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ABSTRACT ShotgunWSD is a recent unsupervised and knowledge-based algorithm for global word
sense disambiguation (WSD). The algorithm is inspired by the Shotgun sequencing technique, which is
a broadly-used whole genome sequencing approach. ShotgunWSD performs WSD at the document level
based on three phases. The first phase consists of applying a brute-force WSD algorithm on short context
windows selected from the document, in order to generate a short list of likely sense configurations for
each window. The second phase consists of assembling the local sense configurations into longer composite
configurations by prefix and suffix matching. In the third phase, the resulting configurations are ranked
by their length, and the sense of each word is chosen based on a majority voting scheme that considers
only the top configurations in which the respective word appears. In this paper, we present an improved
version (2.0) of ShotgunWSD which is based on a different approach for computing the relatedness score
between two word senses, a step that stays at the core of building better local sense configurations. For
each sense, we collect all the words from the corresponding WordNet synset, gloss and related synsets, into
a sense bag. We embed the collected words from all the sense bags in the entire document into a vector
space using a common word embedding framework. The word vectors are then clustered using k-means to
form clusters of semantically related words. At this stage, we consider that clusters with fewer samples
(with respect to a given threshold) represent outliers and we eliminate these clusters altogether. Words
from the eliminated clusters are also removed from each and every sense bag. Finally, we compute the
median of all the remaining word embeddings in a given sense bag to obtain a sense embedding for the
corresponding word sense.We compare the improved ShotgunWSD algorithm (version 2.0) with its previous
version (1.0) as well as several state-of-the-art unsupervised WSD algorithms on six benchmarks: SemEval
2007, Senseval-2, Senseval-3, SemEval 2013, SemEval 2015, and overall (unified). We demonstrate that
ShotgunWSD 2.0 yields better performance than ShotgunWSD 1.0 and some other recent unsupervised or
knowledge-based approaches. We also performed paired McNemar’s significance tests, showing that the
improvements of ShotgunWSD 2.0 over ShotgunWSD 1.0 are in most cases statistically significant, with a
confidence interval of 0.01.

INDEX TERMS Word sense disambiguation, shotgun sequencing, word embeddings, outlier removal.

I. INTRODUCTION
Word SenseDisambiguation (WSD) is a core problem studied
in the Natural Language Processing (NLP) community. WSD
refers to the task of identifying which sense of a word is
used in a given context. It has the potential to improve
many NLP applications such as machine translation [1]–[3],
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text summarization [4], information retrieval [5] or sentiment
analysis [6]. Most of the existing WSD algorithms [7], [8]
are usually divided into supervised, unsupervised, and
knowledge-based techniques. Nonetheless, hybrid methods,
e.g. unsupervised and knowledge-based, have also been pro-
posed in the literature [9]. Among these, supervised methods
have reached the best disambiguation results [10], [11], but
their main disadvantage is that they need large amounts
of labeled examples for the supervised learning stage.
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Since large annotated corpora are difficult to obtain [12], [13],
many researchers have turned their focus on devel-
oping unsupervised learning or knowledge-based WSD
methods [14]–[24].

In this paper, we present an improved version of a recently
introduced WSD algorithm [25], termed ShotgunWSD,1

which stems from the Shotgun genome sequencing tech-
nique [26], [27]. ShotgunWSD is unsupervised, but it also
requires knowledge in the form of WordNet synsets and
relations [28], [29]. More precisely, for each sense of a word,
ShotgunWSD builds a disambiguation vocabulary (or sense
bag) that is an unordered list of words collected from the cor-
responding WordNet synset, gloss and related synsets which
are chosen depending on the part-of-speech of the ambiguous
word. To this end, ShotgunWSD can be viewed as a hybrid
(unsupervised and knowledge-based) approach.

In general, WSD algorithms can be divided into
approaches that work at the local level and approaches that
work at the global level. A local WSD approach, such as
the extended Lesk measure [30]–[32], is designed to assign
the corresponding sense for a target word in a given context
window of a few words. The corresponding sense is usually
selected from an existing sense inventory. For instance, for
the word ‘‘sense’’ in the context ‘‘You have a good sense of
humor.’’, a local WSD algorithm should choose the sense that
corresponds to the natural ability rather than the meaning
of a word or the sensation. Rather more generally, a global
WSD algorithm aims at choosing the right sense for each
ambiguous word in an entire text document. The obvious
solution for global WSD is the exhaustive evaluation of all
sense combinations (configurations) [33], but the time com-
plexity grows exponentially along with the number of words
in the document, as also noted by Schwab et al. [14], [15].
For example, in the sentence ‘‘You have a good sense of
humor.’’, we have four ambiguous WordNet [28] entries
(considering that the part-of-speech of each word is already
known): ‘‘have’’ (with 19 senses as verb), ‘‘good’’ (with 21
senses as adjective), ‘‘sense’’ (with 5 senses as noun) and
‘‘humor’’ (with 6 senses as noun). Consequently, there are
19 × 21 × 5 × 6 = 11970 possible sense configurations.
However, if we extend the sentence to ‘‘I think that you have a
good sense of humor.’’, we have two more ambiguous words:
‘‘I’’ (with 3 senses as noun) and ‘‘think’’ (with 13 senses
as verb). In this case, the number of possible configurations
grows to 3× 13× 19× 21× 5× 6 = 466830. This example
reveals that the brute-force (BF) solution quickly becomes
impractical for windows of more than a few words. There-
fore, several approximation approaches [14], [15] have been
proposed for the global WSD task in order to overcome the
exponential growth of the search space. ShotgunWSD is con-
ceived to perform global WSD by combining multiple local
sense configurations that are obtained using BF search, thus
avoiding BF search on the whole text document. It employs a

1The open source implementation of ShotgunWSD is provided for down-
load at https://github.com/butnaruandrei/ShotgunWSD.

local WSD algorithm to build the local sense configurations.
Butnaru et al. [25] alternatively used two methods for this
step, namely the extended Lesk measure [31], [32] and an
approach based on deriving sense embeddings from word
embeddings [34]–[36].

In this paper, we propose a third approachwhich leads to an
improved algorithm termed ShotgunWSD 2.0. Our approach
starts by embedding the words collected from all the sense
bags in the entire document into a vector space using a com-
mon word embedding framework [36]. The word vectors are
then clustered using k-means to form clusters of semantically
related words. At this stage, we consider that clusters with
fewer samples (with respect to a given threshold) belong to
outlier (unlikely) senses and we eliminate these clusters from
the subsequent steps. Words from the eliminated clusters
are also removed from each and every sense bag. Finally,
we compute the median of all the remaining word embed-
dings in a given sense bag to obtain a sense embedding
for the corresponding word sense. Hence, the derived sense
embedding will not take into account the outlier words and
will reduce the chance of selecting unlikely word senses. The
main difference between ShotgunWSD 2.0 and its previous
version presented by Butnaru et al. [25] consists of applying
k-means clustering and eliminating smaller (outlier) clusters
of semantically related words.

In summary, ShotgunWSD is comprised of three main
phases. In the first phase, context windows of fixed length
are selected from the document, and for each context window,
the top scoring sense configurations constructed by BF search
are kept for the upcoming phase. The second phase consists of
merging the retained sense configurations based on prefix and
suffix matching. Finally, the third phase consists of ranking
the configurations obtained this far by their length (the longer,
the better), and choosing the sense of each word through a
majority vote on a short list of top configurations that cover
the respective word.

