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ABSTRACT Cooperative Vehicle and Infrastructure System (CVIS) and Autonomous Vehicle (AV) are
two mainstream technologies to improve urban traffic efficiency and vehicle safety in the Intelligent
Transportation System (ITS). However, there remain significant obstacles that must be overcome before
fully unmanned applications are ready for widespread adoption in a transportation system. To achieve fully
driverless driving, the perception ability of vehicle should be accurate, fast, continuous, and wide-ranging.
In this paper, an interactive perception framework is proposed, which combines the visual perception of AV
and information interaction of CVIS. Based on the framework, an interactive perception-based multiple
object tracking (IP-MOT) method is presented. IP-MOT can be divided into two parts. First, a Lidar-
only multiple object tracking (L-MOT) method obtains the status of surroundings using the voxel cluster
algorithm. Second, the preliminary tracking result is fused with the interactive information to generate the
trajectories of target vehicles. Two simulation platforms are established to verify the proposed methods:
CVIS simulation platform and Virtual Reality (VR) test platform. The L-MOT algorithm is tested on a public
dataset and the IP-MOT algorithm is tested on our simulation platform. The results show that the IP-MOT
algorithm can improve the accuracy of object tracking as well as expand the vehicle perception range via
combination of CVIS and AV.

INDEX TERMS Cooperative vehicle and infrastructure system, autonomous vehicle, perception mode,
multiple object tracking.

I. INTRODUCTION
As a highly complex system with a large number of different
types of participants, the urban transportation system urgently
needs to improve its intelligence level systematically. The
coexistence of vehicles with different intelligence levels on
the road is a necessary stage of the intelligent transporta-
tion system evolution from fully manual driving to fully
unmanned driving. The transportation system consisting of
heterogeneous traffic participants such as human drivers,
pedestrians, non-motor vehicles and intelligent vehicles of
different intelligence levels is called a complex mixed traffic
system. The complex mixed traffic system has the character-
istics of topological networking, nonlinearity, strong coupling
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and extensive randomness. Solving intelligent cooperative
driving problems in a complex mixed traffic environment is
the key task in the next generation intelligent transportation
system. The combination of CVIS and AV provides the possi-
bility to achieve wide range perception, multi-agent decision
making and global optimization control.

In recent years, many advanced technologies such as com-
puter vision, robot control and cloud computation have been
applied gradually to the transportation domain and have
driven forward the development of the Intelligent Trans-
portation System (ITS). For almost all the applications of
ITS, perception is the first step in the data processing and
plays an irreplaceable role. The development route of ITS
perception mode includes three stages: autonomous per-
ception to interactive perception to networked perception.
As shown in Fig. 1, the in-depth application of information
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FIGURE 1. Evolution route of intelligent transportation system perception mode.

interaction technology will promote the evolution of the per-
ception mode, make the vehicle to vehicle connection and
vehicle to infrastructure connection closer. Autonomous per-
ception, including vehicle self-perception and environment
perception, uses vehicle-centric sensors as the primary means
of perception. Vehicle self-perception obtains the accuracy
status of an ego vehicle, such as position and attitude. Envi-
ronmental perception captures the status of surroundings by
vehicle-centric visual sensing technology. The limited sens-
ing range and occlusion issues are obvious shortcomings of
autonomous perception. To address these limitations, inter-
active perception takes audio-visual integration as the core
change. In interactive perception, cooperation decision and
control methods are applied via the Cooperative Vehicle and
Infrastructure System (CVIS). Communication is considered
as the way to expand the vehicle sensing range and improve
the accuracy of sensing data, such as avoiding accidents in
areas where visual sensors are blocked. With the maturity
of vehicular communication technology, the reliability of
Vehicle to everything (V2X) can be ensured for some time to
come. In networked perception, the status of various types of
vehicles, non-motor vehicles, pedestrians and traffic control
system will be obtained and shared via an integrated mecha-
nism, which connects all the transportation participants. As a
result, the perception ability of ITS is gradually improving.
A more detailed introduction on the definition of the stages
can be found in [1].

The motivation of this paper is summarized as three points:
First, multiple object real-time tracking is still a funda-
mental and challenging issue which is very important for
vehicle obstacle avoidance and environmental situation pre-
diction; Second, It is a development trend to combine CVIS

and autonomous driving technologies to address the limi-
tations of the vehicle-centric perception; Third, to perform
fast, low-cost and flexible test verification to our methods,
it is necessary to build a highly realistic simulation test
environment.

Multiple object tracking (MOT) aims to capture the tra-
jectories of surrounding objects on the road by making full
use of the sensing data. The trajectory of an environmental
object contains important information for vehicle safety, such
as distance, velocity and acceleration. There have been lots of
researches which are focusing on improving tracking accu-
racy of an ego vehicle using vehicle-centric perception sys-
tem, however study on the use of multi-source information,
including IMU/GPS/Lidar/V2V, is not enough. In this paper,
the interactive perception which combines the CVIS with AV
is proposed and key technologies in interactive perception are
introduced in detail. Based on the interactive perception data
process framework, an interactive perception based multiple
object tracking (IP-MOT) method is presented and imple-
mented. Different from the previous work, Interactive Per-
ception Multiple Objects Tracking (IP-MOT) algorithm can
continuously sense the surrounding vehicle position whether
in the condition of visual occlusion or communication failure
and improve tracking accuracy.

