
SPECIAL SECTION ON ARTIFICIAL INTELLIGENCE FOR PHYSICAL-LAYER WIRELESS
COMMUNICATIONS

Received August 16, 2019, accepted August 24, 2019, date of publication August 28, 2019, date of current version September 11, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2937943

A Middle Game Search Algorithm Applicable
to Low-Cost Personal Computer for Go
XIALI LI1, ZHENGYU LV1, SONG WANG1, ZHI WEI 2, XIAOCHUAN ZHANG3,
AND LICHENG WU 1
1School of Information Engineering, Minzu University of China, Beijing 100081, China
2Department of Computer Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
3School of Artificial Intelligence, Chongqing University of Technology, Chongqing 401135, China

Corresponding author: Licheng Wu (wulicheng@tsinghua.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61602539, Grant 61873291, and Grant
61773416, and in part by the MUC 111 Project.

ABSTRACT Go Artificial Intellects(AIs) using deep reinforcement learning and neural networks have
achieved superhuman performance, but they rely on powerful computing resources. They are not applicable
to low-cost personal computer(PC). In our life, most entertainment programs of Go run on the general
PC. A human Go master consider different strategies for different stages, especially for the middle stage
that has a significant impact on winning or losing. To study arguably a more humanlike approach that is
applicable to low-cost PC while not reducing chess power, this paper proposes a new search algorithm based
on hypothesis testing and dynamic randomization for the middle stage of the game Go. Firstly, a newmethod
to decide the intervals of different playing stages more reasonable based on hypothesis testing is proposed.
Secondly, a new search algorithm including a layered pruning branch method, a comprehensive evaluation
function and a new selecting node method is proposed. The pruning method based on domain knowledge and
upper confidence bound formula(UCB) are all applied to subtract the branches from the lower evaluation
score, which was ranked behind 20%. The comprehensive evaluation function with adjustable parameters
is proposed to evaluate the tree nodes after pruning. The new selecting node method based on dynamic
randomization is used to expand the tree by selecting a node randomly from the high-quality node interval.
Finally, the experimental results show that the designed algorithm outperforms Gnugo3.6 and Gnugo3.8 in
chess power while reducing average search time and average RAM cost for one move effectively on a
19×19 board.

INDEX TERMS Go, search algorithm, MCTS, UCT, hypothesis test, dynamic randomization.

I. INTRODUCTION
Currently, deep learning is successfully utilized in many
feilds [1], [2]. Deep reinforcement learning and neural net-
works have been used in Go research and have achieved
superhuman performance. Alpha Zero, AlphaGo Zero, and
Alpha Go are the state-of-art programs for the game of
Go [3]–[6]. Alpha Zero, which was proposed in 2018,
leverages a general reinforcement learning algorithm that
enables it to master Go, chess, and shogi through self-
play. A total of 5000 first generation tensor processing
units (TPUs) were used to generate the self-play games, and
16 second-generation TPUs were used to train the neural
networks of AlphaZero [3]. A multi-core central process-

The associate editor coordinating the review of this article and approving
it for publication was Guan Gui.

ing unit(CPU) was used to train the network in AlphaGo
Zero [4]. A total of 1920 CPUs and 280 graphics process-
ing units (GPUs) were used in the distributed system of
AlphaGo [5], [6]. Clearly, AIs based Go programs such as
Alpha Zero, AlphaGo Zero, and Alpha Go all need huge
computation resources and hardware support. This holds true
for other AIs based Go programs as well; for instance, a total
of 2000 GPUs were used to train ELF OpenGo [7], which is
an open source Go AI. With only several multi-core CPUs,
the computation and chess power of DeepZenGo are far
below those of AlphaGo [8]. LeelaZero is a civilian-level
Go AI that requires the concerted efforts of players all
over the world to provide massive simulation games for its
growth. Currently, there are over 2,000 machines participat-
ing in the LeelaZero project and the computing power is not
high [9], [10].

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 121719

https://orcid.org/0000-0001-6059-4267
https://orcid.org/0000-0001-5739-634X


X. Li et al.: Middle Game Search Algorithm Applicable to Low-Cost PC for Go

Deep reinforcement learning applied in Go relies on pow-
erful high-performance computing resources to compliment
the self-play and training the deep neural networks. The
superman Go programs run on common configuration desk-
top computer seldom. But in our life, most entertainment Go
programs need to run on the general PC. Thus, it is practical
for researchers to study the search algorithm applicable to
low-cost personal computer. Upper confidence bound apply
to tree (UCT) algorithm, Monte Carlo tree search (MCTS)
algorithm and varieties based on them are the typical repre-
sentatives suitable for running on the common configuration
personal computer.