We present experiments on SemEval 2007 [37], Senseval-2
[38], Senseval-3 [39], SemEval 2013 [40], SemEval
2015 [41], as well as on the unified data sets [11], in order
to compare ShotgunWSD 2.0 with its previous version [25],
other state-of-the-art unsupervised and knowledge-based
approaches [15], [18]–[23], [42]–[45], as well as the Most
Common Sense (MCS) baseline.2 MCS is considered as
one of the strongest baselines in WSD [7], surpassing all
unsupervised approaches in the recent SemEval 2015 [41]
WSD task. The empirical results show that our algorithm
compares favorably to these state-of-the-art approaches on
most data sets. Furthermore, our algorithm outperforms the
Most Common Sense baseline on two data sets.

Our contributions are twofold:

• We propose a new relatedness scoring function for
ShotgunWSD, which is based on a novel approach for
eliminating outlier word senses by applying k-means

2Also known as the Most Frequent Sense (MFS) baseline.
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clustering on the word embeddings extracted from a
document.

• We perform extensive experiments on six data sets,
surpassing the MCS baseline on two of them.

We organize the rest of this paper as follows. We present
related work on unsupervised and knowledge-based WSD
algorithms in Section II. We describe the ShotgunWSD
algorithm in Section III. We present the experiments in
Section IV. Finally, we draw our conclusions in Section V.

II. RELATED WORK
Researchers have proposed a wide range of methods to per-
form WSD [7], [8], [46]. The most accurate techniques are
supervised [10], but they require annotated training corpora
which are very difficult to obtain [12], [13]. In order to
overcome this limitation, some researchers have proposed
alternative WSD methods based on unsupervised learning
or knowledgde bases [14]–[24], [31], [32], [42], [47]–[50].
Since our algorithm is unsupervised and based on the Word-
Net knowledge base [28], [29], our main focus is to present
related work in the same area. The Lesk algorithm [30] is
perhaps the most popular knowledge-based WSD method.
It compares the glosses of an ambiguous word with the
terms contained in a short context window, calculating an
overlap score for each possible sense in order to select the
likely word sense. Banerjee and Pedersen [31] extended the
gloss overlap algorithm of Lesk [30] by using WordNet rela-
tions such as hypernymy or hyponymy, along with Word-
Net glosses and examples. Patwardhan et al. [33] proposed
a brute-force algorithm for global WSD by employing the
extended Lesk measure [31], [32] to compute the semantic
relatedness among senses in a given text. As discussed in
Section I, their BF approach is not suitable for whole text
documents, because of the high computational time. More
recently, Schwab et al. [14] proposed and compared three
stochastic algorithms for global WSD as alternatives to BF
search, namely a Genetic Algorithm, Simulated Annealing,
and Ant Colony Optimization. Among these algorithms,
the authors have found that the Ant Colony Algorithm [14],
[15] yields better results than the other two. Babelfy [20]
is a powerful graph-based disambiguation approach which
uses randomwalks with restart over BabelNet, a large seman-
tic network that integrates many resources, including Word-
Net. Babelfy is based on a dense subgraph heuristic for
selecting coherent semantic interpretations of the input text.
Panchenko et al. [49] proposed an unsupervised and
knowledge-free word sense induction and disambiguation
approach that relies on induced inventories as a pivot for
learning sense feature representations.

Recently, word embeddings have been employed in vari-
ous works [10], [18], [19], [21], [23], [24], [51] to improve
WSD results. Word embeddings are long known in the NLP
community [34], [35], but they have recently become more
popular due to the work of Mikolov et al. [36], which intro-
duced theword2vec framework that allows to efficiently build

vector representations fromwords. Basile et al. [18] enhanced
the Lesk algorithm by using word embeddings to compute
the similarity between word definitions and the target con-
text. Chen et al. [19] presented a unified model for joint
word sense representation and disambiguation. They use the
Skip-gram model to learn sense vectors. In the same time,
Bhingardive et al. [21] used pre-trained word vectors to build
sense embeddings by averaging the word vectors produced
for each sense of a target word. As their goal was to find
an approximation for the MCS baseline, they considered the
sense embedding that is closest to the embedding vector
of the target word. However, Yuan et al. [51] argued that
a simple average or concatenation of word vectors loses
the sequential and syntactic information of the text. Hence,
they proposed to train a Long Short-Term Memory (LSTM)
network to predict a held-out word in a sentence, which
helps to better capture the sequential and syntactic patterns.
Yuan et al. [51] extracted context vectors from the trained
LSTM. Then, they could classify a word in a given context
by finding the sense vector which has maximum cosine simi-
larity to the corresponding context vector. Raganato et al. [52]
conducted a more extensive study, comparing several neu-
ral sequence learning techniques, from bidirectional LSTM
to encoder-decoder models. Iacobacci et al. [10] proposed
different methods through which word embeddings can be
leveraged in a supervised WSD system architecture. Interest-
ingly, Iacobacci et al. [10] found that aWSDmethod based on
word embeddings alone can provide significant performance
improvements over a state-of-the-art WSD system that uses
standard features for the WSD task.

More recently, Vial et al. [23] developed a new way of cre-
ating sense vectors for any dictionary using an existing word
embeddings model, by summing the vectors of the terms
inside a sense definition. They employed the sense vectors in
the Cuckoo Search Algorithm, as a supplementary resource
for their knowledge-based method. Tripodi and Pelillo [22]
proposed to represent each ambiguous word as a node in a
graph in which edges represent word relations, while senses
are represented as classes. They used distributional infor-
mation to quantify the influence that each word has on the
decisions for other words, and semantic similarity informa-
tion to measure the strength of compatibility among choices,
formulating the WSD problem as a game and computing the
equilibrium state of the system to perform disambiguation.
Dongsuk et al. [24] proposed a knowledge-based WSD
approach based on a novel subgraph construction strategy
that selectively restricts the context of an ambiguous word.
More precisely, contextual words of an ambiguous word
are selected by thresholding the word similarities to the
ambiguous word. Their word similarity measure is based
on word embeddings. Pasini and Navigli [50] described two
fully-automatic and language independent methods for com-
puting the distribution of senses given a raw corpus of sen-
tences. From the computed sense distributions, the authors
could trivially determine most frequent sense annotations,
surpassing other MCS baselines.
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While ShotgunWSD performs global WSD using a
different approach than other state-of-the-art unsupervised
or knowledge-based methods [14]–[24], [31], [32], [42],
[48]–[50], its source of inspiration, computational biology,
makes it somewhat related to other bio-insipired approaches
[14]–[16], [23]. Another important aspect is that Shotgun-
WSD relies on a local WSD algorithm that uses either the
extended Lesk measure, as [31], [32], [42], or word embed-
dings, as [18], [19], [21], [23], [24]. To our knowledge,
the outlier sense removal strategy proposed in this paper for
ShotgunWSD 2.0 has not been previously studied in WSD
research.

