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ABSTRACT To get better control performance in motor control, more and more researches tend to apply
non-linear control laws in the field of motor control. However, most conventional non-linear control theory
is based on explicit model of controlled object and often resulting in complexity. Besides, the control
parameters tuning is mainly aiming at stability of the system. No valid direct performance-oriented non-
linear control theory has been proposed. Facing the limitations, this paper presents a direct motor position
control in an implicit data-driven manner. Unlike conventional non-linear motor controls that are based on
explicit models and with stability-based parameters tuning, this study gives performance-oriented non-linear
control by mastering non-linear discrete optimal control law in an implicit data-learning manner. Firstly,
optimal data of position tracking problem is obtained by solving optimization problem. Secondly, the implicit
discrete optimal control law hidden in data is learned by a BP neural network. Finally, the learned control law
is implemented in real-time control to reproduce optimal control performance. Simulation and experiment
results validated the feasibility of the data-driven controller, which could be helpful for performance-oriented
non-linear control designs. The merits and further improvements are also discussed.

INDEX TERMS Position control, implicit discrete optimal control, artificial neural network, motor, data
learning.

I. INTRODUCTION
Conventional motor control designs are based on explicit
models or relations. For example, the commonly used PID
three-loop position control structure in engineering is based
on frequency domain model. For other complex control
strategies, such as adaptive control, recursive control, back-
stepping control, sliding mode control, H-infinity control,
model reference control, etc. [1]–[8], the explicit model-
based analysis is also indispensable. It is often supposed that
non-linear control is able to achieve better performance than
linear control. However, the non-linear control designs are
often based on Lyapunov stability theory that aims at stability
or stability-oriented control parameter tuning, not directly
oriented to performance. In recent years, model reference
control has drawn a lot of attentions, and it is not dependent
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on Lyapunov theory, but the finite enumeration and relative
optimum selection in model reference control make it quite
computation-demanding. Facing the bottlenecks, the authors
wonder if there is an absolute optimal non-linear control law,
which can be implicitly expressed and mastered to get better
position control performance.

Data-driven control is one kind of model-free control origi-
nating from computer science. It is designed only by the input
and output data and has no relation with structural informa-
tion [9]. Literature [10] gives a comprehensive description of
model-free adaptive control (MFAC) including the theoretical
analysis of the bounded-input bounded-output stability. Data-
driven control can be used to tune controller parameters or to
perform system identification, as well as to directly approx-
imate the control signal itself [11]–[13]. Two common data-
driven control methods in motor control field are the PID type
control technique based on the classical PID control, and the
applications of artificial neural network technique in adaptive
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control [14]. Also the data-driven control can be combined
with other control methods. In [15], a data-driven active
disturbance rejection control (ADRC) is combined with a
proportional-derivative Takagi-Sugeno Fuzzy (PDTSF) logic
controller. The control performance is validated in a tower
crane system.

With the development of software and hardware in recent
years, artificial neural network has regained attentions for sig-
nificantly improving the performance ofmany intelligent pro-
cessing tasks [16]–[24], such as image classification, speech
recognition, object detection, face recognition, semantic sep-
aration, machine translation, pedestrian detection, video anal-
ysis, as well as the game of Go.

The main advantage of neural network is that it is able to
approximate certain relationship without explicitly knowing
it, i.e. it can learn some hidden laws from the given data. This
kind of relations vary from how to drive a car to how to mimic
a simple non-linear relation.

In the field of motion control, neural network is not as hot
as in the other applications, and the existing implementations
can be mainly classified into two groups: tuning controller
gain or assisting controller output.

In the first group, neural network is used to tune controller
gain. In [25], a wavelet fuzzy neural network is used for
online parameter tuning of an integral-proportional speed
controller used in maximum-torque-per-ampere vector con-
trol of an interior permanent magnet synchronous motor. The
neural network increases or decreases the controller gain
to get a faster response during dynamic transients. In [26],
a fuzzy neural network is adopted to adjust the control gain of
sliding mode controller to meet the sliding mode condition.
In [27], a neural network is used to provide suitable gains
for PI controller according to detected operating condition.
In [28], a neural network is used to adjust the fuzzy controller
output scaling factor to improve dynamic characteristics of a
ultrasonic motor.

