remaining 60% dataset. For hpGAT, we set eight attention
heads for the first hpGAL and one attention head for the sec-
ond hpGAL on all datasets, which is the same setup with
GAT. In addition, a three-level hierarchies is adopted (i.e.,
m = 3) with the column size of {Zk},%:] setting to 2,4,8,
respectively. In addition, we have found that different values
of A have little influence on the overall performance (see
Section V-D.2 for details), suggesting algorithmic stability.
Hence, we use A = 1 for all datasets. For all other baseline
methods, we use the same parameter setup given in the orig-
inal paper.

B. COMPARATIVE METHODS
The following are seven comparative methods (state-of-the-
arts and baselines) to be compared with hpGAT.

o DeepWalk [44]: DeepWalk is an unsupervised network
embedding method. We train a logistic regression model
as the classifier based on the generated embeddings.

o Chebyshev [4]: Chebyshev approximates the filters by a
Chebyshev expansion of the graph Laplacian to imple-
ment the convolution operation defined in the Fourier
domain.

e GCN [5]: GCN simplifies the Chebyshev expansion
with a first-order approximation of spectral convolu-
tions.

1 https://github.com/xhuang31/LANE
2https://linqs.soe.ucsc.edu/data
3 http://csxstatic.ist.psu.edu/

123008

TABLE 2. Node classification results.

Cora Citseer BlogCatalog Flickr

DeepWalk 0.672 0.432 0.650 0.421
Chebyshev 0.804 0.685 0.703 0.493
GCN 0.817 0.701 0.725 0.508
GCN 0.821 0.693 0.743 0.491
GAT 0.823 0.721 0.731 0.465
GAT » 0.810 0.695 0.597 0.395
hpGCN 0.822 0.714 0.754 0.594
hpGAT 0.831 0.730 0.768 0.603

o GAT [7]: Beyond GCN, GAT introduces the attention
mechanism to aggregate connected neighbors with dif-
ferent attention weights.

e GCNy, [28]: By using A¥ instead of A as the input to
the graph convolution, this method naively introduces
high-order proximity into GCN. Here we test GCN with
first-order and second-order graph convolution in the
same manner as in [28].

e GATy: Similar to GCNy 3, A and A2 are inputs to GAL.

« hpGCN (hpGAT w/o attention): Since GAT can be
viewed as GCN with attention mechanism, here we
also test the performance of high-ordered proxim-
ity informed GCN by removing the attention mecha-
nism from hpGAT to demonstrate the effectiveness of
high-order proximity.

C. NODE CLASSIFICATION AND ANALYSIS

1) PERFORMANCE COMPARISON

Table 2 reports the accuracy on node classification for
all methods. In all datasets, our proposed hpGAT con-
sistently attains the best performance by a large margin
when compared to other methods, including the state-of-
the-art methods such as GCN and GAT. The remarkable
performance improvement in hpGAT is credited to the pro-
posed high-order proximity informed attention mechanism.
In addition, the results also corroborate the advantage of
solely introducing high-order proximity in node classifica-
tion, as hpGCN (i.e., hpGAT w/o attention) also enjoys a
performance boost in accuracy.

By comparing GCN with GCNj 2, we find that naively
introducing high-order proximity through using A and A®
together can sometimes obtain better results (observed on
Cora and BlogCatalog), but it also could deteriorate the per-
formance (observed on Citeseer and Flickr). One possible
explanation is that when directly introducing k-hop neighbors
into aggregation, it is more likely to involve noisy information
and brings about a negative effect on classification. This
phenomenon is also observed when comparing GAT with
GAT, . Without properly defined receptive fields (such as
the use of hpGAT), GAT|» results in a much worse perfor-
mance than GAT due to noisy neighborhood aggregation.

2) ANALYSIS
We now dive into detailed ex post facto data analysis to

provide deep insights on the performance improvement of
hpGAT relative to GAT.