III. METHOD
As illustrated in Section I and also noted by Schwab et al.
[14], brute-force WSD algorithms based on semantic
relatedness [33] are not practical for whole text disambigua-
tion due to their exponential time complexity. In this section,
we describe a WSD algorithm that aims to avoid this com-
putational issue. Our algorithm is inspired by the Shotgun
genome sequencing technique [26] which is used in genet-
ics research to obtain long DNA strands, a task known as
whole genome sequencing. For instance, Istrail et al. [27]
have used this technique to assemble the human genome.
Before a long DNA strand can be read, Shotgun sequencing
needs to create multiple copies of the respective strand. Then,
DNA is randomly broken down into many small segments
called reads (usually between 30 and 400 nucleotides long),
by adding a restriction enzyme into the chemical solution
containing the DNA. The reads can then be sequenced using
Next-Generation Sequencing techonlogy [53], for example
by using an Illumina (Solexa) machine [54]. In genome
assembly, the low quality reads are usually eliminated [55]
and the whole genome is reconstructed by assembling the
remaining reads. One strategy is to merge two or more reads
in order to obtain longer DNA segments, if they have a sig-
nificant overlap of matching nucleotides. Because of reading
errors or mutations, the overlap is usually measured using a
distance measure, e.g. the edit distance [56]. If a backbone
DNA sequence is available, the reads are aligned to the back-
boneDNAbefore assembly, in order to find their approximate
position in the DNA that needs to be reconstructed. The
Shotgun genome sequencing technique is applied because
whole genomes cannot be effectively read.

We recognize a similar problem in WSD, as it is
impractical to apply BF search at the document level. To this
end, ShotgunWSD aims to replicate process involved in the
Shotgun sequencing technique in order to build an optimal
solution for global WSD. In order to apply Shotgun sequenc-
ing for WSD, we first need to make some correspondences.
The long DNA strand that has to be sequenced corresponds
to the text document that we aim to disambiguate, while the
short DNA reads correspond to short context windows that
are disambiguated through brute-force. As short DNA reads
are assembled into a single long DNA strand, our goal is
to combine the brute-force disambiguation solutions into a

single solution (sense configuration) for the entire document,
thus performing global WSD.

We now describe in detail how we adapt the Shotgun
sequencing technique for the task of global WSD. We will
make a few observations along the way that will lead to a
simplified method, namely ShotgunWSD, which is formally
presented in Algorithm 1. The three main phases of Shotgun-
WSD are also illustrated in Figure 1. We use the following
notations in Algorithm 1. An array (or an ordered set of ele-
ments) is denoted by X = (x1, x2, . . . ., xm) and the length of
X is denoted by |X | = m. Arrays are considered to be indexed
starting from position 1, thus X [i] = xi,∀i ∈ {1, 2, . . .m}.

Our goal is to find a configuration of sensesG for the whole
document D, that matches the ground-truth configuration
produced by human annotators. A configuration of senses
is simply obtained by assigning a sense to each word in the
text document D. In this work, the senses are selected from
WordNet [28], [29], according to steps 7-8 of Algorithm 1.
Naturally, we will consider that the sense configuration of the
whole document corresponds to the long DNA strand (whole
genome) that needs to be sequenced. In this context, sense
configurations of short context windows (less than 10 words)
will correspond to the short DNA reads. A crucial difference
here is that we know the location of the context windows in
the whole document from the very beginning, so our task
will be much easier compared to Shotgun sequencing (we
do not need to use a backbone solution for the alignment
of short sense configurations). At every possible location
in the text document D, we select a window of n words
according to step 12 of Algorithm 1. The window length n is
an external parameter of our algorithm that can be tuned for an
optimal trade-off between accuracy and speed. For each con-
text window we compute all possible sense configurations,
according to steps 14-15 of Algorithm 1. A score is assigned
to each sense configuration by computing the semantic relat-
edness between word senses (steps 16-19), as described by
Patwardhan et al. [33]. Butnaru et al. [25] alternatively
employed two measures to compute the semantic relatedness,
one is the extended Lesk measure [31], [32] and the other
is a simple approach based on deriving sense embeddings
from word embeddings [36]. In this paper, we propose a
third approach that is based on clustering word vectors with
k-means and on eliminating the smaller clusters (which con-
tain outlier words). For the sake of completeness, all three
methods are described in Section III-A. In the new version
of ShotgunWSD, we modify step 19 in order to weight the
relatedness score by the distance between the two ambiguous
words, as in [10]. The reason for weighting the score is
that if two words are farther apart from each other, their
relatedness score should have a smaller contribution to the
total score of the local sense configuration. For the assembly
phase (steps 23-39), we keep the top scoring sense con-
figurations, according to step 21 of Algorithm 1. In step
21, we use an internal parameter c in order to determine
exactly how many sense configurations are retained per con-
text window. Another important remark is that we assume
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Algorithm 1 ShotgunWSD Algorithm

22 Input:
44 D = (w1,w2, . . . ,wm) – a document of m words denoted by wi, i ∈ {1, 2, . . . ,m};
66 n – the length of the context windows (1 < n < m);
88 k – the number of sense configurations considered for the voting scheme (k > 0);

1010 Initialization:
1212 c← 20;
1414 for i ∈ {1, 2, . . . ,m} do
1616 Swi ← the set of WordNet synsets of wi;

1818 S ← ∅;
2020 G← (0, 0, . . . ., 0), such that |G| = m;

2222 Computation:
2424 for i ∈ {1, 2, . . . ,m− n+ 1} do
2626 Ci← ∅;
2828 while did not generate all sense configurations do
3030 C ← a new configuration (swi , swi+1 , . . . , swi+n−1 ), swj ∈ Swj , ∀j ∈ {i, . . . , i+ n− 1}, such that C /∈ Ci;
3232 r ← 0;
3434 for p ∈ {1, 2, . . . , n− 1} do
3636 for q ∈ {p+ 1, 2, . . . , n} do

3838 r ← r + 0.1
|p−q|−1
n−1 · relatedness(C[p],C[q]);

4040 Ci← Ci ∪ {(C, i, n, r)};

4242 Ci← the top c configurations obtained by sorting the configurations in Ci by their relatedness score (descending);
4444 S ← S ∪ Ci;
4646 for l ∈ {min{5, n− 1}, . . . , 1} do
4848 for p ∈ {1, 2, . . . , |S|} do
5050 (Cp, ip, np, rp)← the p-th component of S;
5252 for q ∈ {1, 2, . . . , |S|} do
5454 (Cq, iq, nq, rq)← the q-th component of S;
5656 if iq − ip < np and ip 6= iq then
5858 t ← true;
6060 for x ∈ {1, . . . , l} do
6262 if Cp[np − l + x] 6= Cq[x] then
6464 t ← false;

6666 if t = true then
6868 Cp⊕q← (Cp[1],Cp[2], . . . ,Cp[np],Cq[l + 1],Cq[l + 2], . . . ,Cq[nq]);
7070 rp⊕q← rp;
7272 for i ∈ {1, 2, . . . , np + nq − l} do
7474 for j ∈ {l + 1, l + 2, . . . , nq} do

7676 rp⊕q← rp⊕q + 0.1
|i−j|−1
n−1 · relatedness(Cp⊕q[i],Cq[j]);

7878 S ← S ∪ {(Cp⊕q, ip, np + nq − l, rp⊕q)};

8080 for j ∈ {1, 2, . . . ,m} do
8282 Qj← {(C, i, d, r) | (C, i, d, r) ∈ S, j ∈ {i, i+ 1, . . . , i+ d − 1}};
8484 Qj← the top k configurations obtained by sorting the configurations in Qj by their length (descending);
8686 pswj ← the predominant sense obtained by using a majority voting scheme on Qj;
8888 G[j]← pswj ;