In the second group, neural network is used together with
other main controller to compensate total output. In [29],
a wavelet neural network is used in parallel to adjust the
H∞ controller output, in order to compensate the uncertainty
bound for H∞ control. In [30], B-Spline neural network is
used to approximate a nonlinear term containing position
reference and position error to improve main controller per-
formance. In [31], recurrent-fuzzy-neural-network is com-
bined with sliding mode controller for real-time adjustment
of uncertainty boundaries. In [32], a wavelet neural network
is used in parallel with a robust controller for rotor position
control of an induction servo motor. In [33], fuzzy neural
network is used with model reference control for position
control of a ultrasonic motor.

Besides using neural network with controllers, other
applications also include parameter estimation [34], fault
diagnostics [35], etc.

To sum up, in the literatures, the neural network has
not been directly used as a main controller for motor posi-
tion servo control, nor is it used for pursuing optimal

control performance. This paper explores the feasibility of
directly using an artificial neural network to fully realize
position control of a motor, while learning a discrete optimal
control law that is difficult to achieve. The used motor in this
study is a voice coil motor (VCM), which does not contain
ferromagnetic materials in the armature, and the motive force
is induced by conductors that carrying current in a magnetic
field [36]. The motion type involves linear, rotary or planar.
It is widely used in high-performance-demand servo applica-
tions such as semiconductor manufacturing, active vibration
reduction, precision machining, etc. The neural network is
used to learn a discrete optimal control law hidden in optimal
position tracking data.

Getting optimal performance in practice is very attrac-
tive as it is the ‘‘best’’ performance with limited control
resource in given conditions. Conventional theory of opti-
mal control was established for continuous system. When
applying continuous optimal control law in discrete/digital
control, the chattering problem is unavoidable. Various
improvements are performed, such as increasing sampling
frequency, using more smooth saturation function instead of
sign function, smoothing algorithm, combination with other
controllers, piecewise linearization etc. [37]–[39]. However,
these improvements are performed on continuous control
law. They can alleviate chattering but not completely elim-
inate chattering. Fuzzy controller is another non-linear con-
troller which is often used to get optimal performance.
Literature [40] uses a fuzzy controller in a two degree-
of freedom cross-coupling system and gets better control
performance than LQR controller. In [41], fuzzy controller
is applied together with model-free sliding mode in opti-
mization problem. Literature [42] develops an adaptive iter-
ative learning reliable control (AILRC) strategy which can
compensate input saturation and state delays without need
for precise system parameters. Some other intelligence con-
trol methods are also investigated such as particle swarm
optimization [43].

It is pointed out by Prof. Han Jingqing that the continuous
optimal control law (together with improvements on it) is not
optimal for discrete/digital control. Continuous laws cannot
reach the desired control reference with finite steps. However,
this point has not drawn much attention in literatures.
Prof. Han has proposed a discrete optimal control law for sec-
ond order cascade integral plant, namely ‘‘fhan’’, which is
successfully used in Active Disturbance Rejection Control
(ADRC) [44]. ADRC algorithm has been successfully used
in many applications and has also been packaged in micro-
controller chips by Texas Instrument and Freescale. Future
discussion on discrete optimal control law is provided in
Section VI of this paper. A discrete optimal control law
is more complicated than continuous optimal control law.
Besides, when taking into account of damping factors (such
as resistor, friction, viscosity), inner dynamic loops or high-
order features, an analytical discrete optimal control law can
be too difficult to obtain explicitly (also difficult for continu-
ous case).
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The optimal control law for motor position control is of
high order, in discrete time and with damping factors. Thus,
an analytical relation can hardly be obtained. Inspired by the
progress of artificial intelligence applications, numerically
obtaining the optimal control data and implicitly mastering
the hidden discrete optimal control law by a neural network
are proposed in this paper.

The rest of this paper is organized as follows: Section II
introduces the VCM model and the acquisition of optimal
position tracking data through optimization problem solving.
Neural network principles and its training with the obtained
optimal position tracking data are given in Section III.
Simulation and experiment results are given in Section IV and
Section V respectively. Discussions on control performance
and practical issue are provided in Section VI. Section VII
concludes this paper.