A more humanlike approach to searching is attractive [11].
A human Gomaster will apply different strategies at different
stages of the game and situations during the whole game. For
example, a formalized series of moves are used in the opening
stage, and attacking and defending strategies are employed in
the middle game. Designing different algorithms for different
stages of Go is arguably a more humanlike approach. But
most of UCT or MCTS based algorithms ignore the effect
of playing stage on the performance of the game. And there
is no special research on search algorithm for middle stage
although which is the longest and most important for the
whole Go game.

A multi-modal search algorithm with thresholds for differ-
ent stages based on experimental observations for Go whole
game had been proposed. Pattern recognition and matching
methods were used for the starting and ending stages, and
MCTS algorithm was used for the middle stage [12]. How-
ever, the thresholds decision method lacks statistical data
support.

In this paper, we first conducted the special research on
search algorithm for Go middle stage. Hypothesis testing
was firstly applied in Go research to obtain more reasonable
intervals. Themiddle stage of Go search algorithm is based on
hypothesis testing and dynamic randomization to approach
the goal of low computation and no loss of winning rate for
the low-cost personal computers.

The proposed algorithm has three main compositions: a
layered pruning branch method, a comprehensive evaluation
function with adjustable parameters, and a new selecting
node method based on dynamic randomization. The pruning
methods based on domain knowledge and UCB formula are
all applied to subtract the branches with the lower evalua-
tion score, which were ranked behind 20%. The evaluation
function based on domain knowledge and the UCB formula
is proposed to evaluate the tree nodes after pruning. The
parameters of the functions are adjustable by experiments.
A random node in the high-quality node interval with the top
15% of the comprehensive evaluation scores is selected and
used to expand the tree.

The experiments demonstrate that our proposed novel mid-
dle game algorithm can achieve higher winning rates with the
low time and space consumption, running on a normal per-
sonal computer configuration, compared with Gnugo3.6 and
Gnugo3.8. The main contributions of this work can be

summarized as follows: Firstly, it is the first time to engage in
designing a searching algorithm for the middle stage of Go.
This work is of significant importance as the middle stage
lasts longest and is usually critical in the outcome of the game.

Secondly, it is the first time that a hypothesis test method
is applied to Go to determine the threshold interval for the
middle stage of Go. This provides a reasonable and statistical
length episode for using the proposedmiddle stage algorithm.

Furthermore, the layered pruning method based on domain
knowledge and UCB formula is simple and effective in reduc-
ing search time and storage, while retaining the chess power.
The pruning method can reduce approximately 17 percentage
points of average search time and approximately 10 percent-
age points on average RAM cost for one move, compared to
Gnugo3.8 on a 19×19 board.

Finally, the parameters of the evaluation function can be
adjusted feasibly by experiments. Besides, selecting a node
in the high-quality node interval randomly to extend the tree
not only improves the chess power, but also adds diversity
while avoiding falling into a local optimum.

The rest of this paper is organized as follows. Related
works are briefly reviewed in Section 2. Our proposed search
algorithm is described in detail in Section 3. In Section 4,
experimental results and analysis are presented. Finally, con-
clusions and future works are summarized in Section 5.

II. RELATED WORKS
As most Go algorithms that do not rely on high com-
puting resources employ upper confidence bound apply to
tree (UCT) algorithm, Monte Carlo tree search (MCTS)
algorithm or their varieties, this paper give a brief review
of UCT algorithm, MCTS algorithm, pruning methods, and
other related works associated with UCT or MCTS algorithm
in this section.

UCT algorithm uses UCB formula and Monte Carlo sim-
ulation to prune the game tree and evaluate the situation of
leaf nodes, respectively [13]–[15]. It also deeply explores
well-performing nodes. Gelly et al. leveraged the time differ-
ence algorithm to speed up the search of UCT trees,however,
the knowledge gained from online learning often shows large
deviations [16]. He et al. proposed a knowledge-based infor-
mation ceiling tree for node evaluation of UCT algorithm
[17]. The All moves as first (AMAF) is an enhancement
closely related to the history heuristic first proposed inMonte
Carlo Go. By adopting a small number of simulated rounds,
AMAF method was used to speed up the evaluation of the
situation. However, the evaluation method was completely
randomized [18]. AMAF-caused deviation was corrected by
adjusting parameters. This correction significantly improved
the gaming power of Go program. However, this method
exists the searching depth threshold [19].