9090 Output:
9292 G = (psw1 , psw2 , . . . , pswm ), pswi ∈ Swi , ∀i ∈ {1, 2, . . . ,m} – the global configuration of senses returned by the algorithm.
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FIGURE 1. An example of building a global sense configuration with
ShotgunWSD for a document of 7 words. The algorithm is based on three
main phases: building local sense configurations using a brute-force
approach, assembling shorter configurations into longer configurations
by prefix-suffix matching and majority voting. Best viewed in color.

that the BF algorithm used for generating sense configu-
rations for short windows does not produce output errors
(as in genome sequencing), hence it is not necessary to use
a distance measure in order to find overlaps for merging
configurations. We simply verify if the suffix of a former
configuration coincides (matches exactly) with the prefix of a
latter configuration in order to join them together, according
to steps 29-33 of Algorithm 1. The length l of the suffix
and the prefix that get overlapped needs to be strictly greater
then zero, so at least one sense choice needs to coincide.
We gradually consider shorter and shorter suffix and prefix
lengths starting with l = min{5, n− 1}, according to step
23 of Algorithm 1. Sense configurations are assembled in
order to obtain longer configurations (step 34), until none of
the resulted configurations can be further merged together.
When merging, the relatedness score of the resulting con-
figuration needs to be recomputed (steps 36-38), but we can
take advantage of some of the previously computed scores
(step 35). Longer configurations indicate that there is an
agreement (regarding the chosen senses) that spans across a
longer phrase. In other words, longer configurations are more
likely to provide correct sense choices, since they inherently
embed a higher degree of agreement among senses. After
the configuration assembly phase, we start assigning the

sense to each word in the document, according to step 40
of Algorithm 1. According to step 42, we build a ranked
list of sense configurations for each word in the document,
based on the assumption that longer configurations provide
better information about correct word senses. Naturally, for a
given word, we only consider the configurations that contain
the respective word, according to step 41. Finally, the sense
of each word is given by a majority vote on the top k con-
figurations from its ranked list, according to steps 43-44 of
Algorithm 1. The number of sense configurations k is an
external parameter of our approach, and it can be tuned for
optimal results.

A. SEMANTIC RELATEDNESS
For a sense configuration assigned to a context window of
n words, we compute a semantic relatedness score (numeric
value) between each pair of selected senses. In steps 19 and 38
ofAlgorithm 1, the score is computed by the relatedness func-
tion, which takes two word senses as input and provides their
semantic relatedness score as output. Butnaru et al. [25] used
two alternative approaches for computing the relatedness
score. In this paper, we propose a third approach. We note
that all three approaches are built on top of WordNet seman-
tic relations. Each of the three approaches can be regarded
as a different way of estimating the semantic relatedness
of two WordNet synsets. For each synset, we first build a
disambiguation vocabulary (also referred to as sense bag) by
extracting words from the WordNet [28], [29] lexical knowl-
edge base, as described next. Starting from the synset itself,
we first include all the synonyms that form the respective
synset along with the content words of the gloss (examples
included). We also include into the disambiguation vocabu-
lary words indicated by specific WordNet semantic relations
that are chosen according to the part-of-speech of the ambigu-
ous word. More precisely, we have considered hyponyms
and meronyms for nouns. For adjectives, we have considered
similar synsets, antonyms, attributes, pertainyms and related
(see also) synsets. For verbs, we have considered troponyms,
hypernyms, entailments and outcomes. Finally, for adverbs,
we have considered antonyms, pertainyms and topics. These
choices have been made because previous studies [9], [32]
have reached the conclusion that using these specific rela-
tions for each part-of-speech provides better empirical results
for the WSD task. For the sake of completeness, we next
describe the two approaches for computing the relatedness
score proposed in [25], as well as our novel approach based
on removing outlier words using k-means clustering.

1) EXTENDED LESK MEASURE
The original Lesk algorithm [30] takes into account one word
overlaps among the glosses of a target word and those that
surround it in a given context. Banerjee and Pedersen [31]
consider that this is a significant limitation of the original
Lesk algorithm, since dictionary glosses tend to be fairly
short and they fail to provide sufficient information to make
fine grained distinctions between word senses. To this end,
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Banerjee and Pedersen [32] extend the original Lesk algo-
rithm with a measure that takes two WordNet synsets as
input and returns a numeric value that quantifies their degree
of semantic relatedness by taking into consideration the
glosses of related WordNet synsets as well. Moreover, when
comparing two glosses, the extended Lesk measure consid-
ers overlaps of multiple consecutive words, based on the
assumption that a longer phrase is more representative for the
relatedness of the two synsets. Before applying the extended
Lesk algorithm, we eliminate the stopwords. The remaining
words are stemmed using the Porter stemmer algorithm [57].
The stemming process reduces a word to its root form by
removing the most common morphological and inflexional
endings from words in English. The resulting stems rep-
resent the final set of features that we use for computing
the relatedness score between two synsets. Given two input
glosses, the longest overlap between them is detected and
then replaced with a unique marker (symbol) in each of the
two glosses. The resulting glosses are then again checked for
overlaps, and this process continues until there are no more
overlaps. The lengths of the detected overlaps are squared and
added together to obtain the score for the given pair of glosses.
Depending on the WordNet relations used for each part-of-
speech, several pairs of glosses are compared and summed
up together to obtain the final relatedness score. However,
WordNet does not define semantic relations between synsets
if they do not belong to the same part-of-speech. For this
reason, we compute the semantic relatedness using only the
WordNet glosses and examples when two words are of dif-
ferent parts-of-speech. Further details regarding the extended
Lesk measure are provided by Banerjee and Pedersen [32].

2) SENSE EMBEDDINGS
In this section, we describe a simple approach based on
word embeddings to measure the semantic relatedness of two
synsets. Approaches based on word embeddings [34]–[36]
represent words as low-dimensional real-valued vectors, such
that semantically related words reside in close vicinity in the
generated space. In our algorithm, we employ the pre-trained
word embeddings computed by theword2vec framework [36]
on the Google News data set using the Skip-gram model.
This pre-trained model contains 300-dimensional vectors for
nearly 3 million words and phrases.

We compute the relatedness score between two synsets
as described next. We eliminate the stopwords and embed
each remaining word in the disambiguation vocabulary of
a synset in order to obtain the corresponding word vector.
We thus obtain a set of word embedding vectors for each
given synset. We derive the sense embedding for a synset
simply by computing the median of all the word embeddings
in the corresponding set. We can naturally assume that some
of the word vectors in the set correspond to words that do
not help the disambiguation process. From this point of view,
these words can be regarded as outliers. In this context,
we consider that using the (geometric) median instead of the
mean is more appropriate, as the mean is largely influenced

by outliers. It is important to note that our third approach
(presented next) for computing the semantic relatedness aims
to properly address the outlier removal issue. According to
our second approach, the semantic relatedness of two synsets
is simply given by the cosine similarity between their median
vectors:

relatedness(A,B) =

∑m
i=1 ai · bi√∑m

i=1 a
2
i

√∑m
i=1 b

2
i

,

whereA andB arem-dimensionalmedian vectors correspond-
ing to two WordNet synsets. For the employed word2vec
model, the vectors have m = 300 components.

