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ABSTRACT Technical-economic analyzation is critical to increasing a mine’s economic benefits and
saving mineral resources for its sustainable development. However, since the mining system has many
technical-economic indicators that are connected and that respond to each other, it is not easy to determine
mining production and operation performance when an indicator changes or when multiple indicators
change. Thus, the complicated system of operational metal mining cannot be easily solved in a general way.
In this paper, system dynamics (SD), an alternative approach that can qualitatively and quantitatively assess
mining production and operation from a system analysis perspective, is employed. Taking the Sanshandao
gold mine in China as the industrial research context, we built an SD model based on an integrated stock
and flow diagram, which is derived from the identification of technical-economic parameters and the system
conceptualization of causal loop diagrams, including four subsystems of geology, mining production, mineral
processing, and financial. After establishing the equations and testing the model based on historical data,
the SD model simulated with the PLE 6.3 software can be used as a decision support tool to calculate the
simulation results in many scenarios. Monte Carlo simulation is also introduced to consider uncertainties in
the assessment. In the future, development of the prototype SD model will continue, and it will be verified by
many more case studies to be a useful alternative tool for decision-making to improve the actual processes
and to support the sustainable development of metal mine production and operation.

INDEX TERMS Modeling, sustainable development, mining industry, operational level, and system
dynamics.

I. INTRODUCTION

Currently, mineral metal resources have become a vital mate-
rial basis for determining the development of a country’s
economy, science, technology, and national defense. Metals
are also a critical strategic resource for enhancing a country’s
comprehensive strength and safeguarding its national secu-
rity. However, because mineral resources are finite and non-
renewable, after years of exploitation and utilization, both the
quantity and quality of metal resources will decrease. Then,
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with the rapid expansion of the social economy, the con-
tradiction between the shortage of metal resources and the
needs of national economic development becomes increas-
ingly prominent. In such circumstances, studies on support-
ing sustainable development in operational metal mines to
improve the efficiency of production and operation and to
rationalize metal resource utilization are receiving more and
more attention.

As a part of such undertakings, the majority of existing
literature has mainly focused on the optimization of technical
and economic indicators during the industrial processes that
begin with geological resources and end with concentrates
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because indicators such as cut-off grade, head grade, produc-
tion rate, and production cost are considered to be critical
parameters that can be artificially adjusted to control the
production of mines, thus affecting the operational efficiency
of mining enterprises.

For instance, Azimi and Osanloo [1] established an opti-
mization model taking the maximum net present value as
the objective and the cut-off grade as the decision variable.
The calculation results show that this model would undoubt-
edly provide the ability to consider managerial and techni-
cal flexibilities and incorporate more real mining conditions
to improve the goal of mine projects. Additionally, similar
research, including studies by Rahimi and Ghasemzadeh [2],
Ahmadi and Shahabi [3], Rahimi et al. [4], has focused on
optimizing the cut-off grade strategy. Taking Lane’s algo-
rithm as a basis, Asad and Topal [5] demonstrated the com-
bined impact of introducing economic parameters, escalation
and stockpiling options into the cut-off grade optimization
model. Consistent with the research of Asad and Topal [5],
Narrei and Osanloo [6] provided a model for the determina-
tion of cut-off grades in open-pit mines. In addition to the
costs associated with the management and reclamation of
waste dumps, tailing dams, and pits, possible incomes from
reclamation are also considered in this model. Regarding
environmental and technical considerations and operating
costs, Rahimi and Akbari [7] proposed a method with a
higher efficiency in optimizing the cut-off grades of pro-
cessing methods using the Karush-Kuhn-Tucker theorem.
In other work, He et al. [8] set up an optimization model with
the objective function of economic benefit, two constraints
consisting of the resource utilization rate and the output of
concentrate, along with head grade and dressing grade as
the decision variables. The case study validates that this
method can effectively increase the resource utilization rate
and concentrate volume and significantly increase the net
present value of mine enterprises. Rahimi et al. [9] proposed
a logical mathematical algorithm that considers important
designing parameters and the mining economy to provide
the maximum benefit by calculating the destination of ores.
Yu et al. [10] presented a nonlinear multi-objective program-
ming model for mineral processing production planning
to optimize five production indexes, including concentrate
grade, metal recovery, concentrate volume, concentration
ratio, and production cost. Wang et al. [11] proposed a data-
driven multi-objective optimization model to optimize the
concentrate grade and concentrate volume of the mineral
process.