VOLUME 7, 2019

Z. Liu et al.: hpGAT

IEEE Access

TABLE 3. First-order proximity label classification and purity analysis of
hpGAT v.s. GAT.

Datasets ‘ LRV ‘ (<1,=1) A Performance Gainx
Cora 047 | (932, 1776) (+11, +2)
Citeseer 0.36 (1967,1360) (+14, +4)
BlogCatalog 0.20 (5185, 11) (+114, +1)
Flickr 0.14 | (7562, 13) (+625, +2)

Notes: V: Linear classification results on test dataset. A: Purity
Number (< 1, = 1) on all datasets. *: Purity Number (< 1, = 1)
gain on test datasets.

As the adjacency matrix A contains only 1-hop neighbors
for each node, to benchmark the relationships between con-
nected neighbors of a node and their corresponding labels,
we directly use the (rows of) adjacency matrix and the node
labels in the training set to train a linear classifier (logistic
regression) to predict the node labels. The performance of the
classifier on the test datasets is reported in Table 3. We find
that the performance of this baseline on Cora and Citeseer is
much better than that on BlogCatalog and Flickr. It explains
why hpGAT can only attain slight improvements over GAT
on Cora and Citeseer since a small receptive field (first-
order proximity) already contains sufficient information for
predicting node labels on Cora and Citeseer.

Moreover, we propose a metric ““purity”’ defined in Eq.10
to quantitatively analyze the distributions of the labels of
neighbors of the node i:

% 1,4

; JjeN;

purity = D; (10)
where N is the 1-hop neighbors of node i, /; denotes the label
of the node i, 1;; is the indicator function (outputs 1 when
the input equals /; and O otherwise) and D; is the cardinality
of N;. Therefore, purity = 1 indicates all neighbors of a
node share the same label as itself, and purity < 1 indicates
the neighbors of a node have different labels from itself.
Table 3 reports the purity statistics of all nodes (we call it
purity number) on the four datasets. For Cora and Citeseer
datasets, the purity numbers between < 1 and = 1 are more
balanced, and for BlogCatalog and Flickr datasets, the purity
numbers are heavily imbalanced. Consequently, for Cora and
Citeseer, it would be easier for a graph attention mechanism
to learn proper weights on the neighboring nodes because
the majority of nodes have the same label as their neighbors.
On the other hand, for BlogCatalog and Flickr almost every
node has purity < 1 and hence learning proper attention
weights is more challenging.

To validate our hypothesis that high-order proximity infor-
mation can suppress noisy aggregation in GAT and hence
improve the learning performance, we report the gains in
purity number by comparing hpGAT with GAT in Table 3.
We find that in both cases (purity < 1 or = 1) hpGAT
has a better classification performance than GAT on all
datasets. More importantly, we find that no matter the dataset

VOLUME 7, 2019

BlogCatalog

0.72
0.70
0.68
0.66
0.64
0.62

0.810
0.805

e

3 0.800
0.790
0.785

0.780
24 25 28 1 2 3 4 5 6
(b) # Hierarchy

2! 22 23
(a) # Column size of Z;

FIGURE 6. Parameter analysis with one attention head on (a) number of
column size of Z, and (b) number of hierarchy.

is imbalanced in purity distribution or not, hpGAT is more
effective in predicting the node labels with purity < 1 than
GAT. The results show that the major performance gain in
hpGAT actually comes from its ability to correctly predict the
labels of “noisy”” nodes, which proves the effectiveness and
importance of high-order proximity in node classification.

D. PARAMETER ANALYSIS ON HIGH-ORDER PROXIMITY
In this section, we mainly analyze how the number of column
size (the column size of {Z;}}"_,), the number of hierarchy m
and the weight A affect the performance of hpGAT.