The contributions of this paper involve three aspects:
1. Interactive perception framework is proposed based on

the combination of CVIS and AV.
2. A multiple object tracking algorithm is proposed based

on the interactive perception, which can provide accurate
trajectory information of environmental objects.

3. Two platforms are designed and implemented to pro-
vide the test and verification environment for interactive
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FIGURE 2. The structure diagram of Interactive Perception based Intelligent transportation system (IP-ITS).

perception applications: CVIS simulation platform and Vir-
tual Reality (VR) test platform.

The rest of this paper is arranged as follows: In Section II,
an overview of the state-of-art researches on key technologies
involved in interactive perception is introduced. Section III
introduces a case study about how to utilize the perception
data from an autonomous vehicle and the interactive informa-
tion fromVehicle to Vehicle (V2V) to achieve multiple object
tracking. In Section IV, two simulation platforms for experi-
mental verification are introduced: Cooperative Vehicle and
Infrastructure System (CVIS) simulation platform and Vir-
tual Reality (VR) test platform. In Section V, the experiments
of the multiple objects tracking algorithm are implemented,
analyzed and evaluated. Finally, in Section VI, the conclusion
is drawn.

II. FRAMEWORK AND LITERATURE REVIEW
Fig. 2 is the schematic diagram of the Interactive Perception
based Intelligent Transportation System (IP-ITS). Similar
with the traditional ITS framework, it consists four main
parts: environment, perception, decision and control. AV
research focuses on vehicle-centric perception, ego decision-
making and microscopic vehicle control, such as computer
vision detection, autonomous route planning and collision
avoidance. Different from the AV, in CVIS, V2V interactive
information is the main way to provide the information of
surroundings, and the optimization of the global traffic effi-
ciency is considered as a critical goal under the premise of
ensuring traffic safety. In IP-ITS, the interactive perception
replaces the traditional vehicle-centric perception via fusion
of vehicle-centric sensing data and V2X interactive data. The
result of interactive perception is shared by various traffic
participants for vehicle decision and traffic decision. The
vehicle controller and traffic controller perform the target
action given by the decision layer, and change the traffic state.

This section summarizes the key technologies involved
in the interactive perception based ITS, and analyzes the
state-of-art researches in these areas. Also, the relationship

between AV and CVIS is discussed. And in Section III,
an interactive perception-based multiple object tracking algo-
rithm will be introduced in detail to verify that the proposed
framework can improve the perception ability of vehicles.

A. VEHICLE-CENTRIC OBSTACLE DETECTION
AND TRACKING
Obstacle detection and tracking are basic tasks in per-
ception system of autonomous vehicle. Computer vision
technologies are widely used to realize the perceptual func-
tions of autonomous vehicles such as feasible area recog-
nition, obstacle recognition and motion situation prediction
[2], [3]. Convolutional Neural Network(CNN), a representa-
tive deep learning method, has replaced the traditional fea-
ture map, such as SIFT [4], HOG [5] and Haar-like [6] in
most of the researches of image processing in these years.
A detailed introduction on object detection using deep learn-
ing approaches can be found in [7]. However, in order to sat-
isfy the requirement of an autonomous vehicle, it is essential
to obtain the three-dimensional location of the surroundings.

In the area of three-dimensional object detection and track-
ing, active sensors such as Lidar and stereo camera are most
common devices to detect obstacles [8]–[10]. Besides, there
are lots of novel approaches using deep learning that have
achieved excellent results. For example, Multi-View 3D net-
work (MV3D) was proposed by Chen et al. [11]. MV3D
fused Lidar and camera by projecting 3D coordinate into dif-
ferent 2D planes and generated multi-channel feature maps.
Zan Gao et al. proposed a cognitive-inspired class-statistics
matching method with triple-constraint (CSTC) for camera
free 3D object retrieval [12]. AFCDL [13] fuses multiple
of cameras and jointly learn the adaptive weight for each
camera for human action recognition. VoxelNet is an end-
to-end 3D object detection model, where the point cloud is
encoded as a descriptive volumetric representation [14]. The
image-based tracking algorithms provide some references for
3D tracking algorithm. Asvadi et al. projected 3D-Lidar data
into a static 2.5D grid map to represent the local surrounding
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environment [14], [15]. A 2.5D motion grid is used to
represent the moving status of surroundings, which gener-
ated the continuous static grid map. The 3D-BoundingBox
(3D-BB) object models are fitted to 2.5D motion grids, fol-
lowed by tracking of 3D-BB using Kalman Filter. In addition
to vision-based methods, there are many studies that combine
road constraints to optimize state prediction equations in the
tracking process. The prior knowledge of trajectory shape
constraint can be considered as a useful method to improve
tracking performance. Gongjian Zhou et al. [16] proposed a
trajectory shape constraint Kalman filter (TSCKF) for simul-
taneous filtering and smoothing.

However, due to the limitation of sensing range, it is
difficult to solve the problems of weather interference and
object occlusion by relying on the vehicle-centric perception
system.