As a whole, progress has been made in the optimization
of the technical and economic indicators of mine production
mentioned above, and some results have been achieved in
practice. However, it should be noted that the studies men-
tioned above mostly focus on a single or a few technical-
economic indicators, and seldom examine the whole mining
system.

In fact, for operational metal mines that consider concen-
trates as the final product, formulating the mining production
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and operating systems is quite a complicated process because
there exist numerous technical-economic indicators that can
be organized as a series of data collection, reflecting the
geological resource, ore quality, the efficiency of mining
and mineral processing, and the operation results. Simul-
taneously, these indicators are closely linked and mutually
restrained; any changes to one indicator will provoke a series
of unexpected reactions to the others, which in return gives
rise to a new situation to the whole system. Moreover, given
the uncertainties of geological resources, the ups and downs
of the market economy, and the progress of production tech-
nology, some key indicators should be flexible rather than
static to adjust and optimize the operation results in time.

The above characteristics of the complex system of mining
production and operation prevent most traditional methodolo-
gies, such as dynamic marginal analysis [12] and the fuzzy
comprehensive evaluation method [13], from comprehending
the system behavior well. Therefore, a holistic modeling
method from a system analysis perspective is required to
observe, analyze, and model the whole system, considering
complex feedback mechanisms among technical-economic
indicators of operational metal mines.

System dynamics (SD), as a powerful method to
implement systems thinking, is an appropriate method for
addressing this problem. SD is a computer-aided method
for modeling complex systems to understand the patterns
of behavior of different stages over time. More specifi-
cally, SD provides a holistic modeling method, because it
reduces a system to multiple small, individual pieces, which
enables the system to be investigated, and it considers causal
relationships in a dynamic, uncertain and multidimensional
manner [14]. Since the first reference to SD was made
by Forrester [15], SD has been employed in several areas.
Nassery et al. [16] built a system dynamics model for water
management in semiarid regions. Wen and Bai [17] con-
structed an system dynamics model for simulating the impact
of different strategies on the energy consumption and carbon
emissions of urban traffic. Fitch et al. [18] presented a sys-
tem dynamics valuation model to promote public initiatives,
encourage private participation and enhance the economic
sustainability of public-private partnerships.

Within the field of mining engineering, Cooke [19] estab-
lished an SD model to analyze mining safety management
given the complicated relationship between various factors.
Lagnika et al. [20] proposed an integration of environmental
management tools based on system dynamic simulations for
mining. Sontamino and Drebenstedt [21] developed an SD
model of mining cost estimation by using equations and a
unit cost database from chapter 2 of the book “Open Pit
Mine Planning and Design” by Hustrulid and Kuchta [22].
Subsequently, Sontamino and Drebenstedt [23] developed a
prototype dynamic decision-making model of mining feasi-
bility on investment.

However, apart from some of the papers referred to above
and to the best of our knowledge, the application of SD in
mining enterprises is limited, as is the development of holistic
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FIGURE 1. Research framework.

SD models for technical-economic analyzation in operational
metal mines including the entire geological, mining, and
mineral processing processes. As a response to the knowledge
gaps identified in the literature, the objectives of this paper are
to develop a deeper and broader technical-economic analyza-
tion tool from a systems analysis perspective and to provide
an in-depth sustainability assessment for mining production
and operation through system dynamics modeling.

The Sanshandao gold mine is one of the most representa-
tive underground gold mines in China. It is characterized by
a large size, simple shape, stable attitude, considerable conti-
nuity of mineralization, and richness in low-grade resources.
Also, it consists of all the production processes including
mining, concentrating, and refining. After over 30 years of
extraction, the high-grade ores have almost been depleted.
Faced with an ever-decreasing ore grade, it is essential to
seek sustainable ways to utilize low-grade metal resources
through technical-economic systems analysis and to ensure
both technical feasibility and economic justification. This
is substantially consistent with the macro objectives of this
paper.

Therefore, the Sanshandao gold mine in China is used
as the industrial context in this paper. After a systematic
analysis of the feedback mechanisms in mining production
and operation systems and its influencing technical-economic
indicators, the SD model adapted to the actual production
and operation outputs generated from the Sanshandao gold
mine is constructed to analyze system behaviors quantita-
tively. Additionally, Monte Carlo simulation was introduced
to analyze probabilities and effectively deal with uncertain-
ties. This research is a vital attempt toward systematically
and comprehensively balancing technical performance and
economic performance during the sustainable development of
operational metal mines. The modeling methods and research
ideas proposed in this paper can provide a reference for
decision-making to improve actual processes and to support
the sustainable development of operational metal mines.