1) PARAMETER ANALYSIS ON THE COLUMN SIZE

OF {Zx)7"_, AND m

Fig.6 reports the accuracy for hpGAT on Cora and BlogCata-
log datasets with respect to different parameter settings. The
vertical axis of each plot shows the resulting accuracy. To
analyze the number of column size in {Z;};' |, we report
the performance trend of hpGAT with varying column size
from 2 to 64 under a single hierarchy reconstruction (left
of Fig.6). In addition, to analyze the number of hierarchies
within a hpGAT, we report the performance trend of hpGAT
with different hierarchies ranging from 1 to 6 (right of Fig.6),
where the size of related columns is 2, 2-4, 2-4-8, 2-4-8-16,
2-4-8-16-32 and 2-4-8-16-32-64, respectively.

These results show the sensitivity of these parameters on
the performance of hpGAT. Regarding the number of column
size, we find that on both datasets, moderate-sized setting
gives the best performance, and the stability can be expected
as the “sweet spot” is quite flat. These findings are also
well aligned with the intuition that a small number of column
size may limit the representation power while a large number
of column size may be redundant. Similarly, regarding the
number of hierarchy, either setting too many or too few layers
may harm the performance, which can be explained by the
fact that either extremely rough or fine-grained hierarchical
topological information is not ideal for learning appropriate
attention weights. It is worth noting that there are many
grounded methods (e.g. the Louvain method [45], [46]) in
the traditional graph analysis field to automatically determine
the number of hierarchy of a network in an unsupervised
manner, which can be used as an informative prior for setting

123009

IEEE Access

Z. Liu et al.: hpGAT

10 Cora

Accuracy
o o o
N s o

o
o

01 1 2 3 4

> -

BlogCatalog

-
o

o
@

«——— o —o S ——— — oo o

Accuracy
©c o o
N L [}

o
o

01 1 2 3 4

> -

Citeseer

==
o

o
o

o——— —C—C—-C

————eo— o

Accuracy
© o o
N » [}

o
o

Flickr

o
o
°

Accuracy

o o
[SIS

o
o

o1 1 2 3 4 5 6 7 8 9 10

FIGURE 7. Experiments on the sensitivity of 1 by changing its value from 0.1 to 10.

Consuming time per epoch

Consuming time per epoch

00
hpGAT AT pGAT AT
BlogCatalog Flickr

FIGURE 8. Experiments on average runtime for training an epoch for
hpGAT and GAT on all four datasets, respectively.

hyperparameters in hpGAT. In fact, we find that for Cora and
BlogCatalog, the number of hierarchy given by the Louvain
algorithm is 4 and 2, respectively, which gives a near-optimal
performance according to Fig.6.

2) PARAMETER ANALYSIS ON
Here, to investigate the influence of A in Eq.9, we vary A from
0.1to 10. Fig.7 reports the resulting performances on the node
classification task for all four datasets. For each subgraph,
the X-axis represents the value of A, and Y-axis represents
the accuracy.

Inspecting the results from all four datasets, we can easily
make a conclusion that the change of A has a limited effect
on the overall performance within the tested range. In other

123010

words, it means that the hyperparameter A is not sensitive to
the overall algorithm. In particular, if we set A = 0, hpGAT
reduces to the case of GAT.

E. EMPIRICAL COMPLEXITY ANALYSIS

We conduct our experiments on a typical machine with
Ubuntu 16.10 system, 64G 2133MHz RAM, Intel ES5-
2630V4 CPU, and the Titan X GPU with 12G memory.
All experiments are implemented using keras 2.2.0 and
tensorflow-gpu 1.8.0.

Fig.8 shows the average runtime (in seconds) for each
epoch when training a hpGAT and a GAT (both with two
hpGALs/GALs). Here, one hpGAL contains three GALs with
shared parameters. For each subgraph, X-axis represents all
four datasets, and Y-axis represents the training time.

It is clear to see that for each dataset, the average training
time for each epoch for hpGAT and GAT is similar, which
empirically demonstrates that hpGAT and GAT share a simi-
lar computation complexity.