B. VEHICLE COMMUNICATION
A variety of heterogeneous networks are involved in V2X
(Vehicle to everything) network, including mobile network,
wireless personal area network/LAN and satellite network.
In this heterogeneous network environment, each vehicle can
be considered as a mobile node, which constitutes the Vehic-
ular Ad hoc Networks called VANET. VANET is different
from the general mobile ad hoc network due to its special
application environment that leads to rapid changes of the net-
work topology and short path life. Wireless communication
devices, such as IEEE 802.11p/WAVE [17], [18] are used for
VANET currently. The IEEE 802.11p and WAVE (Wireless
Access for Vehicular Environment) standards form the DSRC
(Dedicated Short Range Communication) for VANETs com-
munications [19]. DSRC can support a 200 km/h vehicle
speed, a wireless range between 300 and 1000 meters, and
a theoretical bandwidth up to 6 to 27 Mbps [20]. The
quality of the wireless channel of moving vehicle is unsta-
ble, and it is influenced by many factors, such as road-
side infrastructures and road conditions. It is challenge to
process large amount of real-time data for connected vehi-
cles [21]. Xiaolong Xu et al. [22] applied NSGA-II (non-
dominated sorting genetic algorithm II) to the Internet of
connected vehicles to reduce the execution time and energy
consumption and prevent privacy.

There have been many studies about the relationship
among vehicle’s movement, communication quality, commu-
nication security and interaction efficiency. Reference [23]
proposed a swam model to describe the self-organised
behaviour of the vehicle swarm in vehicular ad hoc net-
works and investigate the impact of vehicular communi-
cations on the mobility of multiple vehicles. S Ammoun
et al. evaluated and predicted the risk of collision on a
crossroad by using a standard 802.11 technology combined
with a standard low-cost GPS receiver [24]. Reference [25]
proposed Boneh-Boyen-Shacham, a short group signature-
based reputation system, in order to improve road safety and
efficiency.

C. VEHICLE POSITIONING
Global Navigation Satellite System (GNSS), GNSS/ Inertial
Navigation System (INS) integration navigation system have
been widely used in the vehicle navigation system. Generally,
the integration navigation system performs better in accuracy
and robust, which takes advantages of GNSS and INS to
achieve high dynamic, real-time and high-precision position
solutions, especially in dense urban areas. Loosely-coupled
integration system and tightly-coupled integration system are
two common integration navigation modes. Tightly-coupled
integration exploits the raw information before Global Posi-
tion Systems (GPS) data-computing in order to overcome the
disadvantages of the loosely-coupled method that the posi-
tioning errors will accumulate quickly if theGNSS conditions
are difficult [26]–[29].

For almost a decade, relative positioning attracted great
attention. It can enhance the positioning accuracy by detect-
ing the road-sign and provide accurate, reliable and contin-
uous knowledge of the position of other traffic participants.
Relative positioning methods can be roughly divided into two
categories: Received Signal-based and Vision-based.

In Received Signal-based positioning, Radar/Lidar and
Wireless Communications Systems can be used to measure
the distance towards an object based on the time-of-flight
of reflected light pulses. Received Signal Strength (RSS) is
a simple method to make up for the unsuitable applications
of GNSS by estimating signal transmitted by another vehi-
cle. While RSS-based ranging has the main drawback of
inaccuracy, which mostly originates from the uncertainty of
the path loss exponent. Reference [30] proposed a method
for dynamic estimation of the path loss exponent and dis-
tance based on the Doppler Effect and RSS. Other methods
like Time of Arrival (TOA), and Time Difference of Arrival
(TDOA), and direction-of-arrival (DOA) are also widely used
for relative positioning.

In vision-based positioning, object detection and object
tracking are served as foundations. Reference [31] proposed
a IMU/Vision/Lidar integrated navigation system for provid-
ing relative navigation information in GNSS difficult envi-
ronments. Reference [32] applied deep learning techniques
using Camera, Lidar, Radar, and GPS data and achieved great
performance of lane and vehicle detection. Yet, it is com-
plicated to combine the detection result with the positioning
knowledge.

D. CVIS AND AV
CVIS has gained great attention in recent years, because the
intelligent vehicle based on vehicle-centric perception has
limited sensing ability, high cost and limited synergy. CVIS
attempts to establish an unmanned system based on V2X
technology, in order to improve the reliability of the con-
flict detection, strengthen the system’s coordinated operation
efficiency, and transfer the cost from the user’s vehicle
to the city’s infrastructure. Almost all the key technolo-
gies introduced above can be solved by the CVIS, such as
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FIGURE 3. The flow chart of interactive perception-based moving object tracking algorithm.

coordinated operation of intersections, coordinated visual
collision avoidance, and vehicle speed guidance [33]–[36].

Generally, CVIS and AV are two mutually comple-
mentary and beneficial research directions. The superior
vehicle-centric perception is regarded as the most important
supporting for the AV, and the goal is to achieve the vehicle
unmanned self-driving under all conditions. Different from
AV, capturing the environmental information from roadside
infrastructure or cooperative vehicles is the main way of
perception in CVIS. Roadside infrastructures are used to for-
ward and share traffic information among traffic participants
and traffic managers. It seems impossible for a CVIS-based
intelligent vehicle to achieve fully driverless in wild environ-
ment, but it can achieve obstacle avoidance and efficiency
scheduling in a smart city.

In this paper, the interactive information provided by the
CVIS and the visual knowledge captured by the AV are
combined to achieve a highly reliable perception system.

E. TESTING
To ensure transport safety, various tests that fully cover
the actual scenes in a controllable environment are needed
before large-scale commercialization. Hence, it is necessary
to build a complete and credible test system based on real-
world scenarios to strictly verify the safety of the vehicle
and comprehensively evaluate the collaboration capabilities
of CVIS. The scale of the construction and demonstration of
intelligent vehicle test sites in US, EU and China is contin-
uously expanding. In this aspect, representative projects are
Mcity in Michigan [37] and GoMentum in California [38].
Beijing, Shanghai, Shenzhen and other places in China are
actively building intelligent networked vehicle test sites,
involving safety, efficiency, transportation, information ser-
vices, mobile services and other pilot projects.