Il. RESEARCH FRAMEWORK
System dynamics is used as the primary modeling methodol-
ogy in this study. Generally, system dynamics modeling takes
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on two complementary forms: qualitative modeling, with the
end goal of developing causal loop diagrams (CLDs) that
represent the interactions of dynamic factors and improve
the conceptual system understanding, and quantitative mod-
eling, with the end goal of developing stock-and-flow dia-
grams (SFDs) that simulate the dynamic effects of factors and
their interactions [24]. Within an SFD, a stock characterizes
the state of any system variable at a specific time, and a flow is
responsible for causing the stock to change via inflows or out-
flows over time. In many cases, qualitative modeling, serves
as a conceptual framework of the interactions of recognized
parameters and is used to inform subsequent quantitative
modeling and simulations with quantitative modeling tools
such as STELLA or VENSIM [25], [26].

Overall, an SFD can be considered as an algebraic repre-
sentation of a CLD. Then, to develop a quantitative SFD from
a qualitative CLD, it is vital to numerically define each of
the model parameters through formulas or direct numerical
values. Because the quantitative relationships among various
technical-economic indicators might be different due to the
distinctive features of different operational metal mines, such
as the geological conditions, mining, and mineral processing
methods, it is necessary to extract adaptive equations from
historical production data of the real case.

Figure 1 presents the main steps of this study based on the
SD methodology. At the first step, the main problem is artic-
ulated. Then, technical-economic parameters are selected
and described. Third, a conceptual framework is clarified
through the CLDs based on recognized variables. Fourth,
actual historical data for the system’s variables are gathered
from the real case of the Sanshandao gold mine, and formulas
between any pair of variables are set to explain the SFDs.
After modeling the CLDs and SFDs, the system is simulated
for a reasonable period, considering the initial baseline values
of the past data in step five. Then, the simulation results are
validated to determine if the SD model represents the actual
behavior of the system by comparing the output with past
data. Finally, once the SD model is validated, simulation runs
of scenario analysis and Monte Carlo sensitivity analysis can
be made to analyze and forecast system behavior. Moreover,
this method can provide scientific guidance for the sustain-
able development of other operational metal mines.
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To simulate the SD model, computer support is also
needed. This paper built the SD model using the Vensim PLE
6.3 software, which is a simulation software for improving
the performance of real systems. Vensim enables the causal
tracing of structure and behavior and provides a user-friendly
interactive interface with wide-ranging mathematical func-
tions. Further, it has Monte Carlo sensitivity, optimization,
and subscripting capabilities [27].

IIl. SYSTEM DYNAMICS MODEL DEVELOPMENT

A. PARAMETERS IDENTIFICATION

Before the construction of the CLDs, some key parameters
that could affect the mining production and operation sys-
tems are summarized in the form of the expert investigation
method, as shown in Table 4 in Appendix A, along with their
symbols, units, categories, and types. The categories of these
parameters, including geology, mining production, mineral
processing, and financial, are chosen to enable a concise
description of the processes in mining production and oper-
ation. The types of these parameters are classified as levels,
rates, auxiliaries, and constants to prepare for the quantitative
explanation of the influence mechanisms among these param-
eters. When the parameters only change over time and their
values depend on other variables, they are classified as levels;
when changes of the parameters cause direct changes to the
levels, the parameters are classified as rates; auxiliaries are
the parameters that determine the rate values over time; and
constants are the parameters that change minimally during
simulations. The experts who participated in this task have a
professional background, a wealth of experience, and a good
understanding of production and operation management in
metal mines, which ensures that the parameters used in the
SD model are scientific.

B. SYSTEM CONCEPTUALIZATION

System conceptualization can be explained with the CLDs
and a brief description of each causal loop, which gives a
graphical explanation of the system structure and its dynamic
complexity. After identification of the parameters used in
modeling, the blueprint of the SD model for technical-
economic analysis supporting sustainable development in
operational metal mines is presented in Figure 2, including
significant subsystems and associated indicators among each
subsystem.