VI. CONCLUSION

In this paper, we propose a novel high-order proximity
informed graph attention network (hpGAT). By introducing
high-order proximity extracted from the learnable factor-
ization of the adjacency matrix into the attention mecha-
nism, hpGAT is more effective in aggregating information
from neighboring nodes. Extensive experiments and detailed
data analysis on several real-world networks demonstrate the
superior performance of hpGAT on node classification.

APPENDIX

RELATION TO LABEL PROPAGATION ALGORITHM

It is well known that the node attributes help to describe the
particular information of a node itself. The graph topology,

VOLUME 7, 2019

Z. Liu et al.: hpGAT

IEEE Access

on the other hand, helps to propagate information between
two connected nodes with respect to the weight on the edge.
The original graph attention network (GAT) is able to learn
representations of nodes in a graph, taking both topology
and node attributes into account. Particularly, GAT advo-
cates weighted aggregation of one-hop neighbors of a node
for helping information propagation. This process is related
to the label propagation algorithm (LPA), a well-studied
framework for studying the information propagation upon
topology.

Analog to GAT, LPA also leverages neighborhood infor-
mation of a node to label the node itself. Alg.2 demonstrates
a standard process to propagate labels on a graph. Here, Y*)
denotes the labels (at iteration), PY® works as an aggrega-
tion operation over neighbors for each node (irrespective of
whether the graph includes self-connections for every node
or not).

Algorithm 2 Label Propagation Algorithm (LPA)
Input: Graph G(V, E), (optional) Initial labels Yz,
Output: Predicted labels Y
Compute diagnose matrix Dj; = } .y Ay
Compute transition matrix P = D 1A;

Initialize Y@ = Y;
repeat
yu+h py(t);
YL(tH) <« YL(I);
until YO converges;

N S T A W N -

8 return ¥ < Y©;

By regarding Yi(l) as the representation of node i at iteration
t, we can replace the transition matrix P in Alg.2 with a neu-
ral network layer-like differentiable function with trainable
parameters, as shown in Eq.11.

(+1) 1 OO0
v=e| 2 ST Y,

o
jeN; N —
Pij

(11

where Yicy is the attribute of node i, N; is the neighbor
set of node 7 including itself, c;; is an appropriately chosen
normalization constant for the edge between node i and j.
Further, Yi(l“) is transformed to a vector of activations of
node i from the /" neural network layer. Please note that
Eq.11 is actually the layer function /; <— & (Y oz,-jhj> in
GAT. Here, o;; is the aggregation weight from node j to node
i. Hence, we can make a (loosely speaking) conclusion that,
GAT model can be interpreted as a differentiable and param-
eterized generalization of the label propagation algorithm.

REFERENCES

[1] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst,
“Geometric deep learning: Going beyond Euclidean data,” IEEE Signal
Process. Mag., vol. 34, no. 4, pp. 18-42, Jul. 2017.

VOLUME 7, 2019

[2]

[3]

[4]

[5]

[6]

[71

[8]

[9]

(10]

[11]

[12]

(13]

[14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

M. Henaff, J. Bruna, and Y. LeCun, “Deep convolutional networks
on graph-structured data,” 2015, arXiv:1506.05163. [Online]. Available:
https://arxiv.org/abs/1506.05163

J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and
locally connected networks on graphs,” 2013, arXiv:1312.6203. [Online].
Available: https://arxiv.org/abs/1312.6203

M. Defferrard, X. Bresson, and P. Vandergheynst, ‘“Convolutional neural
networks on graphs with fast localized spectral filtering,” in Proc. Adv.
Neural Inf. Process. Syst., 2016, pp. 3844-3852.

T. N. Kipf and M. Welling, ““Semi-supervised classification with graph
convolutional networks,” 2016, arXiv:1609.02907. [Online]. Available:
https://arxiv.org/abs/1609.02907

W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learn-
ing on large graphs,” in Proc. Adv. Neural Inf. Process. Syst., 2017,
pp. 1024-1034.