However, the test scenarios in a closed real test site are
very limited comparedwith the open-road environment. It has
been estimated that if an autonomous vehicle drives at least
275 million miles without fatality, it could be assured that it
has achieved the same level of reliability as a human-driver.

Hence, various testing and calibration environments become
necessary to complement the test requirements, because the
time costmust to be considered. References [39]–[41] applied
different control models to verify and validate the control
systems of autonomous vehicles in terms of safety and per-
formance. [42] introduced how to verify the CVIS using
interactive visual simulation. Chang’an University is building
a CVIS test bedwhich can simulate various connected vehicle
scenarios with reliable heterogeneous vehicular network and
support various related technologies [43].

Hardware In Loop (HIL) simulation provides a highly
realistic laboratory environment to support the development,
test, and verification of AV [44]–[47]. dSPACE and Carsim
system are widely used in this area. How to use the HIL
simulation to implement as many as possible test functions
and how to employ the emerging technologies such as virtual
reality or augmented reality to form a mixed test environment
are the key issues for the CVIS and AV testing.

We developed a CVIS simulation platform and a VR test
platform which will be introduced in the Section IV. The two
platform are united to provide a verification environment for
our proposed IP-MOT algorithm.

III. INTERACTIVE PERCEPTION-BASED
MULTIPLE OBJECT TRACKING
A. SYSTEM OVERVIEW AND PROBLEM REPRESENTATION
The flow chart of the IP-MOT algorithm is shown in Fig.3,
where gray diamonds represent sensor devices; green rectan-
gles represent data types; and orange rounded rectangles rep-
resent data processing method. Two types of data are used in
our IP-MOT approach: point cloud data captured by Lidar and
interactive information about the status of cooperative vehicle
received by Vehicle to Vehicle (V2V) communication unit.
These two types of data are fused to enhance the perception
ability of an ego vehicle.

The ego vehicle tracks the surrounding obstacles via
Lidar-only multiple object tracking algorithm (L-MOT). The
L-MOT algorithm basically consists of three steps as intro-
duced in Section III-B and Section III-C. First, the ground

VOLUME 7, 2019 121911



W. Shangguan et al.: IP-MOT via CVIS and AV

points as well as other noise points are removed as the
preprocess of the raw data. Second, the non-ground points
are segmented into clusters for object representation. Third,
the ego vehicle obtains the integration position and velocity
by fusing the position information from the GNSS with the
attitude information from the INS, and the relative position
of vehicles are mapped into global coordinate system. At the
same time, all the cooperative vehicles share their status to
surrounding vehicles. The ego vehicle obtains the absolute
position of the cooperative vehicle and matches the visually
detected target vehicle with the information received from
the cooperative vehicles. The wireless information interactive
process is introduced in Section III-D. Finally, as introduced
in Section III-E, IP-MOT fuses the result of L-MOT with
the interactive information in the global coordinate system
to generate the accuracy trajectories.

Both of the loosely coupled and the tightly coupled posi-
tioning algorithm have been introduced in the previous
work [48]. In this section, we will introduce the multiple
object tracking algorithm using Lidar and the fusion algo-
rithm to enhance the perception accuracy using V2V.

B. FAST POINT CLOUD SEGMENTATION
BASED ON VOXEL CLUSTER
1) REMOVING GROUND POINTS
Ground points typically constitute a large portion of raw point
cloud data and form a large ground plane. RANSAC is used
for fitting the ground plane in our method. RANSACwas pro-
posed by Fischer and Bolles [49] in 1981 and mainly involves
performing two iteratively repeated steps on a given point
cloud: generating a hypothesis and verification [50]. First,
a set of points are selected randomly and a hypothesis model
is generated on basis of these points. Then, the rest of points
are tested with the hypothesis model to verify how many
points are fitted with the model. After numbers of iterations,
the ground plane, which has a normal closed to z-direction
and the largest number of interior points, is extracted and
removed.

2) VOXEL CLUSTER ALGORITHM
The non-ground points are clustered into sub-point cloud to
represent a specific object by the voxel cluster algorithm.
Voxel is a cube which contains points data and it is indexed
uniquely according to the spatial position. A trusted sensing
area captured by Lidar with L in y axis, W in x axis and
H in z axis is truncated from the raw data. Each voxel grid
is binarized based on the number of the points. If a voxel
contains more than Thv points, it is a positive voxel, other-
wise, it is a negative voxel. Point P(x, y, z) belongs to the kth
voxel according to Eq.1-4, where vL, vW , vH is the length,
width, and height of the voxel. For simplicity, we assume
L,W ,H are amultiple of vL, vW , vH , and L ′ = L/vL, W ′ =
W/vW , H ′ = H/vH .

dl = bx/vLc (1)

dw = by/vW c (2)

dh = bz/vHc (3)

k = dl ∗W ′ ∗ H ′ + dw ∗ H ′ + dh (4)
Each voxel directly connects with other 26 voxels in space.
We define a binding relationship if two positive voxels are
directly adjacent, and the two voxels are binding voxels for
each other. Positive voxels are accessed in ascending order
of index. If there is no binding voxel or all the other binding
voxels are not visited yet, a new label will be created. Else,
a voxel is segmented into a cluster which has minimum label
among all the binding voxels.