An important remark is that Bhingardive et al. [21]
proposed an approach based on the mean (instead of the
median) of word vectors to construct sense embeddings, but
with a slightly different purpose than ours, namely to deter-
mine which synset is most similar to the target word, assum-
ing that the respective synset should correspond to the most
common sense of the target word. As such, they completely
disregard the context of the target word. Different from their
approach, we are trying to measure the semantic related-
ness between two synsets of distinct words that appear in
the same context window. Furthermore, the empirical results
presented in Section IV prove that our approach provides
better performance than the MCS estimation approach of
Bhingardive et al. [21], thus putting an even greater gap
between their method and ours.

3) SENSE EMBEDDINGS AFTER OUTLIER REMOVAL
We start by gathering the words in the document that we
aim to disambiguate into a set. Along with the words in the
document, we also add all the words from the disambigua-
tion vocabularies of each sense of each ambiguous word in
the document. In the whole process, stopwords are disre-
garded. Each word is then embedded into a vector space
using the word2vec [36] framework. Based on the fact that
word embeddings carry semantic information by projecting
semantically related words in the same region of the embed-
ding space, the next step is to cluster the word vectors in
order to obtain relevant semantic clusters of words. Thewords
are clustered using k-means clustering with k-means++ [58]
initialization.

Next, we eliminate the clusters with fewer samples, based
on the assumption that these smaller clusters contain mostly
outlier samples. We motivate our assumption through the
following toy example. We generate 400 data points sampled
from two normal distributions of different means. We group
the points into k = 30 clusters using k-means and we
illustrate the result in Figure 2. We then count the number
of points in each cluster and obtain the histogram depicted
in Figure 3. In this example, we consider that the clusters
with less than 10 data points contain mostly outliers. The
centroids of these smaller clusters are marked with a large
blue square in Figure 2. We can clearly see that the marked
clusters are farthest from both normal distribution means,
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FIGURE 2. A set of 400 data points sampled from two normal
distributions of different means. The points are clustered into 30 clusters
using k-means. The centroids of clusters with less than 10 samples are
represented with a large blue square. Best viewed in color.

FIGURE 3. A histogram representing the number of data points in each
cluster. The histogram corresponds to the k-means clustering applied over
the 400 data points illustrated in Figure 2. A threshold of 10 is used to
detect clusters of outliers. Best viewed in color.

indicating that the containing points are indeed outliers. This
assumption is also supported by the results obtained by
Ionescu et al. [59] in abnormal event detection in video,
as they employ the same approach (based on k-means) to
remove clusters of outlier motion and appearance samples.
Nevertheless, our aim is to test out this assumption by
quantifying the performance improvement of ShotgunWSD
2.0 over its previous version. To this end, we remove the
words that belong to the eliminated clusters from each and
every sense bag. We next compute the median of all the
remaining word embeddings in a given sense bag to obtain
a sense embedding for the corresponding word sense. The
semantic relatedness of two synsets is given by the cosine
similarity between the corresponding medians.

IV. EXPERIMENTS AND RESULTS
The goal of our experiments is to compare Shotgun-
WSD 2.0 with recent and well-known unsupervised or
knowledge-based methods from the literature, including
ShotgunWSD 1.0. On each data set, we include the
MCS baseline, which is relevant for unsupervised or
knowledge-based methods such as ShotgunWSD 2.0. As in

common practice, we evaluate our approach on data sets that
are annotated with corresponding WordNet senses. Similar
to other methods from the literature, our algorithm has to
choose the correct sense from the WordNet sense inventory.
In practical applications, the correct sense of a word might
not be present in the WordNet sense inventory. In this case,
our algorithm will not be able to select the right sense.

The rest of this section is organized as follows.
In Section IV-A, we present the data sets considered in the
evaluation. We provide details about parameter tuning in
Section IV-B. We hereby note that we used the same parame-
ters for ShotgunWSD 2.0 in all our experiments, irrespective
of the data set. In Section IV-C, we introduce the considered
baseline methods. In the following six sections, we present
the results on each of the six data sets. Finally, we provide a
discussion that summarizes the experiments in Section IV-J.

A. DATA SETS
We evaluate the first and the second versions of our global
WSD algorithm on five individual and unified data sets.
The data sets considered in our evaluation are SemEval
2007 [37], Senseval-2 [38], Senseval-3 [39], SemEval
2013 [40] and SemEval 2015 [41]. The SemEval 2007 coarse-
grained English all-words data set3 consists of 5 doc-
uments that contain 2269 ambiguous words altogether.
The Senseval-2 data set4 consists of 3 documents that contain
2473 ambiguous words, while the Senseval-3 data set4 con-
sists of 3 documents that contain 2081 ambiguous words. The
SemEval 2013 data set [40] is formed of 13 documents that
contain 1644 ambiguous words (nouns) in theWordNet sense
inventory. The SemEval 2015 data set [41] is composed of 4
documents that contain 1175 ambiguous words. A summary
of the distribution of ambiguous words per part-of-speech
in each data set is presented in Table 1. The unified set
containing all these five benchmarks is described in [11].

B. PARAMETER TUNING
For ShotgunWSD 1.0, we use the same parameters as
Butnaru et al. [25]. Thus, the internal parameter c, i.e. the
number of sense configurations retained per context window,
is set to 20 and the length of the context windows is set to
n = 8. With these settings, ShotgunWSD 1.0 runs in 187 sec-
onds on the first document of SemEval 2007. The reported
time is measured on a computer with Intel Core i7 3.4 GHz
processor and 16 GB of RAM using a single Core. The final
sense for each word is assigned using a majority vote based
on the top k = 15 configurations. For ShotgunWSD 2.0,
we use the same values for the parameters c and k . However,
the k-means clustering step requires additional processing
time, so we need to reduce the window length from n = 8 to
n = 6 in order to reach a processing time of the same order of
magnitude as the processing time required by ShotgunWSD
1.0. On the same machine, ShotgunWSD 2.0 with n = 6

3http://lcl.uniroma1.it/coarse-grained-aw
4http://web.eecs.umich.edu/∼mihalcea/downloads.html
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TABLE 1. A summary of the number of ambiguous words along with the distribution of ambiguous words per part-of-speech in the five data sets
considered in our evaluation.

FIGURE 4. The F1 scores of ShotgunWSD 2.0 on the first document of
SemEval 2007, using different numbers of clusters for k-means.

runs in 105 seconds on the first document of SemEval 2007,
which is slightly faster than ShotgunWSD 1.0 with n = 8.
Butnaru et al. [25] showed that the processing time grows
exponentially with the window length, hence n = 8 would
not be a reasonable choice for ShotgunWSD 2.0.

There are two additional parameters for ShotgunWSD
2.0: the number of k-means clusters and the threshold used
for outlier cluster elimination. As Schwab et al. [15] and
Butnaru et al. [25], we tune our parameters on the first
document of SemEval 2007. By tuning the parameters on
just one document from SemEval 2007, we avoid the over-
fitting to a particular data set. We tested our algorithm using
50, 100, 250, 500 and 750 clusters and we found out that
the performance starts to slightly drop after 250 clusters,
as illustrated in Figure 4. In the end, we opted to use 250
clusters in all the experiments. We also tried to find out if
eliminating 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45% or
50% of the smaller (outlier) clusters would have a different
effect on performance. As shown in Figure 5, it seems that
eliminating 25% of the clusters is the optimal choice. It is
important to note that we use the same parameters throughout
the subsequent experiments on all six data sets.