FIGURE 1. Overview of the proposed control algorithm.

II. PLANT DESCRIPTION AND OPTIMAL
DATA ACQUISITION
The proposed direct position control structure overview is
given in FIGURE. 1. Given the position tracking error, angu-
lar velocity and current, the trained artificial neural network
gives the output voltage u to drive the VCM. A Rotary VCM
(RVCM) is used for implementation in this paper.

Data is essential for neural network learning. In this study,
the optimal control position tracking data of various circum-
stances is obtained by numerically solving an optimization
problem. The required plantmodel and the optimization prob-
lem are given in this section.

A. MATHEMATICAL MODEL OF THE RVCM
The block diagram of RVCM is shown in FIGURE. 2 and the
state space model is presented in (1).

dθ
dt
= ω

dω
dt
=
kt
J
ia −

k
J
ω −

1
J
Tl

dia
dt
=

1
La
ua −

ke
La
ω −

Ra
La
ia

(1)

FIGURE 2. Block diagram of RVCM.

where θ is the position of the mover (rad); ω is the angu-
lar velocity (rad/s); ua, ia,Ra and La are respectively termi-
nal voltage (V), current (A), resistance (�) and the induc-
tance (H) of the VCM armature; ea is the Back Electromotive
Force (BEMF, V); ka is BEMF coefficient (V·s/rad); Te is
the electromagnetic torque (Nm); Tl is the load torque (Nm);
kt is the torque coefficient (Nm/A); j is the inertia of the
moving part (kg·m2); k is the viscosity damping coefficient
(Nm·s/rad). The main parameters of RVCM are presented
in TABLE 1.

TABLE 1. Main parameter of the RVCM.

B. OPTIMIZATION PROBLEM FORMATION AND SOLUTION
Optimal position tracking data is obtained by solving an
optimization problem. The optimization formulation must
consider both optimization objective and constraints.

The optimization objective is that the RVCM position x1
can be controlled to follow the given position reference x∗1 .
The objective is mathematically expressed by minimizing the
sum of squared error of position tracking, as in (2).

Minimize obj =
m∑
i=1

(
x1[i]− x∗1 [i]

)2 (2)

where obj is the objective value to be minimized in opti-
mization, whose value is used to express the position control
tracking quality; i is the discrete step index;m is themaximum
discrete step index.

Regarding constraints, the motor model should be firstly
considered. In order to form the optimization problem with
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less computations, the plant model in (1) is simplified as (3).
ẋ1 = x2
ẋ2 = k1x3 − k2x2 − k3Tl
ẋ3 = k4ua − k5x2 − k6x3

(3)

wherex1 = θ, x2 = ω, x3 = ia

k1 =
kt
J
, k2 =

k
J
, k3 =

1
J
, k4 =

1
La
, k5 =

ke
La
, k6 =

Ra
La
(4)

The discrete form of (3) is used as optimization problem
constraints, as given in (5).

x1[i] = x1[i− 1]+ hx2[i− 1]
x2[i] = x2[i− 1]+ h (k1x3[i− 1]− k2x2[i− 1])
x3[i] = x3[i− 1]
+h (k3ua[i− 1]− k4x2[i− 1]− k5x3[i− 1])

(5)

where h is the discrete sampling time step size.
Another constraint is the inverter output voltage. The

H-bridge inverter PWM chopping output is limited by the DC
voltage, expressed in (6).

−uDC < u[i] < uDC (6)

To sum-up, the overall optimization problem formulation is
given in (7), and the initial values of corresponding variables
are set to zero.