Fig.4 is a simple case for illustration the segmentation pro-
cess. In this example, the space is divided into 8*3*3 voxels
and all the voxels are indexed ranging from 0 to 71. In Fig.4,
only positive voxels are visible. All the positive voxels will
be visited in turn and the white cubes represent those are not
visited yet. As shown in Fig.4(a), new labels are created and
distributed to the voxel indexed 9 and 15 respectively, because
they don’t have another classified binding voxel. The 9th
voxel joins the cluster which is labeled 1 and colored green,
and the 15th voxel joins the cluster which is labeled 2 and
colored orange. For the 33th voxel, there is only one labeled
binding voxel, the 9th voxel, so the label 1 is inherited to the
33th voxel. Similarly, the 37th voxel is labeled to the cluster
which is labeled 2. When the 60th voxel is visited, there are
three labeled binding voxels indexed 59, 53, 57 with different
labels, 1 and 2, as shown in Fig.4(b). The smallest label will
be choosen when conflict occurs, so the 60th voxel joins the
1th cluster and all the voxels in the 2th cluster are relabeled
to cluster 1. As shown in Fig.4(c), the cluster labeled 1 and
the cluster labeled 2 are merged with label 1. Finally, all the
voxels are classified into one cluster as shown in Fig.4(d), and
the algorithm will end until all the positive voxels have been
visited.

The only parameter of the segmentation algorithm is the
size of the voxel. The performance of the algorithm is influ-
enced by the parameters. The parameters can be set accord-
ing to the system resolution, which refers to the threshold
distance of two object. In the open-sky road environment,
the parameters are set to vL = vW = vH = 0.2m.

The contributions of Voxel Cluster (VC) can be
summarized as follows:

1) Converting point clouds segmentation into regular vox-
els clustering. Raw non-ground points are visited just once
to find positive voxel, after that, the cost of the calculation
is greatly reduced, because only the positive voxel will be
calculated.

2) VC algorithm has only one parameter, the size of voxel,
representing the maximum distance between two binding
voxels.

3) VC algorithm is suitable for segmentation of point
cloud in outdoor condition with sparse distribution without
pre-training.

C. MULTIPLE OBJECT TRACKING
A 3D shape descriptor is defined and employed for extracting
the feature vector of the point cloud cluster which represents
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FIGURE 4. A case of getting object clusters using VC.

FIGURE 5. The flow chart of Lidar-based multiple object tracking.

an object. Seven shape factors are involved in the feature
vector, as defined in Eq.5, where np is the number of the
points falling into the cluster, nv is the number of the positive
voxels, meanp and varp are the mean and variance of the
points, centroid is the position of the centroid, meani, var i
are the mean and variance of the reflectance intensity. The
feature of a cluster is described by using a 13 dimensional
vector, where meanp, centroid, and varp are 3 dimensional
vectors.

F (C) = [np, nv,meanp,meani, centroid, varp, var i] (5)

We stress here that designing the best feature descriptor for
3D point clouds is not the main focus of this work. However,
the simple feature vector we have chosen achieves a good
tracking performance in our experiments.

The multiple object tracking issue can be regarded as
an association problem which assigns the detection objects
from the current frame to the historical tracks. Fig. 5 shows
the flow scheme of our Lidar-only multiple object tracking
(L-MOT) algorithm. First, the raw point cloud is divided
into clusters for describing the targets. Then, the feature
vectors of the Q targets are extracted and concatenated for
generating the feature matrix. The distance of feature vectors
between the last and current frame are calculated. The cost
matrix is fed to the Hungarian algorithm [51] for assigning
the ID to targets. Besides, the position of the targets in the
last frame is predicted on the basis of constant moving speed.
Finally, the Kalman Filter evaluates the trace of these target
by fusing the predicted position and the detected position.

A weighted Euclidean distance is used to value the sim-
ilarity between the feature vectors. The weight parameters

FIGURE 6. An artificial neural network model for training feature weights.

are trained by a simple neural network model, as shown
in Fig.6. For generating the training set, the feature vectors
of an object in two continuous frames are collected and
m-1 feature vectors of other objects are also collected as neg-
ative samples. The input samples are standardized according
to the Eq.6, where x it−1,1 represents value of the first feature

factor of the ith object at time t − 1, and x jt,1 represents the
generated the value of the first feature factor of the jth object
at time t . d(x jt,1, x

i
t−1,1) is standardized input which has been

adjusted to [0,1], representing the distance between the first
feature factor of the ith object at time t − 1 and the jth object
at time t .

d
(
x jt,1, x

i
t−1,1

)
=

∥∥∥x jt,1, x it−1,1∥∥∥− x1
Var (x1)

, j ∈ (1,m) (6)

The output of the model is activated by the sigmoid func-
tion, which is defined as Eq.7. The label of the model is a
one-hot vector, and only the ith value is set to 1. Stochastic
Parallel Gradient Descent algorithm is used to train the
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weight parameters.

S (x) =
1

1+ e−x
(7)

D. WIRELESS INTERACTIVE INFORMATION
The communication mode fusion mechanism proposed in the
previous work [52] is employed to transfer the interactive
information in this paper. We use three types of communica-
tion mode: 4G,WLAN andWAVE to support our multi-mode
communication mechanism. In the communication process,
a key factor which affects the accuracy of the information is
communication delay.

FIGURE 7. Schematic diagram of the influence of communication delay
on vehicle information interaction.