P. Velickovié, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” in Proc. Int. Conf. Learn.
Represent., 2018, pp. 1-12. [Online]. Available: https://openreview.net/
forum?id=rJXMpikCZ

J. Chen, T. Ma, and C. Xiao, “FastGCN: Fast learning with graph con-
volutional networks via importance sampling,” 2018, arXiv:1801.10247.
[Online]. Available: https://arxiv.org/abs/1801.10247

L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“DeepLab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected CRFs,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 40, no. 4, pp. 834-848, Apr. 2017.

S. Fortunato, “Community detection in graphs,” Phys. Rep., vol. 486,
nos. 3-5, pp. 75-174, 2010.

P.-Y. Chen, S. Choudhury, and A. O. Hero, ““Multi-centrality graph spectral
decompositions and their application to cyber intrusion detection,” in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Mar. 2016,
pp. 4553-4557.

P.-Y. Chen and L. Wu, “Revisiting spectral graph clustering with genera-
tive community models,” in Proc. IEEE Int. Conf. Data Mining (ICDM),
Nov. 2017, pp. 51-60.

E. Abbe, “Community detection and stochastic block models: Recent
developments,” J. Mach. Learn. Res., vol. 18, no. 177, pp. 1-86, Jan. 2018.
P-Y. Chen and A. O. Hero, “Multilayer spectral graph clustering via
convex layer aggregation: Theory and algorithms,” IEEE Trans. Signal Inf.
Process. Netw., vol. 3, no. 3, pp. 553-567, Sep. 2017.

V. S. Dave, B. Zhang, P.-Y. Chen, and M. A. Hasan, “‘Neural-brane: Neural
Bayesian personalized ranking for attributed network embedding,” 2018,
arXiv:1804.08774. [Online]. Available: https://arxiv.org/abs/1804.08774
G. Trigeorgis, K. Bousmalis, S. Zafeiriou, and B. W. Schuller, “A deep
semi-NMF model for learning hidden representations,” in Proc. Int. Conf.
Mach. Learn., 2014, pp. 1692-1700.

G. Trigeorgis, K. Bousmalis, S. Zafeiriou, and B. W. Schuller, “A deep
matrix factorization method for learning attribute representations,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 39, no. 3, pp. 417-429, Mar. 2017.
Z.Zhang, P. Cui, and W. Zhu, “Deep learning on graphs: A survey,” 2018,
arXiv:1812.04202. [Online]. Available: https://arxiv.org/abs/1812.04202
F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The graph neural network model,” IEEE Trans. Neural Netw., vol. 20,
no. 1, pp. 61-80, Jan. 2009.

T. N. Kipf and M. Welling, ““Variational graph auto-encoders,” 2016,
arXiv:1611.07308. [Online]. Available: https://arxiv.org/abs/1611.07308
D. Wang, P. Cui, and W. Zhu, “Structural deep network embedding,” in
Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2016,
pp. 1225-1234.

C. Wang, S. Pan, G. Long, X. Zhu, and J. Jiang, “MGAE: Marginalized
graph autoencoder for graph clustering,” in Proc. ACM Conf. Inf. Knowl.
Manage., 2017, pp. 889-898.

S.Pan,R. Hu, S.-F. Fung, G. Long, J. Jiang, and C. Zhang, “‘Learning graph
embedding with adversarial training methods,” 2019, arXiv:1901.01250.
[Online]. Available: https://arxiv.org/abs/1901.01250

F. Monti, M. Bronstein, and X. Bresson, “Geometric matrix completion
with recurrent multi-graph neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., 2017, pp. 3697-3707.

J. You, R. Ying, X. Ren, W. L. Hamilton, and J. Leskovec, “GraphRNN:
Generating realistic graphs with deep auto-regressive models,” in Proc.
Int. Conf. Mach. Learn., 2018, pp. 5694-5703.