The CLDs of four subsystems, as shown in Figure 3, are
then used to analyze the causal loop relationships among the
parameters in more detail. In each CLD, a positive link means
that two variables change in the same direction, as denoted
with a “4”’; and a negative link means that two variables
change in the opposite direction, as denoted with a “-”.
Further, a positive reinforcement loop, labeled by € , has an
even number of negative links, whereas a negative feedback
loop, labeled by © , has an uneven number of negative links.

A brief description of each subsystem and the associated
casual loops is provided below.
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> Geology subsystem

Geological resources act as a “‘raw-material provider” in
mining production and directly affects the survival and devel-
opment of mining enterprises. Therefore, the parameters in
the geology subsystem, such as the average grade, mineral
reserves and mineable reserves, should reflect geological
resources. Figure 3(a) presents the CLD of the geology sub-
system. Although the most salient feature of an orebody lies
in its inherent natural characteristics, there still exists some
parametric uncertainty due to the option of the cut-off grade,
as seen in Figure 3(a). For example, a lower cut-off grade
will extend the ore boundary and increase mineral reserves,
subsequently increasing the mineable reserves, mining rate
and contained metal tonnage. Conversely, the average grade
will as the cut-off grade decreases, leading to reduction of the
contained metal tonnage.

>Mining production subsystem

Losses and dilution are essential parameters to reflect
the utilization of geological resources. Traditional technical-
economic analysis often deems them as constants, which
ignores the managerial flexibilities of geological resources.
Therefore, in this paper, the influence of the cut-off grade
on losses and dilution is incorporated to develop the CLD of
the mining production subsystem. As shown in Figure 3(b),
decreasing of the cut-off grade will improve the continuity of
the orebody, which makes it feasible to improve the mining
production strategy, reduce losses and dilution and increase
the mineral reserves, mineable reserves and mining rate.
Additionally, the mining rate is also constrained by the min-
ing capacity.

The mined ore grade is a complicated situation. On the one
hand, the average grade of an ore will decline as the cut-off
grade decreases, which in turn will lead to a decline in the
mined ore grade. On the other hand, an improved continuity
of the orebody followed by the lower cut-off grade will reduce
waste mixing and dilution as mentioned, and the mined ore
grade will be improved.

>Mineral processing subsystem

Figure 3(c) depicts the relationships among the parameters
in the mineral processing subsystem. It is well documented
that processing recovery is positively related to head grade.
Considering the positive links between the cut-off grade and
the mined ore grade and the assumption that head grade is
equal to mined ore grade, a higher cut-off grade will cause
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FIGURE 3. CLDs of four subsystems: (a) geology; (b) mining production; (c) mineral processing; and (d) financial.

an increase in processing recovery, which will further add
the amounts of metal yields because it is the production of
head grade, recovery, and throughput. Again, the increase of
metal yields will promote the utilization of low-grade ores
according to the detailed analysis of the following financial
subsystem. Therefore, a negative feedback loop can be found
in Figure 3(c).

>Financial subsystem

The three subsystems mentioned above are integrated into
the financial subsystem, as shown in Figure 3(d). This subsys-
tem provides a comprehensive description of the performance
and the combinatorial complexity of the causal interrela-
tionships in mining production and operation systems. What
can be found in Figure 3(d), there are two main positive
reinforcement loops and six negative feedback loops, which
are simplified as follows:

(1) Cut-off grade — (4) Unit mining cost — (+)
Expenditure— (-) Net income— (-) Cut-off grade (€D);

(2) Cut-off grade — (+) Unit mining cost — (+)
Expenditure— (+) Cost per metal— (+) Cut-off grade (€);

(3) Cut-off grade —(-) Unit processing cost — (+)
Expenditure— (-) Net income— (-) Cut-off grade (8);

(4) Cut-off grade —(-) Unit processing cost — (+)
Expenditure— (4) Cost per metal— (+4) Cut-off grade (©);

(5) Cut-off grade —(-) Mining rate — (+) Fixed costs—
(+) Expenditure— (-) Net income— (-) Cut-off grade (©);

(6) Cut-off grade—(-) Mining rate— (4) Fixed costs—
(+) Expenditure— (+) Cost per metal— (+) Cut-off grade
(©);
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(7) Cut-off grade — (+) Metal yields — (+) Revenue—
(4+) Net income— (-) Cut-off grade (8);

(8) Cut-off grade — (+) Metal yields —(-) Cost per
metal— (4) Cut-off grade (©).