As shown in Fig.7, the information obtained by the V2V
from the cooperative vehicle is delayed by time τ . It is neces-
sary to consider the delay time in the process of information
fusion. Therefore, the information received by the ego vehicle
is the status of the cooperative vehicle at time t−τ . To obtain
the delay time τ , we test the performance of our communi-
cation mechanism in simulation environment. Various traf-
fic scenarios with different vehicle densities, velocities, and
data volumes are tested, and the simulation result is shown
in Table 1.

The setting of the delay parameter is based on the fac-
tor that has the greatest impact on the delay. To simplify
calculations, the value of the three factors is classified into
four levels respectively, and the average delay time of each
level is tested as Table 1. For example, if the vehicle density
is 55veh/km, vehicle velocity of the ego vehicle is 35km/h,
and the data volumes is 2200bits/time, the maximum value
of 0.097, 0.111, 0.104 is set to the delay time τ .

E. INFORMATION FUSION
Similar to the Lidar based multiple object tracking algo-
rithm, the information fusion process consists of two main
steps: track association and track fusion. First, it is necessary
to obtain the relationship between the Lidar sensing data
and interactive information. Second, objects trajectories are
generated by the fusion of two tracks. The state vector of
Lidar and V2V communication are defined as Eq.8 and Eq.9,
respectively. px and py are the coordinates of the target in the
plane coordinate system. βego and βcoo are the yaw rate of

TABLE 1. Comparison of different communication mode.

FIGURE 8. Schematic diagram of the relative position of the ego vehicle
and the cooperactive vehicle.

the ego vehicle and the coordinated vehicle (target vehicle),
respectively. v and a are the velocity and acceleration of the
target vehicle. L,W ,H represent the length, width and height
of the target vehicle,respectively.

x lidar = [plidarx , plidary , βego, vlidarx , vlidary , alidarx , alidary ,

L lidar ,W lidar ,H lidar ] (8)

xv2v = [pv2vx , pv2vy , βcoo, vv2vx , vv2vy , av2vx , av2vy ,Lv2v,

W v2v,H v2v] (9)
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FIGURE 9. The structure diagram of CVIS simulation platform.

For the ego vehicle, target’s position
[
plidarx , plidary

]
in

the plane coordinate system is converted from the relative
position

[
pre−lidarx , pre−lidary

]
in Lidar coordinate system as

Eq.10, where
[
pego−lidarx , pego−lidary

]
is the global position

of the ego vehicle. For the coordinated vehicle, the global
position

[
pv2vx , pv2vy

]
is converted from

[
pcoo−v2vx , pcoo−v2vy

]
,

which is the position in the local coordinate system as Eq.11.
The global positions of the vehicles are converted from the
GPS plane coordinate.

[
plidarx
plidary

]
=

[
pre−lidarx
pre−lidary

]
+

[
cosβego sinβego

− sinβego cosβego

][
pego−lidarx

pego−lidary

]
(10)[

pv2vx
pv2vy

]
=

[
cosβcoo sinβcoo

− sinβcoo cosβcoo

] [
pcoo−v2vx
pcoo−v2vy

]
(11)

It is essential to determine whether two tracks represent
the same target before the information fusion. In this paper,
two tracks with the minimum mean square error of position,
velocity, acceleration and shape size are considered to corre-
spond to the same target. Reference [53] provided a classic
method to fuse two track state vectors into a new estimated
state vector based on the Kalman Filter. Reference [54] com-
bined two estimates from the radar and V2V communication
based on a Bayesian minimum mean square error (MMSE)
criterion. Based on [53], [54], the measurement model of
Lidar and V2V are defined as Eq.12 and Eq.13, where τ is

the communication delay time.

zlidar (k) = H lidarx lidar (k)+W lidar (k) (12)

zv2v(k) = H v2vxv2v(k − τ )+W lidar (k − τ ) (13)

The two state vectors are fused according to the following
fusion equation:

x̂ (k) = x lidar (k)+ P1P
−1
2

(
xv2v (k)−x lidar (k)

)
(14)

P1 = Plidar (k)− Plidar,v2v (k) (15)

P2 = Plidar (k)+ Pv2v (k)− Plidar,v2v (k)− Pv2v,lidar (k)

(16)

where Plidar,v2v is the cross-covariance matrix between x lidar

and xv2v. Plidar and Pv2v are error covariance matrix of Lidar
and V2V, respectively.

IV. SIMULATION TEST ENVIRONMENT
Two platforms are designed and implemented to provide
the test and verification environment for our proposed
approaches: CVIS simulation platform and Virtual Real-
ity (VR) test platform. CVIS simulation platform pro-
vides an integrated simulation environment which consists
of 4 modules: traffic flow simulation, V2V communica-
tion simulation, three-dimensional simulation and evaluation.
Virtual Reality (VR) receives the traffic data generated by
the CVIS platform, and simulates the micro-movement of
the controlled vehicle. The VR platform replies the sensing
information of the ego vehicle, such as image data captured
by the simulated camera or point cloud data captured by
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FIGURE 10. The structure diagram of VR based test platform.

simulated Lidar sensor. Besides, the VR platform can involve
human drivers into the scenarios. Also, it can embed different
intelligent levels of control methods for simulated vehicles.

The CVIS simulation platform generates traffic scenario
and provides traffic data. The VR simulation platform
executes traffic scenes with high fidelity, simulates the sen-
sor data and verifies the proposed multiple object track-
ing approaches. The two simulation platforms communicate
through TCP protocol.