C. BASELINES
We compare both versions of ShotgunWSD with several
state-of-the-art unsupervised and knowledge-based WSD
methods, as long as the works presenting these methods [15],
[18]–[23], [42]–[45] report results on the data sets considered
in our evaluation. We hereby note that some of these works
do not report results on all six data sets, hence the baselines
on each data set may be different.

We first compare ShotgunWSD with the MCS base-
line and four state-of-the-art approaches [15], [19], [22],
[23] on the SemEval 2007 coarse-grained English all-words

task [37]. While Schwab et al. [15] and Chen et al. [19]
report results on SemEval 2007, Bhingardive et al. [21]
and Torres and Gelbukh [42] report results on Senseval-
2 and Senseval-3. Hence, we also compare our approach with
the MCS baseline, the MCS estimation method of Bhingar-
dive et al. [21], the extended Lesk algorithm [42] and the
unsupervised approach based on game theory [22] on the
Senseval-2 English all-words [38] and the Senseval-3 English
all-words [39] data sets. On the SemEval 2013 English
nouns WSD task [40], the baselines are Babelfy [20],
the winner [43] and the first runner up [15] of the
SemEval 2013 WSD task, which submitted results for the
WordNet sense inventory. In a similar manner, we com-
pare our approach with the winner [45], the first runner
up [44] and a more recent approach [23] on the SemEval
2015 English all-wordsWSD task [41]. On the unified bench-
mark [11], we consider as baselines the WordNet MCS [11],
the extended Lesk algorithm [11], an enhanced Lesk algo-
rithm based on word embeddings [18], and Babelfy [20].
We next provide a brief description of each unsupervised or
knowledge-based baseline:

• Extended Lesk [42] – The extended Lesk algorithm
takes two WordNet synsets as input and returns a
numeric value that quantifies their degree of semantic
relatedness by taking into consideration the glosses of
the two synsets as well as the glosses of the related
synsets. Torres and Gelbukh [42] applied the extended
Lesk algorithm to disambiguate every sentence using
brute-force.

• Genetic Algorithms [15] – The Genetic Algorithm is
a global WSD approach that can be divided into five
phases: initialization, selection, crossover, mutation and
evaluation. The algorithm starts with a randomly initial-
ized population of sense configurations which are mod-
ified through genetic operations and sorted according to
a version of the extended Lesk measure.

• Simulated Annealing [15] – The Simulated Annealing
approach is a globalWSD approach that is inspired from
the physical phenomenon of metal cooling. The algo-
rithm uses a single randomly initialized configuration
and it performs a random change at every iteration. The
algorithm accepts configurations with lower extended
Lesk scores in order to prevent the algorithm from
converging to local maxima.

• Ant Colony [15] – The Ant Colony Algorithm is a global
WSD approach that is inspired by the social behavior of
ants. The environment of the Ant Colony Algorithm is
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FIGURE 5. The F1 scores of ShotgunWSD 2.0 on the first document of SemEval 2007, using
different thresholds for eliminating the smaller k-means clusters.

a graph containing two types of nodes: nests and plain
nodes. Nests produce ants that move in the graph in order
to find energy and bring it back to their mother nest.
Depending on the lexical information present and the
structure of the graph, ants tend to follow links (edges)
between more closely related word senses.

• UMCC-DLSI [43] – The UMCC-DLSI approach is
based on the ISR-WN resource, which enriches the
WordNet semantic network using edges from multiple
lexical resources. WSD is performed using the ISR-WN
network in conjunction with an extension of the Per-
sonalized PageRank algorithm [47], which includes
sense frequencies. The Personalized PageRank algo-
rithm requires initializing the PageRank algorithm with
a set of seed synsets (vertices).

• Extended Lesk + Embeddings [18] – The algorithm
proposed by Basile et al. [18] is an enhanced version
of the Lesk algorithm, in which word embeddings are
leveraged to compute the similarity between BabelNet
definitions and the target context. The method relies on
the use of a word similarity function defined on a dis-
tributional semantic space to compute the gloss-context
overlap.

• S2C Unsupervised [19] – The S2C (simple to complex)
approach is based on a unified model for joint word
sense representation and disambiguation. S2C disam-
biguates the words with fewer senses first, since these
are easier to disambiguate. The Skip-gram model is
employed to learn sense vectors, and disambiguation is
performed by computing the cosine similarities between
the context vector and the sense vectors of an ambiguous
word.

• Babelfy [20] – The Babelfy system is based on the
BabelNet multilingual semantic network and performs
disambiguation and entity linking. Given an input text,
Babelfy extracts all the linkable fragments from the text.
Then, for each fragment, it lists the possible meanings
according to BabelNet. Using pre-computed semantic

signatures from BabelNet, the algorithm constructs a
graph-based semantic representation of the input text
by linking the candidate meanings of the extracted
fragments. Finally, it finds a dense subgraph of the
constructed representation, selecting the best candidate
meaning for each fragment.

• MCS Estimation [21] – In order to estimate the MCS,
Bhingardive et al. [21] proposed an approach based on
the mean of word vectors in a synset, for deriving a sense
embedding for the respective synset. The algorithm uses
the cosine similarity in order to determine which sense
embedding is most similar to the target word, assuming
that the respective sense embedding should correspond
to the most common sense of the target word. The
approach completely disregards the context of the target
word.

• LIMSI [45] – The LIMSI system performsWSD by tak-
ing advantage of the parallelism of the multilingual test
data. The texts are first aligned by sentence and by word.
Next, content words are tagged by their translations in
other languages. The alignments serve to retrieve the
BabelNet synsets that are relevant for each instance of a
word, i.e. the synsets that contain both the disambigua-
tion target and its aligned translation.

• Sudoku [44] – The Sudoku approach employs Person-
alised PageRank [47] to select the best candidate. The
algorithm starts with a surfing vector biased towards
monosemous words. Words are disambiguated in the
increasing order of polysemy, using a semantic subgraph
constructed from BabelNet.

• Unsupervised Game Theory [22] – The algorithm
proposed by Tripodi and Pelillo [22] is based on evo-
lutionary game theory. Each word to be disambiguated
is represented as a node in a graph with edges repre-
senting word relations, while senses are represented as
classes. The words simultaneously update their class
membership preferences according to the senses that
neighboring words are likely to choose.
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TABLE 2. The F1 scores of ShotgunWSD 1.0 and ShotgunWSD 2.0 versus
the F1 scores of the MCS baseline and various state-of-the-art WSD
approaches, on the SemEval 2007 coarse-grained English all-words task.
The results reported for ShotgunWSD 1.0 are obtained for windows of
n = 8 words and a majority vote on the top k = 15 configurations. The
results reported for ShotgunWSD 2.0 are obtained for windows of n = 6
words, a majority vote on the top k = 15 configurations and k-means
clustering with 250 clusters. The best F1 score is highlighted in bold.

• VecLesk [23] – The VecLesk approach is a global
knowledge-based WSD system based on the Cuckoo
Search Algorithm. The approach is based on a new
way of creating sense vectors for any dictionary using
an existing word embeddings model, by summing the
vectors of the terms inside a sense definition. The sum
of word vectors is weighted according to the inverse
document frequency of each word and to the part-of-
speech.