C. QUANTITATIVE SYSTEM MODELING
Although the CLDs can describe the basic structure of feed-
back relationships, they cannot distinguish the differences
among various parameters. Therefore, taking the CLDs of the
four subsystems presented and explained above as a structural
guide, an SFD, as shown in Figure 4, is constructed with the
Vensim software to illustrate the accumulated reactions for
different variables. Due to the size and complexity of this
SFD, we have demarcated the model into two subsystems
called production and operation management, respectively.

As SFD models are inherently quantitative, it was nec-
essary to numerically define each of the model parameters
through formulas or direct numerical values as following.
It should be explicitly stated that all these parameters are
quantified based on data generated from the actual production
of the Sanshandao gold mine.

>Equations in the production subsystem

0 = —1566.987g% +2329.584g +2616.236 (1)

gk = 0.682g% — 1.12g + 2.462 )

A specific cut-off grade can yield the mineral reserves
and average grade. This process can be easily implemented

and regressed according to reporting data generated from
the block model. Since 2010, the Sanshandao gold mine has
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management.

established a refined block model using 3D mining software,
and this block model has played a useful role in guiding actual
production. Therefore, Equations 1-2 are directly employed
according to the reporting data of the block model used in the
Sanshandao gold mine.

04=INTEG(—M, Q x (1 — ¢ 0.01)/(1 — p x 0.01)) (3)

In Equation 3, the parameter of mineable reserves serves
as one of the level variables. The mineral reserves, losses,
and dilution can determine its initial value; if there is no
new exploration project, the mineable reserves will decrease
continuously at the speed of the mining rate until the reserves
are depleted.

M = Opn “4)
gm = gk X (1 — p x 0.01) (5
¢ = 1.669g2 + 0.682g,, + 1.29 (6)

Equation 6 is a regression equation (R> = 0.784) based
on monthly data (2014-2016) generated from the actual pro-
duction of the Sanshandao gold mine, which explains the
mathematical relationship between the mined ore grade and
losses.

gh = 8gm =g x (1 —p x0.01) 7
H = IF THEN ELSE (M > Qy, 05, M) (8)

The relationship between the head grade and processing
recovery is defined by regression analysis (R> = 0.931),
as shown in Equation 9, based on monthly data (2014-2016)
generated from the actual production of the Sanshandao gold
mine.

= —1.032¢7 +4.976g), + 88.483 9)

>Equations in the operation management subsystem

Cp = 2.458 x e!:733%8m (10)
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The variable of unit mining cost is estimated by
Equation 10, which is resolved by a fitting analysis for the
dates from 2015 to 2016, and the correlation (R2) is 0.752.

C=MxCy+HxCy+F (11
G:ghx10_3xerhxr5 (12)
R=GxP/10 (13)
N = INTEG(R—C,0) (14)
=C/G (15)
Co=C/H (16)

As mentioned in 3.2, an increase in metal yields will give
rise to revenue and net income. Whereas, the net income
and revenue are critically dependent on the metal commodity
price in the context of a relatively stable production capacity
in a working mine. Then, correlation and regression analysis
are performed between the commodity metal price and the
cut-off grade. Equation 17 shows the regression model, and
the R? is 0.758.

g =9.4961 x ¢ 000B8IxP 4 (35 (17)

Additionally, the constant values of the variables in the
SD model, as summarized in Table 4 in Appendix A, are
listed in Table 1. It can be seen that the dilution and unit
processing cost change to be constant values although they
are theoretically influenced by the cut-off grade because after
statistical analysis of the monthly data (2014-2016) generated
from the actual production of the Sanshandao gold mine, both
dilution and the unit processing cost have always fluctuated
at 4.45% and 54.03 ¥/t, respectively.

D. MODEL VALIDATION

Before one can analyze or use the results of a simulation
model, it should be verified and validated. As Barlas [28]
suggested, the ultimate goal in system dynamics model val-
idation is to establish the validity of the structure of the
model. The accuracy with which a model can reproduce real
behavior is also evaluated, but this is meaningful only if
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FIGURE 5. Comparisons of the SD model’s outputs and reference modes: (a) Metal yields, (b) Cost per ore.

TABLE 1. Initial values of the relevant technical-economic variables of
the Sanshandao gold mine.