Minimize obj =
m∑
i=1

(
x1[i]− x∗1 [i]

)2

subject to



x1[i] = x1[i− 1]+ hx2[i− 1]
x2[i] = x2[i− 1]
+h (k1x3[i− 1]− k2x2[i− 1])
x3[i]=x3[i− 1]
+h (k3ua[i−1]−k4x2[i−1]−k5x3[i− 1])
−uDC ≤ ua[i] ≤ uDC
x1[0] = 0
x2[0] = 0
x3[0] = 0
ua[0] = 0

i = 1, 2, 3, ... (7)

Given specific external conditions for the above formula-
tion, i.e. the desired reference position trajectory x∗1 and load
torqueTl , the optimal position tracking control sequence of ua
together with the evolutions of x1, x2 and x3 can be obtained.
Noting that constraints in (7) eventually result in numerous

equations according to different values taken by index i,
the optimization problem size is huge. The optimization prob-
lem is formulated with C++ programming language and is
solved by a specific optimization solver.

C. OPTIMIZATION RESULT
After solving the optimization problem, the optimal position
tracking data is obtained, including θ , ω, ia, ua. The corre-
sponding discrete sampling frequency is set to 5 KHz. The
obtained optimal position tracking results for different step
size within 0.1∼0.3 rad are shown in FIGURE. 3.

FIGURE 3. Optimization results for different position tracking step size.

From the optimal position tracking results in FIGURE. 3,
it can be seen that the settling times is almost proportional
to the stepping size, which may be considered as granted.
However, when using error-driven PID controller, the relation
between settling time and stepping size could be different,
which is further discussed in Section VI.

FIGURE 4. Detailed optimization results for position tracking of 0.2rad
stepping.

FIGURE. 4 demonstrates a detailed evolution of all status
variables in one case of the optimal position tracking. It can
be seen that the optimal position tracking process includes
different phases of acceleration (0s∼0.005s), constant veloc-
ity (0.005s∼0.02s), deceleration (0.02s∼0.0225s), stabiliza-
tion (0.0225∼0.0265s). The stabilization phase is also very
important to reach steady state position with finite discrete
steps without oscillation. During the acceleration, constant
speed and deceleration process, it can be seen the limited 7V
control voltage is fully used, which shortens the response time
and makes the optimal relation quite non-linear.

III. NEURAL NETWORK PRINCIPLE AND ITS TRAINING
WITH OBTAINED OPTIMAL POSITION TRACKING DATA
The optimization results implicitly describe the optimal con-
trol law in the given conditions. Neural network is trained
by the obtained data to learn such optimal control law.
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The objective is to reproduce such optimal relation in real-
time control. In this paper, Back Propagation (BP) neural
network is chosen for position servo control of RVCM.

FIGURE 5. The structure of feedforward neural network.

A. BRIEF INTRODUCTION OF BP NEURAL NETWORK
BP neural network is a feedforward neural network with back
propagation (BP) learning algorithm. A basic structure is
given in FIGURE. 5. The network consists of input layer,
hidden layer, and output layer.Multiple hidden layers can also
be used.

Input layer specifies the input of the network. Hidden
layer and output layer process their corresponding input by
artificial neurons.

Each neuron performs a non-linear calculation with param-
eters of weight and threshold. Take the ith neuron in hidden
layer for example, the corresponding weight and threshold
are noted as wij and θi. As shown in the figure, j is input
variable index (j = 1, 2, . . . ,m), and i is the neuron index
(i = 1, 2, . . . q). The ith neuron calculation can be expressed
by (8) and (9).

neti =
m∑
j=1

wijxj + θi (8)

where neti is linear part of the neuron calculation, and the
non-linear feature of the neuron is expressed by (9).

yi = ϕ (neti) = ϕ

 m∑
j=1

wijxj + θi

 (9)

where yi is the output of the ith neuron, and ϕ is a
non-linear function called excitation function. The often
used excitation functions include S-shaped tangent function
(tansig), S-shaped logarithmic function (logsig), and a pure
linear function (purelin) as shown in FIGURE. 6.

The output layer performs similar neuron calculations, and
finally k th output ok in this example can be expressed as:

ok=ψ (netk)=ψ

 q∑
i=1

wkiϕ

 m∑
j=1

wijxj+θi

+ak
 (10)

where wki and ak are respectively weight and threshold of
neuron k in the output layer, and ψ is the excitation function.

FIGURE 6. Different excitation functions of a neuron. (a) Transig;
(b) Logsig; (c) Purelin.

B. NEURAL NETWORK CONFIGURATION AND TRAINING
In this study, the used BP network parameters are given
in Table 2.

TABLE 2. Neural network parameters.