Y. Seo, M. Defferrard, P. Vandergheynst, and X. Bresson, “Structured
sequence modeling with graph convolutional recurrent networks,” in
Proc. Int. Conf. Neural Inf. Process. Cham, Switzerland: Springer, 2018,
pp. 362-373.

123011

IEEE Access

Z. Liu et al.: hpGAT

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

N. De Cao and T. Kipf, “MolGAN: An implicit generative model for
small molecular graphs,” 2018, arXiv:1805.11973. [Online]. Available:
https://arxiv.org/abs/1805.11973

Z. Zhou and X. Li, “Graph convolution: A high-order and adaptive
approach,” 2017, arXiv:1706.09916. [Online]. Available: https://arxiv.
org/abs/1706.09916

Z.Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “°A comprehensive
survey on graph neural networks,” 2019, arXiv:1901.00596. [Online].
Available: https://arxiv.org/abs/1901.00596

J. Atwood and D. Towsley, ‘““Diffusion-convolutional neural networks,” in
Proc. Adv. Neural Inf. Process. Syst., 2016, pp. 1993-2001.

J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neural
message passing for quantum chemistry,” in Proc. 34th Int. Conf. Mach.
Learn., vol. 70, 2017, pp. 1263-1272.

R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and
J. Leskovec, “Graph convolutional neural networks for Web-scale recom-
mender systems,” in Proc. 24th ACM SIGKDD Int. Conf. Knowl. Discov-
ery Data Mining, 2018, pp. 974-983.

F. Chen, S. Pan, J. Jiang, H. Huo, and G. Long, “DAGCN: Dual attention
graph convolutional networks,” 2019, arXiv:1904.02278. [Online]. Avail-
able: https://arxiv.org/abs/1904.02278

P. W. Battaglia et al., “Relational inductive biases, deep learning,
and graph networks,” 2018, arXiv:1806.01261. [Online]. Available:
https://arxiv.org/abs/1806.01261

Z. Wu, S. Pan, G. Long, J. Jiang, and C. Zhang, ““Graph wavenet for deep
spatial-temporal graph modeling,” 2019, arXiv:1906.00121. [Online].
Available: https://arxiv.org/abs/1906.00121

R. Levie, F. Monti, X. Bresson, and M. M. Bronstein, “CayleyNets:
Graph convolutional neural networks with complex rational spec-
tral filters,” 2017, arXiv:1705.07664. [Online]. Available: https://arxiv.
org/abs/1705.07664

Q. Li, Z. Han, and X.-M. Wu, “Deeper insights into graph convolu-
tional networks for semi-supervised learning,” 2018, arXiv:1801.07606.
[Online]. Available: https://arxiv.org/abs/1801.07606

P.-Y. Chen, B. Zhang, and M. Al Hasan, “Incremental eigenpair computa-
tion for graph Laplacian matrices: Theory and applications,” Social Netw.
Anal. Mining, vol. 8, no. 1, p. 4, 2018.

P. Goyal and E. Ferrara, “Graph embedding techniques, applications,
and performance: A survey,” Knowl.-Based Syst., vol. 151, pp. 78-94,
Jul. 2018.

C. Yang, M. Sun, Z. Liu, and C. Tu, “Fast network embedding enhance-
ment via high order proximity approximation,” in Proc. 26th Int. Joint
Conf. Artif. Intell. (IJCAI), 2017, pp. 3894-3900.

U. Soni, M. Bhambhani, and M. M. Khapra, “Network embedding
using hierarchical feature aggregation,” in Proc. ICLR Workshop, 2018.
[Online]. Available: https://openreview.net/forum?id=rkhNTYJwf

C. Ding, T. Li, and M. L. Jordan, “Convex and semi-nonnegative matrix
factorizations,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 1,
pp. 45-55, Jan. 2010.