Variables Symbols Units Value
Mining capacity On 10%*/month 34
Mineral processing capacity O 10*/month 34
Dilution p % 4.40
Unit processing cost Cp ¥/t 54.03
Refining recovery 7 % 97.60
Fixed costs F 10¥/month ~ 5712.91

we already have sufficient confidence in the structure of the
model. Therefore, two types of model validation methods are
used in this paper to validate the developed model, namely,
structure testing and behavior testing.

> Structure testing

To verify the validity of the model structure, the model
is validated using a parameter confirmation test, a structure
verification test, and a dimensional consistency test. For the
parameter confirmation test and the structure verification test,
the parameters included in the model and the structure of all
cause-and-effect chains of the CLDs in Figure 3 are based on
expert opinions and a comprehensive analysis of empirical
data, respectively. While for the dimensional consistency test,
the model is verified using the Vensim software because it has
a function to automatically verify the dimensions after defin-
ing the measurement units of all parameters. To summarize,
the structure of the model developed in this paper is logical
and closely represents the actual systems in operational metal
mines.

>Behavior testing

As the core validation test, a proper behavioral validation,
that is, a behavioral reproduction test for a reference mode
with a thorough statistical analysis, is used here to prove that
the model’s behavior is statistically correct. In this validation
test, monthly metal yields and the cost per ore of the Sanshan-
dao gold mine during 2016 are utilized as reference modes to
test the capability of the SD model to precisely simulate the
reality of mining production and operation. Simultaneously,
the commodity gold price acquired from the SHANGHAI
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TABLE 2. Commodity gold price (*¥/g) fluctuations in 2016.

Month Commodity price Month Commodity price
1 236.31 7 285.75
2 256.72 8 282.63
3 256.1 9 284.79
4 255.05 10 278.81
5 256.96 11 267.58
6 281.72 12 264.34

GOLD EXCHANGE is regarded as the initial input data and
shown in Table 2.

Simulate the presented model in discrete time with a
one-month time step, and the SD model’s outputs of metal
yields and cost per ore are compared with the reference
modes.

As seen in Figure 5, there is good agreement between the
simulation data and the actual cost per ore, and there are some
differences between the simulation data and actual metal
yields. Since there are many ways to statistically validate the
significance of any differences between two datasets. Refer-
ring to Qudrat-Ullah and Seong [29], we choose the R-square
(R?) and the root mean square percentage error (RMSPE) as
statistical validity indicators because they have more signifi-
cant advantages in reliability, sensitivity, and other protection
than the others. With regard to metal yields, the values of R?
and RMSPE are 0.94 and 5.96%, respectively, whereas the
values of R? and RMSPE are 0.95 and 5.07%, respectively,
for the cost per ore. Overall, it can be concluded that there is
remarkable consistency between the model simulations and
the actual situation for the SD model presented in this paper.

IV. MODEL SIMULATION AND ANALYSIS

An application of the proposed SD model is simulated in
this section. The objective of this part is to understand how
the dynamics of concern are generated in the production and
operation of the Sanshandao gold mine and to then search
for policies to support the sustainable development of the
mine. Scenario analysis and stochastic analysis are used.
Considering that the cut-off grade and the throughput are
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FIGURE 6. Simulation results of some key indicators under scenarios of
different cut-off grades.

the key parameters affecting the performance of production
and operation in an operational mine without considering
market risk factors, there are two main types of scenarios
in the scenario analysis. One type includes scenarios of dif-
ferent cut-off grades, and the other type includes scenarios
of different throughputs. In addition, because the commodity
gold price is the critical market factor affecting the economic
benefits of a mine, stochastic analysis based on Monte Carlo
simulation is also incorporated to clarify the uncertainty of
the commodity gold price and its effects on the performance
of mining production and operation. It is worth mentioning
that simulation experiments need to be limited, and in order
to isolate the consequences from the applied strategy, only
a few parameters were changed while the other parameters
were not manipulated.

A. SCENARIO ANALYSIS
>Simulation results and analysis under scenarios of different
cut-off grades

At present, the commodity gold price is nearly 260%¥ /g.
If the Sanshandao gold mine continues to operate on the scale
of 34 10*t per month, the simulation results under scenarios
of different cut-off grades are exported by the proposed SD
model. Some key indicators, such as the mined ore grade,
metal yields, expenditure, and net income, which demonstrate
the performance of mining production and operation, are
selected and shown in Figure 6.