MCTS is currently classical computer game method for
finding optimal decisions in a given domain by taking ran-
dom samples in the decision space and building a search
tree according to the results [20], [21]. MCTS has already
had a profound impact on AI-based approaches that can be

121720 VOLUME 7, 2019



X. Li et al.: Middle Game Search Algorithm Applicable to Low-Cost PC for Go

represented as trees of sequential decisions, particularly
games. Many variations and enhancements for MCTS have
been developed [22], [23]. Chen et al. applied domain knowl-
edge and dynamic randomization to improve MCTS algo-
rithm by randomizing the parameters in selected ranges dur-
ing the in-tree phase of a simulation game, and hierarchically
randomizing move-generators during the play-out phase.

Dynamic randomization was used in [24]. It can increase
the playing strength of a Go Intellect significantly while the
simulations are beyond 128K permove. GPU-based go search
method was developed by Zhang et al. This schema can
improve the searching speed of MCTS algorithm. However,
it lacks the suitable searching algorithm to fit this scheme
[25]. Fu et al. exploited a chessboard recognition algorithm
based on chessboard image, however, the image quality
had a significant effect on the effect of the algorithm [26].
A 9×9 board Go system based on time difference algorithm
was designed in [27]. However, when the game was in the
middle stage, the offensive ability of the system was clearly
weakened. Guo et al. proposed a degenerated strategy to
reduce the complexity of Go, however, how to prove the
game after degradation equivalent to the original game is an
unsolved problem [28].

Currently, game search tree pruning algorithms include
soft pruning, progressive pruning, absolute pruning, relative
pruning, and domain-knowledge-based pruning [22]. Soft
pruning is not applicable to Monte Carlo search tree [29].
Based on Indigo’s 9×9 board Go and 19×19 board Go, pro-
gressive pruning improves the search speed, however, it has
little effect on gaming power [30]. Both absolute pruning
and relative pruning can improve search efficiency. Relative
pruning was applied in Lingo, and it improved the win-
ning rate against Gnugo 3.8 by approximately 3%. Domain-
knowledge-based pruning can significantly improve the
winning rate of Lingo against Gnugo 3.8. The use of
UCB-based pruning can also improve chess power [31].

The hypothesis test is used to observe whether signifi-
cant differences occur using the mathematical distribution
analysis and the sample observations obtained by sampling.
It first proposes a hypothesis of the proposition being studied
- the hypothesis that there is no significant difference- before
using a certain method to verify whether the hypothesis is
true [32]. Hypothesis testing theory has been successfully
applied to quality system certification [33], image resolution
criteria [34], indoor multi-feature detection of mobile robot
[12]. However, it has not been applied to Go.

From the above literature, we can see that most Go algo-
rithms based on UCT or MCTS do not consider the play-
ing stage effect on the outcome to the game. There is no
special middle stage algorithm for Go game. The threshold
decision method lacks statistical data support although the
multi-modal algorithm for different stages has been proposed.

To make the Go program think more like a human with
higher chess power and lower space and time resource,
we designed a novel algorithm with a more reasonable inter-
val decision method, which focuses on the middle stage of

FIGURE 1. Step threshold statistical histogram into middle stage.

Go running on a personal desktop computer. The hypothe-
sis test method is firstly applied to determine the threshold
interval for middle stage of Go. This method is of statistical
significance. The algorithm consists of a layered pruning
method, a comprehensive evaluation function, and the new
randomly dynamic selecting node method. The algorithm
can improve the game power of the program more than pat-
tern matching and UCT algorithms applied to Gnugo3.6 and
Gnugo3.8. Experiments demonstrate that the proposed algo-
rithm achieves desirable performance in improving chess
power and reducing RAM and search time resources.

III. PROPOSED SEARCH ALGORITHM FOR MIDDLE STAGE
In this section, we first provide the threshold interval method
using the hypothesis test. Then we describe the algorithm
that uses the comprehensive evaluation function, the pruning
method, and node selecting method in detail.

A. THRESHOLD INTERVAL METHOD FOR THE NUMBER
OF STEPS OF MIDDLE-STAGE GO GAME
We obtained 500 games from a publicly accessible Go
website [35].These games were played by Zhou Ruiyang,
Li Changyi, Coulee L and Li Shishi before May 2015.

A 5th dan Go player, Ya Dong, from our research team
analyzed the 500 games record and extracted the raw data
of the number of steps at which the game enters the middle
stage and end stage respectively for each game. 450 valid
data points in the steps of the game entering the middle
game and 335 valid data points in the steps entering the end
game are valid from the 500 games record. We use discrete
random variables X and Y to represent the critical steps to
enter the middle game and the end game respectively. We
got the statistical histogram diagrams of the threshold steps at
whichGo game enters themiddle and end games respectively.
The outcome is illustrated in Fig.1 and Fig.2. The ordinate
indicates the number of samples and abscissa indicates the
move steps in Fig.1 and Fig.2. From Fig.1 and Fig.2, it can be
seen that the threshold stepsX and Y follow an approximately
normal distribution. Therefore, it is reasonable and practical
applying hypothesis test method to verify the distribution

VOLUME 7, 2019 121721



X. Li et al.: Middle Game Search Algorithm Applicable to Low-Cost PC for Go

FIGURE 2. Step threshold statistical histogram into final stage.

of the steps. If a random variable Z follows the normal
distribution, its probability density function is expressed by
the equation 1.

g
(
z, µ, σ 2

)
=

1
√
2πσ

e−
(z−µ)2

2σ2 (1)

The likelihood function of the mean and variance of with m
samples is expressed by equation 2.