X. Huang, J. Li, and X. Hu, “Label informed attributed network embed-
ding,” in Proc. 10th ACM Int. Conf. Web Search Data Mining, 2017,
pp. 731-739.

B. Perozzi, R. Al-Rfou, and S. Skiena, “DeepWalk: Online learning of
social representations,” in Proc. 20th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, 2014, pp. 701-710.

V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” J. Stat. Mech., Theory Exp.,
vol. 2008, no. 10, 2008, Art. no. P10008.

M. E. J. Newman, “Modularity and community structure in networks,”
Proc. Nat. Acad. Sci. USA, vol. 103, no. 23, pp. 8577-8582, 2006.

ZHINING LIU received the bachelor’s degree in
communication engineering from the University
of Electronic Science and Technology of China
(UESTC), in 2014, where he is currently pursuing
the Doctoral degree in information and communi-
cation engineering. His current research interests
include deep learning on network embedding and
seismic image processing.

123012

WEIYI LIU received the Ph.D. degree in commu-
nication and information systems from the Uni-
versity of Electronic Science and Technology of
China (UESTC), in 2019. He is currently a Princi-
ple Data Scientist with JD Intelligent Cities Busi-
ness Unit, China. His current interests include mul-
tilayer network embedding, community detection
algorithms, and social network analysis.

PIN-YU CHEN received the B.S. degree in electri-
cal engineering and computer science (Undergrad-
uate Honors Program) from National Chiao Tung
University, Taiwan, in 2009, the M.S. degree in
communication engineering from National Taiwan
University, Taiwan, in 2011, the Ph.D. degree in
electrical engineering and computer science, and
the M.A. degree in statistics from the University
of Michigan, Ann Arbor, MI, USA, in 2016. He is
currently a Research Staff Member with the Al
Foundations Learning Group, IBM Thomas J. Watson Research Center,
Yorktown Heights, NY, USA. His recent research is on adversarial machine
learning and robustness analysis of neural networks; moreover, his research
interests include graph and network data analytics and their applications to
data mining, machine learning, signal processing, and cyber security. He is
also a member of the Tau Beta Pi Honor Society and the Phi Kappa Phi
Honor Society. He was a recipient of the Chia-Lun Lo Fellowship from the
University of Michigan Ann Arbor, the NIPS 2017 Best Reviewer Award, and
the IEEE GLOBECOM 2010 GOLD Best Paper Award and several travel
grants, including the IEEE ICASSP 2014 (NSF), the IEEE ICASSP 2015
(SPS), the IEEE Security and Privacy Symposium, the NSF Graph Signal
Processing Workshop 2016, and the ACM KDD 2016.

CHENYI ZHUANG received the B.S. degree in SE
from Nanjing University, in 2011, and the M.S. and
Ph.D. degrees in informatics from Kyoto Univer-
sity, in 2014 and 2017, respectively. He joined Ant
Financial, as an algorithm Expert, in June 2019.
Prior to that, he was a Researcher with the Arti-
ficial Intelligence Research Center (AIRC), AIST,
in Japan. From 2015 to 2018, he was also serv-
ing as a Young Scientist in Japan Society for the
Promotion of Science (JSPS). His current research
primarily involves structured data mining, machine learning, and urban
computing.

CHENGYUN SONG was born in Gansu, China,
in 1988. He received the M.S. degree in con-
trol theory and control engineering from the
Lanzhou University of Technology, in 2010, and
the Ph.D. degree in information and communi-
cation engineering from the University of Elec-
tronic Science and Technology of China, in 2017.

P _ Since 2018, he has been a Lecturer with the
7 ﬁ',' ~E School of Computer Science and Engineering of
Foet) ~ 8 Chongging University of Technology, China. His
research interests mainly include signal processing, data mining, and pattern
recognition.

|

"

VOLUME 7, 2019