Three observations can be made from Figure 6:

(a) Overall, the mined ore grade, metal yields and expen-
ditures will increase as the cut-off grade increases, which is
consistent with the description of the CLDs in the system con-
ceptualization. Therefore, in the case of a constant production
scale, when the company needs to increase metal yields in
order to achieve production goal, the cut-off grade needs to
be increased correspondingly.

(b) There is a complicated development trend for net
income along with the increase of the cut-off grade; namely,
it will reach a peak value of 865.048 million yuan when
the cut-off grade is equal to 1.61g/t, and then gradually
decline. That is because net income is the difference between
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FIGURE 7. Simulation results of some key indicators under scenarios of
different throughputs.

revenue and expenditure. In the case of constant commod-
ity gold prices, revenue will also increase as the cut-off
grade increases, considering the positive relationship between
metal yields and the cut-off grade. Then, the net income will
increase when the rate of revenue increase is larger than the
rate of expenditure increase, and conversely, it will decrease.
Based on the above considerations and under current market
conditions, it estimated that when the cut-off grade is adjusted
to 1.61g/t, Sanshandao gold mine will obtain a yearly maxi-
mum net income of 865.048 million yuan.

(c) According to the actual investigation, the current pro-
duction and operation target of the Sanshandao gold mine is
8300kg of metal yields, with an annual profit of 7.68 billion
yuan. Thus, under the condition of guaranteeing the real-
ization of production and operation target, when the cut-off
grade is set to 1.50g/t, Sanshandao gold mine can better
realize the effective use of resources and support the sustain-
able development compared with the optimum cut-off grade
mentioned in (b).

>Simulation results and analysis under scenarios of dif-
ferent throughputs

In the case of a relatively constant commodity gold price,
mining enterprises need enough metal yields to ensure higher
profits. However, apart from adjusting the cut-off grade strat-
egy, the throughput serves as another key variable to raise
metal yields. Moreover, with the continuous progress of tech-
nology, the throughput can be increased to a certain extent
under the existing production layout. According to the actual
investigation, the throughput of the Sanshandao gold mine
can be increased up to 58x 10*t per month. Simulate the
proposed SD model with a commodity gold price of 260¥/g
and an optimum cut-off grade of 1.61g/t, as derived from
the simulation results under scenarios of different cut-off
grades, Figure 7 presents the simulation results of the critical
indicators and illustrate mining production and operating
performance under scenarios of different throughputs.

From Figure 7, we can see that with the expansion of
throughput, metal yields and the net income will gradually
increase, whereas the cost per metal will correspondingly
decrease. Therefore, to improve economic benefits, it is of
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TABLE 3. Monte Carlo simulation of the commodity metal price and the corresponding variation ranges of the simulated results.

Variation ranges of

Variation ranges of simulated results

Group commodity metal price (¥/g) Metal yields (kg) Net income (10° ¥) Frequency
1 235-240 9387.72-9135.93 503.91-578.79 10.87%
2 240-245 9135.93-8907.88 578.79-639.91 10.20%
3 245-250 8907.88-8701.74 639.91-691.01 11.80%
4 250-255 8701.74-8515.77 691.01-734.84 9.13%
5 255-260 8515.77-8348.34 734.84-773.41 9.27%
6 260-265 8348.34-8197.94 773.41-808.23 10.00%
7 265-270 8197.94-8063.13 808.23-840.42 10.47%
8 270-275 8063.13-7942.59 840.42-870.83 10.33%
9 275-280 7942.59-7835.10 870.83-900.09 9.20%
10 280-285 7835.10-7739.51 900.09-928.69 8.73%

great significance to realize economies of scale by enlarging
the production scale. In addition, since simulation results
under scenarios of different throughputs, as seen in Figure 7,
have far exceeded the production and operation target men-
tioned above, it is possible for the Sanshandao gold mine to
enlarge its throughput to exploit and utilize lower grade min-
eral resources and, thus, to improve the efficiency of resource
utilization and to support sustainable development under the
premise of guaranteeing the realization of the production and
operation target.