D. RESULTS ON SEMEVAL 2007
First, we conduct an empirical study on the SemEval
2007 coarse-grained English all-words task in order to eval-
uate the performance of ShotgunWSD 1.0 and 2.0 as well as
other WSD methods. As described in Section III-A, we use
two alternative approaches for computing the semantic relat-
edness scores in ShotgunWSD 1.0, namely extended Lesk
and sense embeddings. ShotgunWSD 2.0 is based on a dif-
ferent approach which eliminates smaller clusters of word
embeddings. We compare our two versions of Shotgun-
WSD with several bio-inspired algorithms described in [14],
[15], namely a Genetic Algorithm, Simulated Annealing, and
Ant Colony Optimization. Along with the bio-inspired algo-
rithms, we include two approaches based on sense embed-
dings [19], [23] and one based on game theory [22] in
our comparative study. All the approaches considered in the
evaluation are unsupervised or knowledge-based. We com-
pare them with the MCS baseline that is based on human
annotations. The F1 scores of the enumerated methods are
all presented in Table 2. Among all state-of-the-art meth-
ods, two approaches [15], [22] are capable of surpass-
ing the MCS baseline. The unsupervised S2C approach
yields roughly 3% lower results than the MCS baseline, but
Chen et al. [19] report better results in a semi-supervised
setting. The VecLesk [23] knowledge-based algorithm pro-
vides a performance level similar to the unsupervised
S2C approach. All versions of ShotgunWSD attain bet-
ter results than the MCS baseline (78.89%) and the best
bio-inspired method, namely the Ant Colony Optimization
algorithm (79.03%). Indeed, ShotgunWSD 1.0 obtains an

TABLE 3. The F1 scores of ShotgunWSD 1.0 and ShotgunWSD 2.0 versus
the F1 scores of the MCS baseline, two unsupervised WSD approaches
and the extended Lesk measure, on the Senseval-2 English all-words data
set. The results reported for ShotgunWSD 1.0 are obtained for windows of
n = 8 words and a majority vote on the top k = 15 configurations. The
results reported for ShotgunWSD 2.0 are obtained for windows of n = 6
words, a majority vote on the top k = 15 configurations and k-means
clustering with 250 clusters. The best F1 score is highlighted in bold.

F1 score of 79.15% when using the extended Lesk mea-
sure and an F1 score of 79.68% when using sense embed-
dings. Interestingly, we observe that ShotgunWSD 1.0 gives
slightly better results when sense embeddings are used
instead of the extended Lesk method. Nevertheless, Shotgun-
WSD 2.0 obtains even better results. It surpasses Shotgun-
WSD 1.0 by 1.54% and the second best approach [22] by
0.82%. To our knowledge, the F1 score of ShotgunWSD 2.0
(81.22%) is the best among all unsupervised methods evalu-
ated on the SemEval 2007 coarse-grained English all-words
task.

E. RESULTS ON SENSEVAL-2
In Table 3, we present the F1 scores of the two versions of
ShotgunWSD against the MCS baseline, the MCS estima-
tion approach [21], the extended Lesk measure [42] and the
unsupervised approach based on game theory [22] on the
Senseval-2 English all-words data set. The empirical results
presented in Table 3 indicate that ShotgunWSD 1.0 based
on sense embeddings obtains an F1 score that is almost 5%
better than the F1 score of Bhingardive et al. [21]. In the
same time, ShotgunWSD 1.0 based on the extended Lesk
method gives an F1 score that is around 1% better than the
F1 score reported by Torres and Gelbukh [42]. It is important
to note that Torres and Gelbukh [42] apply the extended Lesk
measure by performing the brute-force search at the sentence
level (not on the whole document), hence it is not surprising
that ShotgunWSD 1.0 is able obtain better results.

Despite of using windows of shorter length (6 instead of 8),
ShotgunWSD 2.0 is able to yield better performance than
both variants of ShotgunWSD 1.0. The improvement with
respect to the better variant of ShotgunWSD 1.0, the one
based on sense embeddings, is 0.69%. However, Shotgun-
WSD 2.0 (58.24%) is still under the MCS baseline (60.10%)
on this data set. Remarkably, the unsupervised approach
based on game theory [22] is able to surpass theMCS baseline
on Senseval-2.

F. RESULTS ON SENSEVAL-3
We also compare ShotgunWSD 1.0 and 2.0 with the MCS
baseline, the MCS estimation approach of Bhingardive et al.
[21], the extended Lesk measure [42] and the unsupervised
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TABLE 4. The F1 scores of ShotgunWSD 1.0 and ShotgunWSD 2.0 versus
the F1 scores of the MCS baseline, two unsupervised WSD approaches
and the extended Lesk measure, on the Senseval-3 English all-words data
set. The results reported for ShotgunWSD 1.0 are obtained for windows of
n = 8 words and a majority vote on the top k = 15 configurations. The
results reported for ShotgunWSD 2.0 are obtained for windows of n = 6
words, a majority vote on the top k = 15 configurations and k-means
clustering with 250 clusters. The best F1 score is highlighted in bold.

TABLE 5. The F1 scores of ShotgunWSD 1.0 and ShotgunWSD 2.0 versus
the F1 scores of the MCS baseline and three state-of-the-art WSD
approaches, on the SemEval 2013 English all-words task. The results
reported for ShotgunWSD 1.0 are obtained for windows of n = 8 words
and a majority vote on the top k = 15 configurations. The results reported
for ShotgunWSD 2.0 are obtained for windows of n = 6 words, a majority
vote on the top k = 15 configurations and k-means clustering with 250
clusters. The best F1 score is highlighted in bold.

approach based on game theory [22] on the Senseval-3
English all-words data set. The corresponding F1 scores
are presented in Table 4. With an F1 score of 57.89%,
ShotgunWSD 1.0 based on the extend Lesk measure brings
a remarkable improvement of 8% over the extended Lesk
algorithm applied at the sentence level [42]. Moreover,
the empirical results indicate that all versions of Shotgun-
WSD reach considerably better F1 scores compared to the
MCS estimation approach [21]. By using sense embeddings
in a completely different way than Bhingardive et al. [21],
ShotgunWSD 1.0 attains an F1 score of 59.82%, which is
16.54% above the MCS estimation approach [21]. On this
data set, the improvement of ShotgunWSD 2.0 over Shot-
gunWSD 1.0 is very small (from 59.82% to 59.92%).
However, ShotgunWSD 2.0 surpasses all baselines, including
the unsupervised approach based on game theory [22].

G. RESULTS ON SEMEVAL 2013
For the SemEval 2013 English all-words task, we report the
F1 scores of ShotgunWSD 1.0 and ShotgunWSD 2.0 using
WordNet senses in Table 5. The table includes several
state-of-the-art approaches [15], [20], [43] for reference.
When we use the extended Lesk as local WSD algo-
rithm, the performance of ShotgunWSD 1.0 (57.36%) is
roughly 6% under the MCS baseline (63.00%). A simi-
lar difference is recorder between the ShotgunWSD vari-
ant based on extended Lesk and the other two variants

TABLE 6. The F1 scores of ShotgunWSD 1.0 and ShotgunWSD 2.0 versus
the F1 scores of the BabelNet First Sense and three state-of-the-art WSD
approaches, on the SemEval 2015 English all-words task. The results
reported for ShotgunWSD 1.0 are obtained for windows of n = 8 words
and a majority vote on the top k = 15 configurations. The results reported
for ShotgunWSD 2.0 are obtained for windows of n = 6 words, a majority
vote on the top k = 15 configurations and k-means clustering with 250
clusters. The best F1 score is highlighted in bold.

of ShotgunWSD based on sense embeddings. All variants
of ShotgunWSD achieve better performance than the Ant
Colony approach [15]. With an F1 score of 63.05%, Shot-
gunWSD 2.0 is able to marginally surpass the MCS baseline
on SemEval 2013, but it stays behind the UMCC-DLSI [43]
and the Babelfy [20] approaches.