The selection of the number of neurons in hidden layer is a
difficult point in the design of BP neural network. No specific
formula has been drawn, and it can only be tested specifically
for specific problems. After comparing the training effects of
different neuron numbers, the number of neurons in hidden
layer is selected as 12. In the configured network, the corre-
sponding weights and thresholds have to be adjusted by data
training using the obtained optimal data in Section II.

The data learning/training is where the so-called ‘‘back
propagation’’ plays its role. When the network output does
not match the training data, the error is returned to modify
the weights and thresholds of the network so that the error
gradient decreases. It is equivalent as solving an optimization
problem. The training can be easily performed with software
tools such as MATLAB. After training with the optimal data,
the Neural Network is ready to use for position control.

IV. SIMULATION
After being trained by the optimal position tracking data
obtained for stepping response, so far, we have already got the
neural network controller. In this section, the neural network
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will be put in the control scheme just like FIGURE 1, and
will be validated. The neural network is firstly tested for
simulation inMATLAB/Simulink. Themodel and parameters
of the voice coil motor we used shown in FIGURE 2 and
TABLE 1. The control frequency is set to 5kHz, which is
the same as optimization model step size. Different cases
using in-training and out-of-training conditions are tested.
The in-training condition refers to the cases that performed
with optimization and whose data is used for training neural
network. The out-of-training condition refers to the cases that
are not included in optimization and training.

FIGURE 7. Simulation results for in-training position tracking with
different position stepping size.

FIGURE 8. Simulation results for out-of-training position tracking with
different step size.

Firstly, five in-training cases with different step size are
tested. FIGURE. 7 shows the position tracking performance
for in-training condition. By comparing with the optimization
results in FIGURE. 3, it can be seen that the simulated results
are almost the same as optimization. Thus, the artificial neural
network can not only learn hidden relation from the optimal
data, but also reproduce such optimal control strategy for
instantaneous control.

Secondly, four out-of-training cases are also performed.
It can be seen that the responses are fast and without over-
shoot. The responses are consistent with in-training data. It is
validated that by only a part of data learning, the neural
network is able to master the hidden control law, which is
general to certain degree, so that it can be used for other
unlearned data.

FIGURE 9. Simulation results for out-of-training sinusoidal position
tracking.

FIGURE 10. Experiment rig.

Finally, to further validate the feasibility and adaptive of
the control. A out-of-training case of sinusoidal tracking is
also performed. The obtained results of position tracking
waveform and corresponding error are given in FIGURE. 9.
The position is able to track the reference. The maximum
error is less than 0.0008rad, which occurs during the position
tracking zero-crossing instant. The maximum error is less
than 1% of the peak position tracking amplitude. Thus, the
feasibility of data-trained artificial network is further vali-
dated. It is also proved that the proposed control strategy does
not need to learn all cases of position tracking, learning part
of the cases can master the general control law.

V. EXPERIMENTAL TESTS
According to the controller design in Section II and
Section III and the simulation results of Section IV, exper-
imental tests are carried out to evaluate the proposed data-
driven artificial neural network position control. During
experiment conditions, the non-ideal measurement, inverter
nonlinearity (such as PWM dead-time, voltage drop), model
uncertainty, etc. could have negative influence on the control
performance.

The experiment rig is shown in FIGURE. 10. The artificial
neural network is implemented with TI TMS320F28377S
controller. The algorithm execution time is 84µs in the
200MHz DSP. The code for the control algorithm is writ-
ten in C and compiled in the TI CCS environment. FPGA
implementation is also attractive for its great potential in
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FIGURE 11. Experiment result for 0.1rad step size.

neural network parallel computation. The encoder resolution
is 0.00628 rad. The position tracking signals are transformed
from controller data through a digital-to-analog circuit
using a 1MHz High Resolution PWM with a low-pass RC
filter.

FIGURE. 11 gives the performance of 0.1rad step size.
It can be seen that the response is smooth and without over-
shoot. The position tracking settling time is about 20ms,
which is longer than 11ms in the ideal case of simulation and
optimization. As aforementioned, during experiment, various
factors such as the model uncertainty, dead band, veloc-
ity calculation, measurement resolution, noise and filtering
could affect the experimental results. This slower response
is identified mainly caused by velocity calculation, which is
further discussed in the following section. Even with these
factors, the control performance is stable.