A. COOPERATIVE VEHICLE INFRASTRUCTURE
SYSTEM (CVIS) SIMULATION PLATFORM
The CVIS simulation platform applies a hierarchical sim-
ulation framework, which consists of road network layer,
vehicle operating layer, uncertainties modelling layer and
demonstrating layer [55], as shown in Fig.9.

The road network layer provides the basic information of
the road network, such as intersection’s parameters, signal
control strategy and the type of road. In vehicle operating
layer, vehicles generated from zone and intersections move
according to the vehicle kinematic models, such as vehicle
following and lane changing models. In CVIS, vehicle posi-
tion error and communication delay always exist. Positioning
error and communicating delay models are implemented in
error modelling layer to enhance the reality of the simulation.
The demonstrating layer is for visualization and evaluation.

B. VIRTUAL REALITY (VR) BASED TEST PLATFORM
The real test site has the properties of high cost, limited
scenario and long construction period. To address the above

issues, virtual test has attracted a lot of attention recently.
We have established an interactive intelligent driving sim-
ulation platform in virtual reality environment as shown
in Fig.10, which realizes a high realistic interactive intelligent
driving simulation experience. The VR based test platform
provides a more safety and time-saving test option for an
autonomous vehicle before a real physical test bed.

The Virtual Reality (VR) based test platform consists of
two parts: high realistic simulation environment and interac-
tive human driver interface. A three-dimensional real-time
simulation environment is implemented, which covers the
road network, urban elements and vehicles. The Logitech
G27 racing steering wheel series hardware is used to achieve
high immersion intelligent driving. With the VM-I inertial
sensor and 5DT data glove, information about the driver’s
arm that operates the vehicle is dynamically collected in real
time. A communication delay model is used to simulate the
information interactive process between vehicles. A series
of high-fidelity driving scenarios are implemented, including
of multiple driving behaviors and multiple intelligent level
vehicles.

The influence of communication quality to the test result
is taken into consideration. Besides, SQL database provides
the services for the real-time drivers’ multi-scene driving
behavior data.

The application of the intelligent driving visual simulation
platform in this virtual environment can be summarized as the
following three aspects: First, providing an online low-cost
test environment for autonomous vehicle. Second, provid-
ing intelligent driving data acquisition and analysis methods

121916 VOLUME 7, 2019



W. Shangguan et al.: IP-MOT via CVIS and AV

for developers. Finally, it can also provide a high immersion
training platform for drivers.

V. EXPERIMENT AND ANALYSIS
The proposed interactive perception based multiple object
tracking algorithm is evaluated in open dataset and our sim-
ulation platforms. We test our Lidar-based multiple object
tracking algorithm using KITTI [56] dataset. However,
the public dataset cannot provide the interactive information
required in IP-MOT. Therefore, our simulation platforms,
CVIS and VR simulation platforms, are used to evaluate our
IP-MOT algorithm. The experiments were performed using a
2 core 2.9GHz processor with 4GB RAM under C++, and
Point Cloud Library (PCL) is imported for visualization.

A. EVALUATION OF LIDAR-BASED OBJECT TRACKING
To verify the efficiency of proposed methods, we tested
our algorithm on Object Tracking set extracted from KITTI
dataset. The KITTI object tracking benchmark consists
of 21 training sequences. 10 representative video sequences
are extracted from the object tracking challenge set. The basic
scene information can be found in Table 1.

For multiple object tracking evaluation, two indicators are
used to evaluate the performance of the algorithm: multi-
ple object tracking precision (MOTP) and multiple object
tracking accuracy (MOTA) [57]. MOTP indicates the total
Euclidean distance of the center of the 3D-BB between the
tracking result and the ground truth of all the matching pairs
over all frames, and it is averaged by the total number of pairs,
as shown in Eq.17. It is an indicator that shows the center
tracking ability of the tracker.

MOTP =

∑
i,t d

i
t∑

t ct
(17)

MOTA takes all the error elements into account, as shown
in Eq.18. It consists of 3 error elements: the number of misses
as Eq.19, false positives as Eq.20, and mismatches as Eq.21.

MOTA = 1−

∑
t (mt + fpt + mmet )∑

t gt
(18)

m =

∑
t (mt )∑
t gt

(19)

fp =

∑
t fpt∑
t gt

(20)

mme =

∑
t mmet∑
t gt

(21)

The purpose of the L-MOT algorithm is to track the envi-
ronmental vehicles or pedestrians during the running of the
ego vehicle, and to reconstruct their absolute trajectories with
the aid of the positioning system. A brief intuitive description
of tracking results can be found in Fig.11, in which shows
the positions and trajectories of the ego car and the tracking
targets in different frames and the label of the target is colored
red. Fig.12 shows the center RMSE (Root Mean Squared
Error) between the groundtruth and the tracking results to

FIGURE 11. The tracking difference over all the tracking time of L-MOT
and 3D-PF.

see the effectiveness of the proposed L-MOT and 3D-PF
algorithms. These two algorithms could successfully track the
cyclist labeled 67 and the van labeled 48 at the same time in
a long time. The L-MOT achieves outstanding performance
that the average center error is about 0.315m (5.8 pixels) and
the MOTA is about 99.3%. The red, blue, and green curves
represent the trajectories of the collecting vehicle, the cyclist
and the van respectively.