B. STOCHASTIC ANALYSIS

The commodity metal price is also a critical parameter that
affects technical-economic analyzation in the Sanshandao
gold mine. It is necessary to analyze the variation ranges of
the simulated results of the system to determine the effects
of the commodity metal price. Since it is also influenced
by factors such as supply and demand, monetary policy,
and inflation outside the mining production and operation
system described in this paper, a Monte Carlo simulation is
conducted to study how the mining production and operation
performance is affected by the uncertainty of the commodity
metal price. We randomly generate 1500 inputs of individ-
ual commodity metal prices as their possible potential val-
ues changed from 235%¥/g to 285%/g for a set throughput
of 34 10*t per month. The results obtained from the stochas-
tic analysis, as shown in Table 3, show that an increase in
the commodity metal price will lead to a reduction of metal
yields and a growth of net income, which is consistent with
the description of the CLDs in the system conceptualization.
Moreover, the expectation of metal yields and the corre-
sponding net income are nearly 8427.45kg and 754.05 mil-
lion yuan, respectively. That is, when the commodity metal
price reaches approximately 255-260%/g, the Sanshandao
gold mine will achieve the operating goal under the current
production strategy. If the commodity metal price rises or
falls, the production strategy of cut-off grade and throughput
should be adjusted accordingly based on an analyzation of
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the above simulated scenarios to achieve the production and
operation target of Sanshandao gold mine.

V. CONCLUSION

In this article, we have introduced an system dynamics model
for technical-economic analysis of operational metal mines.
Taking the Sanshandao gold mine in China as an illustrative
example, an SD model that is in line with the actual produc-
tion of the mine is built, including qualitative modeling of
the CLDs and quantitative modeling of the SFDs. The CLDs,
which consist of four subsystems of geology, mining produc-
tion, mineral processing and financial, can be used to analyze
the causal relationships between the identified parameters.
The SFDs are integrated based on four subsystems of the
CLD, and their mathematical equations are excavated from
historical data generated from the actual production of the
Sanshandao gold mine. After the SD model is developed, it is
validated with the actual trends of metal yields and cost per
ore observed in 2016. The R? and RMSPE for metal yields are
0.94 and 5.96%, respectively, whereas the R? and RMSPE for
the cost per ore are 0.95 and 5.07% respectively, illustrating
the validation of the proposed model.

The focus of the paper is to show how the SD model
can be used for decision-making to achieve the sustainable
development of a mine while ensuring economic benefits.
The modeling methods and research ideas proposed in this
paper can provide a reference for decision-making to improve
actual processes and to support the sustainable develop-
ment of operational metal mines. The practical use of the
SD model was illustrated with simulations under different
scenarios. The scenario analysis showed the effects of the
cut-off grade and throughput on mining production and oper-
ation performance. In addition, the Monte Carlo simulation
makes dynamic stochastic assessment possible, clarifying the
uncertainty of the commodity gold price and its effects on
mining production and operation performance. Thus, pro-
duction strategies, including the determination of the cut-off
grade and throughput, can be formulated according to the
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TABLE 4. ldentification of key model parameters.

Symbols Parameters Units Categories Types
g Cut-off grade g/t Auxiliaries
pof? Average grade g/t Auxiliaries
(0] Mineral reserves 10% Geology Auxiliaries
Qu Minable reserves 10% Levels
K Contained metal tonnage Auxiliaries
Losses % Auxiliaries
P Dilution % Auxiliaries
Sn Mined ore grade g/t Mining production Auxiliaries
M Mining Rate 10% Rates
On Mining Capacity 10% Constants
2 Head grade g/t Auxiliaries
H Throughput 10% Auxiliaries
O Mineral processing capacity 10% Constants
Mineral processing
) Processing recovery % Auxiliaries
I Refining recovery % Constants
Metal yields Kg Auxiliaries
Cn Unit mining cost ¥/t Auxiliaries
Cy Unit processing cost Y/t Auxiliaries
F Fixed costs 10%¥ Constants
C Expenditure 10%¥ Rates
R Revenue 10%¥ Financial Rates
P Commodity metal price ¥/g Auxiliaries
N Net income 10%¥ Levels
C, Cost per metal ¥/t Auxiliaries
C, Cost per ore ¥/t Auxiliaries
simulation results. To summarize, our approach is useful REFERENCES

for improving the accuracy of technical-economic analysis
for operational metal mines and enabling decision-makers to
make more scientific production decisions.

Despite the value of our method, it has several limita-
tions. On the one hand, the quantitative relationships among
the technical-economic indicators might be different in dif-
ferent mining projects. In this case, the equations of the
SD model should be carefully adapted. On the other hand,
the uncertainty of geological resources considering prospect-
ing projects is not discussed in this paper. To address this
issue, we require an appropriate optimization model and
a more complicated SD model, which are areas for future
research.
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