FIGURE 12. Experiment result for 0.3rad step size.

FIGURE. 12 gives the position tracking performance of
0.3rad step. The position tracking is also smooth and without
overshoot. The position settling time is about 40ms.

FIGURE. 13 gives a position tracking performance for
sinusoidal position tracking. The tracking position waveform
is quite sinusoidal, with a phase error about 2◦. As aforemen-
tioned, the neural network is only trained with step response.
The successful tracking of sinusoidal position demonstrates
that although the artificial network is trained with a small
amount of data, control-law therein is universal for other

FIGURE 13. Experiment result for sinusoidal position tracking.

control situations. This result further validated the feasibility
of using artificial neural network for direct position control.

VI. DISCUSSION
This section provides a further discussion on the proposed
direct position control by artificial neural network through
optimal data learning, including comparison with PID con-
troller, the reason for slower response in experiment, as well
as the comparison of continuous and discrete control law
(or the reason to use neural network).

A. COMPARISON WITH PID CONTROLLER
The proposed artificial neural network control is based on
the optimal data, in order to learn an optimal control law
that is difficult to obtain analytically. For the optimal con-
trol, the larger the position step size, the longer the position
tracking time. This response time relation with step size may
be taken for granted. However, it is not the exactly the case
for PID controller, which is discussed in detail as follows.

A PID controller can be configured to work in linear mode
(the output always between minimum and maximum output
limit, without saturation) or non-linear mode (the output
may take the value of minimum and maximum limit, with
saturation). In this application, the available control voltage
is limited by DC bus voltage. In linear mode, the controller
gain is selected as small value to ensure the output voltage
does not exceed the limit. In non-linear mode, the controller
is configured with an anti-windup/anti-saturation structure to
make full use of limited control voltage.

For the PID controller in linear mode, the output is purely
error driven. When the error is smaller, the output amplitude
is low and the changing rate is slower. As a result, in this case
one may observer that small step response takes much more
time than large step, or the response time for tracking different
reference is almost the same, as given by FIGURE. 14. As the
error is small when approaching steady state, the response
time takes about 1000ms.

In non-linear mode, the controller output is able to main-
tain the limit value during transients, and the limited output
is more efficiently used. So the response time is smaller,
as given by FIGURE. 15. Compared with linear mode,
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FIGURE 14. Position tracking with PID controller in linear mode.

FIGURE 15. Position tracking with PID controller in non-linear mode.

the 95% settling time is reduced from about 550ms to 100ms.
However, the saturation non-linearity is different for different
references or stepping sizes. So it can be seen that for 0.3rad
stepping (marked as step 3 in FIGURE. 15), the response
transient is with overshoot and the response curve is not
consistent with other response. For comparison, when using
the proposed artificial neural network to learn optimal control
law, the 95% settling time is less than 30ms.

B. VELOCITY CALCULATION INFLUENCE
The experimental settling time is slower than simulation,
the main reason is identified as velocity calculation. During
this control, the angular velocity is calculated through dis-
crete encoder recorded position value. One recorded position
trajectory data is shown in FIGURE. 16.

FIGURE 16. Recorded position tracking trajectory.

During the experiment test, the velocity is calculated
by direct calculation. With the discrete time sampling and
limited sensor resolution, the calculated velocity is not

FIGURE 17. Calculated angular velocity.

smooth and with oscillations, as shown by the green curve
in FIGURE. 17. This oscillation is not consistent as in the
velocity in ideal case of optimization and simulation, such
as the velocity shown in FIGURE. 4, which could affect
the judgment of acceleration and deceleration of the optimal
control law. Eventually this wrong judgment could slow the
step response, which is the main reason of slower response
in experimental tests. When implementing simple filtering,
velocity measurement delay and transient amplitude reduc-
tion could also be an issue. Future work should be carried out
to improve the velocity calculation.