H. RESULTS ON SEMEVAL 2015
Table 6 shows the results of ShotgunWSD 1.0 and 2.0 against
a recent knowledge-based approach [23] and the top two
methods [44], [45] from the SemEval 2015 English all-words
WSD task [41]. The table also includes the BabelNet first
sense (BFS) [41] as reference. We first note that Shot-
gunWSD 1.0 based on the extended Lesk gives consider-
ably worse results (45.66%) than ShotgunWSD 1.0 based
on sense embeddings (58.44%). In the same time, Shot-
gunWSD 2.0 attains better performance than both variants
of ShotgunWSD 1.0. The F1 score of ShotgunWSD 2.0
(61.30%) is also 1.4% better than Sudoku [44] and 2.3%
better than VecLesk [23]. On the other hand, the performance
of ShotgunWSD 2.0 is 3.4% under the performance of the
winners [45] of the SemEval 2015 English all-words WSD
task. However, it is important to remark that Apidianaki and
Gong [45] exploit the parallelism of themultilingual SemEval
2015 test data by using translations as source of indirect
supervision for sense selection. As Manion [44] and the rest
of the participants [41], we do not use this kind of information
in our algorithm.

I. RESULTS ON UNIFIED DATA SETS
We report results for the recent evaluation setting proposed by
Raganato et al. [11] in Table 7. The results of ShotgunWSD
are compared against the same baselines considered in [11].
We note that ShotgunWSD 1.0 based on the extended Lesk
(59.09%) surpasses the baseline extended Lesk (48.70%)
by roughly 10%. When ShotgunWSD 1.0 employs sense
embeddings (62.74%), the results improve by more than
3%. However, both variants of ShotgunWSD 1.0 reach per-
formance levels below the state-of-the-art approaches [18],
[20]. ShotgunWSD 2.0 (63.84%) manages to surpass the
approach of Basile et al. [18], but it is still under the MCS
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TABLE 7. The F1 scores of ShotgunWSD 1.0 and ShotgunWSD 2.0 versus
the F1 scores of two state-of-the-art WSD approaches, on the unified data
sets. The results reported for ShotgunWSD 1.0 are obtained for windows
of n = 8 words and a majority vote on the top k = 15 configurations. The
results reported for ShotgunWSD 2.0 are obtained for windows of n = 6
words, a majority vote on the top k = 15 configurations and k-means
clustering with 250 clusters. The best F1 score is highlighted in bold.

baseline (65.20%). The only approach that surpasses the
MCS baseline, yet only by a slight margin, is Babelfy [20].

J. DISCUSSION
Considering the overall results, we can conclude that Shot-
gunWSD 2.0 attains generally better results (sometimes up to
2− 3%) than ShotgunWSD 1.0 based on sense embeddings,
which in turn, is better than ShotgunWSD 1.0 based on the
extended Lesk measure. On one of the data sets (SemEval
2007), all versions of ShotgunWSD yield better performance
than the MCS baseline. Since a the dominant sense of a word
will vary across domains and text genres, it is not a trivial task
to develop an NLP approach that determines the most com-
mon sense in a given domain. The domain-independent MCS
estimation approach proposed by Bhingardive et al. [21]
provides a considerable performance gap compared to the
MCS baseline, but more recent approaches [50] are able
to close the gap or even surpass the MCS baseline. More-
over, Bennett et al. [60] show that it is possible to produce
very accurate domain-neutral sense distributions reflecting
usage in modern English, which allows to build a reliable
domain-neutral MCS estimation. No matter how accurate
MCS estimation approaches are, MCS is still a poor approach
for assigning word senses, i.e. choosing the most frequent
sense is not equivalent to performing actual disambigua-
ton. Clearly, WSD methods should outperform the basic
MCS baseline to demonstrate their usefulness, but this is
not easy. For instance, in the recent SemEval 2015 WSD
task, the BabelNet First Sense [41], surpassed all unsu-
pervised [44], [45] and knowledge-based [23] approaches.
Therefore, some researchers in the WSD community [7]
consider important even slightly outperforming the MCS
baseline with an unsupervised method. In light of these
comments, we consider important the fact that Shotgun-
WSD 2.0 surpasses the MCS baseline on SemEval 2007 and
SemEval 2013. Furthermore, our algorithm compares favor-
ably to other state-of-the-art unsupervised [15], [19], [21],
[22], [43], [44] and knowledge-based [18], [23], [31], [42]
WSD methods.

Regarding the performance of our algorithm, an inter-
esting question that arises is how much does the assembly
phase help. We carried out a small experiment to provide

an answer to this question. We considered the ShotgunWSD
1.0 variant based on sense embeddings without changing its
parameters, and we removed the assembly phase completely.
Thus, the algorithm did no longer generate configurations of
length greater than 8, as the parameter n is set to 8. We have
evaluated this stub algorithm on SemEval 2007 and we have
obtained a lower F1 score (77.61%). We also performed a
similar experiment with a stub version of ShotgunWSD 2.0,
obtaining an F1 score of 78.27%. These results indicate that
the assembly phase in Algorithm 1 boosts the performance by
nearly 2− 3%.
It is perhaps interesting to note that we have considered

an approach to combine the two semantic relatedness
approaches independently used by ShotgunWSD 1.0, namely
the extended Lesk measure and sense embeddings, with the
goal of improving the accuracy. However, we did not observe
any improvements when fusing these two measures. For this
reason, we did not report any results of the combination in
the paper. We also tried GloVe word embeddings [61] instead
of word2vec [36], but the results were mixed (sometimes
better, sometimes worse) and without any significant
differences.

We performed paired McNemar’s statistical significance
tests [62], in order to find out if ShotgunWSD 2.0 is sig-
nificantly better than the two variants of ShotgunWSD 1.0.
The tests indicate that ShotgunWSD 2.0 attains significantly
better results on all data sets, with respect to ShotgunWSD
1.0 based on the extended Lesk. ShotgunWSD 2.0 also attains
significantly better results on three data sets (SemEval 2007,
Senseval-2 and SemEval 2015), compated to the Shotgun-
WSD 1.0 based on sense embeddings. The tests were per-
formed at a confidence level of 0.01. We therefore conclude
that the performance improvements brought by ShotgunWSD
2.0 over its previous version are significant in most cases.

V. CONCLUSION
In this paper, we have presented a new version (2.0) of a
recently introduced global WSD algorithm [25] inspired by
the Shotgun genome sequencing technique [26]. Compared
to other bio-inspired WSD methods [14], [15], [23], our
algorithm has less parameters. Furthermore, these parameters
can be intuitively tuned with respect to the WSD task. The
empirical results on six evaluation benchmarks indicate that
ShotgunWSD 2.0 can obtain better performance than Shot-
gunWSD 1.0 and other state-of-the-art unsupervised [15],
[19], [21], [22], [44] and knowledge-based [18], [23], [42]
WSDmethods. Furthermore, our algorithm outperformed the
strongMost Common Sense (MCS) baseline on two data sets.

In future work, we would like to apply our unsu-
pervised algorithm for less studied languages, in which
sense-annotated corpora are not available.
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