Table 2 illustrates 10 representative experimental results.
No. means the index of the collected sequence in the KITTI
tracking training dataset. A new multiple target tracking
algorithm, Multi-LiDAR Based Multiple Object Detection
and Tracking (MODT) which was proposed by Muhammad
Sualeh et.al in 2019 [58], is compared with our method
too. The result shows that the proposed Lidar-based multiple
object tracking (L-MOT) algorithm outperforms 3D-Particle
Filter (3D-PF) [59] algorithm and MODT algorithm in most
of time. All of these three algorithms can achieve tracking
the target in real time. The 3D-PF needs the initial position
information of the targets. The L-MOT algorithm segments
all the objects in the point clouds, which means no prior
knowledge is needed.

The result shows that the proposed L-MOT algorithm can
achieve accurate tracking of multiple targets in an open road
environment. However, when there is severe occlusion, or the
target is far away from the ego vehicle, the accuracy of track-
ing still cannot guarantee. Actually, there are many factors
that affect the tracking results. Table 2 only lists some com-
mon influencing factors. One key factor is the density of the
point clouds, when the target reflection point cloud is sparse,
the Lidar-only based tracking method does not perform well.
For example, the accuracy of the 5th scenario is much lower
than the 1st and 2nd scenarios. When a van is far away from
the ego vehicle, few reflect points can be received by the ego
vehicle, because the surfaces of van is covered by glasses,
which do not reflect laser. Besides, because the metal casing
at the rear of the vehicle has more area than the front and glass
windows hardly reflect the laser, therefore the target vehicle

VOLUME 7, 2019 121917



W. Shangguan et al.: IP-MOT via CVIS and AV

FIGURE 12. The result of multiple object tracking using L-MOT tested on KITTI.

in same direction with the ego vehicle will reflect more and
denser point clouds.

B. EVALUATION OF IP-MOT
The interactive perception-based multiple object tracking
algorithm is tested in simulation platform which has been
introduced in Section IV. Two scenarios are designed and
implemented to test our IP-MOT algorithm. In these scenar-
ios, the ego vehicle perceives the position of surrounding
vehicles through the simulated radar equipment. Coopera-
tive vehicles in the scenario broadcast their status to nearby
vehicles and communication delay model which has been
introduced in Section III is employed to V2V-based informa-
tion interaction. And the other non-cooperative vehicles are
tracked via L-MOT algorithm.

Scenario 1 is a lane keeping scene as Fig. 13, in which
the ego vehicle runs on a straight road. Scenario 2 is an
intersection scene as Fig. 14, in which the ego vehicle is
waiting at the stop line to cross the intersection. The param-
eters of simulation scenarios are shown in Table 3. The first

FIGURE 13. Lane keeping scenario in VR platform.

scenario is a high-speed scenario, where all the vehicles keep
moving fast. The second scenario is a low-speed scenario,
where vehicles are slow down at the intersection and the
ego vehicle stopped at the stop line in the first 100s, then
accelerated to leave the intersection. Besides, all vehicles
have a 20% lane change probability.

Fig. 15 and Fig. 16 show the MOTA value of the ego vehi-
cle in lane keeping scene and intersection scene respectively
using different multiple object tracking algorithm. It can be
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TABLE 2. Comparison of lidar-only multiple object tracking results
among L-MOT/3D-PF/MODT.

TABLE 3. Simulation parameters.

seen from the result that the proposed IP-MOT algorithm
outperforms the Lidar only and V2V only approaches in both
of the two scenarios.

Table 4 shows mean, variance and standard deviation of
MOTA and RMSE error in these scenarios. Since the error
is infinitely far if the tracking algorithm loses the target,
such as V2V communication failure, we compare the central
Euclidean distance in the case of successful tracking the
target, as shown in the RSME column in the table.

FIGURE 14. Intersection scenario in VR platform.

FIGURE 15. Comparison of tracking performances of IP-MOT/L-MOT/V2V
using lane keeping scenario.

FIGURE 16. Comparison of tracking performances of IP-MOT/L-MOT/V2V
using intersection scenario.

As shown in Table 4, V2V-based method has the best
accuracy, because the information from the cooperative vehi-
cle’s self-perception has a higher precision. However, if the
communication is failed, targets will be lost. L-MOT and
MODT are similar in RMSE. Because there is difference
between the target’s geometrical center and the point clouds’
center, the center error of Lidar-only based methods is bigger
than V2V-based methods. The results show that the pro-
posed IP-MOT can improve the accuracy of the multiple
object tracking of an ego vehicle, especially in tracking
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TABLE 4. Comparison of multiple object tracking results between L-MOT
and IP-MOT.

consecutiveness, and it is more stable than the Lidar-only and
V2V-only method.

VI. CONCLUSION
This paper provides a general way to combine CVIS and AV
technology, interactive perception architecture, at the percep-
tual data level, and explains the related technologies that need
to be involved. In the interactive perception, the information
interaction ability is considered as the means to expand the
range, improve the precision, and enhance the reliability
of the perception. An interactive perception based multiple
object tracking algorithm to enhance the tracking perfor-
mance has been presented. The IP-MOT algorithm fuses the
interactive information using CVIS and the visual sensing
information from theAV. Two simulation platforms are devel-
oped and joined to provide rich test scenarios for the proposed
algorithms. The results show that the IP-MOT has a better
performance especially when the Lidar is limited or the V2V
communication was failed.

For the future work, more applications based on the
interactive perception, IP-based swarm vehicle control, and
the cases about networked perception will be studied for
providing more services.
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