Another effective yet direct way is to improve the position
sensor resolution. If further analyzing the position trajectory
in FIGURE. 16, it can be discovered that the position trajec-
tory span includes 159minimum position resolutions, and the
whole time span includes 150 sampling. Thus, at adjacent
sampling moments, the position increment is only 0, 1, 2,
3, or 4 times of minimum position resolution, which cause
the velocity calculation oscillation as shown in FIGURE. 17.
Increasing the position sensor resolution can efficiently solve
this velocity calculation issue.

C. CONTINUOUS VS DISCRETE OPTIMAL CONTROL LAW
This paper gives the approximation to obtain high order
discrete optimal control law by means of neural networks.
Why the discrete optimal control law is difficult to obtain
and the differences between continuous and discrete optimal
control laws are discussed in this part.

For simplicity, we will try to clarify this problem with
a second order cascade integral plant with limited control
signal u (|u| ≤ r), as expressed in (11).
If such a second order plant refers to a case of motor

position control, x1 can be considered as the position, x2 is
the velocity, the control signal u is a limited Force/Torque.{

ẋ1 = x2
ẋ2 = u, |u| ≤ r

(11)

If position x1 requires to converge to x∗1 , the velocity must
satisfy x2 = 0 at x = x∗1 . Conventional continuous optimal
control law with minimum time can be obtained as:

u = −rsign(x1 − x∗1 +
x2 |x2|
2r

) (12)
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FIGURE 18. Continuous optimal control law performance in discrete
control.

While implemented (12) in discrete/digital control
case, it can result in overshoot and chattering, as given
in FIGURE. 18.

The reason is identified by Prof. Han Jingqing as that
discrete optimal control is completely different with the con-
tinuous optimal control law. The discrete optimal control law
for the above system proposed by Prof. Han Jingqing is as
follows [44]:

d = rh2, a0 = hx2, y = x1 − x∗1 + a0
a1 =

√
d(d + 8 |y|)

a2 = a0 + sign(y)(a1 − d)/2
sy = (sign(y+ d)− sign(y− d))/2
a = (a0 + y− a2)sy + a2
sa = (sign(a+ d)− sign(a− d))/2

fhan = −r(
a
d
− sign(a))sa − rsign(a)

(13)

where h is the sampling time step.

FIGURE 19. Discrete optimal control law performance in discrete control.

The control performance of (13) under the same condition
is given in FIGURE. 19. This control law uses maximum
accelerating and decelerating to achieve optimal control.
It can be seen that the response is without overshoot or chat-
tering, and the position settling transient time is shorter than
that in FIGURE. 18.

As commented by Professor Han Jingqing, the continuous
optimal control law (together with improvement on it) is not
optimal for discrete control. They cannot reach the desired
control reference with finite steps.

To sum up, it can be seen that the discrete optimal control
law is different from the continuous optimal control law.

The discrete optimal control law could be far more compli-
cated than the continuous case.

Especially for a system of high order and complex internal
dynamics, it is too difficult to get the explicit equation as
‘‘fhan’’ for second order cascade integral plant. That is why
this paper studies the feasibility of approximating the discrete
optimal control law through neural network data learning.

VII. CONCLUSION
This paper has proposed a data-driven digital direct position
control method by neural network with implicit control law
learned from optimal position tracking data. The contribution
mainly includes: presenting a novel performance-oriented
non-linear control design, demonstrating the feasibility of
direct position control in a data-driven manner, implicitly
mastering the discrete optimal control law that is difficult to
obtain explicitly.

By learning several of optimal position tracking cases,
the hidden general optimal control-law can be learned by the
neural network and can be used for direct position control in
real-time to reproduce an optimal control performance. The
proposed method is validated by simulation and experimental
results. In experiments, it is also found out that the velocity
calculation has great influence on position tracking time.
This issue can be improved by increasing position sensor
resolution or improving velocity calculation.

Besides optimal position tracking data used in this study,
using other types of data also provides potentials for other dif-
ferent control purpose, such as vibration reduction, harmonic
suppression, etc. This technique also offers the possibility to
learn from other controllers, or even combining the advan-
tages of different controllers together. The data-driven study
provides a point of view for performance-oriented non-linear
control design in motor servo control.
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