L = L
(
µ, σ 2

)
=

m∏
i=1

1
√
2πσ

e−
1

2σ2
(zi−µ)2

=

(
2πσ 2

)−m
2
e−

1
2σ2

∑m
i=1(zi−µ)

2
(2)

According to the sample size, Z is divided into j sub-intervals
[bi, bi+1) (i = 1, 2, . . . j) that do not overlap with each other.
Let Bi = {bi ≤ z ≤ bi+1} and H0 be the hypothesis. If H0 is
true, the distribution function of Z is

GO(z) =
∫ z

−∞

1
√
2πσ

e−
(t−µ)2

2σ2 dt = 8
(
z− µ
σ

)
,

8(z) =
∫ z

−∞

1
√
2π

e−
t2
2 dt (3)

The classical goodness of fit test is [36] divide the
entire possible randomized trial into incompatible events
B1,B2, . . . ,Bk (

⋃k
i=1 Bi = O,BiBj = ∅, i 6= j,

i, j = 1, · · · , k). Generally, if H0 is true and the number
of tests is large, the statistic of H0 is represented by the
equation 4.

χ2
=

k∑
i=1

(gi − mPi)2

mPi

χ2
=

k∑
i=1

(
gi − mP̂i

)2
mP̂i

 (4)

If sample number m is large enough, g
(
z, µ, σ 2

)
follows an

approximately χ2 distribution with k − r − 1 degrees of
freedom. The goodness of fit reflects the degree of conformity
between the actual data and the theoretical model. When
the goodness of fit is less than or equal to the significance
level α, i.e., the χ2 obtained by equation 1 satisfies the
inequality

χ2
≥ χ2

1−α(k − r − 1) (5)

reject H0; otherwise accept H0. The probability of this test
being the first type of error is approximately α[32]. Suppose
X and Y are subject to normal distribution. The sample
size of X is 450 and the sample size of Y is 335. We take
the parameter estimation process of X as an example. Let
α = 0.05, from equation 1 we have χ2

1−α(k − r − 1) =
χ2
1−0.05(8 − 2 − 1) = χ2

0.95(5) = 11.071. since χ2
=∑k

i=1
(gi−mPi)2

mPi

(
χ2
=
∑k

i=1

(
gi−mP̂i

)2
mP̂i

)
= 1.4440 We have

χ2
= 1.4440 < 11.071. H0 is accepted under level 0.05. The

number of steps in which Go enters the middle stage follows
a normal distribution is verified.

Considering the first type of error, let α = 0.01 or
α = 0.05. The hypothesis H0 is proven to be true. Thus,
the threshold steps at which Go game enters the middle stage
follows X ∼ N

(
µ1, σ

2
1

)
which satisfies µ1 = 49 and σ1 =

6. The threshold steps Y follows Y ∼ N2
(
µ2, σ

2
2

)
which

satisfies µ2 = 162 and σ2 = 19 by the above same method.
Let T1 and T2 be the threshold intervals of entering the
middle game and end game, respectively. We then have the
following:

T1 = [µ1 − σ1, µ1 + σ1] = [43, 55] (6)

T2 = [µ2 − σ2, µ2 + σ2] = [143, 181] (7)

Let T be the threshold interval of the middle game. Thus,
there is

T =
[
t1, t2

]
(8)

where t1 and t2 are any two elements, each selected from sets
T1 and T2, respectively.

Thus, the threshold interval of the middle game based
on hypothesis test is obtained using the above procedures.
A certain value in this interval set can be selected as critical
step randomly. This step provides a reasonable and statis-
tical length episode for using the proposed middle stage
algorithm.

B. DESCRIPTION OF MIDDLE-STAGE ALGORITHM FOR GO
The proposed algorithm framework is based on MCTS. It has
three main parts: a layered pruning branch method, a compre-
hensive evaluation function with adjustable parameters, and a
new node selecting method based on dynamic randomization.
The pruning method is used to subtract the branches from the
lower evaluation score, which was ranked behind 20% when
extending the tree. The comprehensive evaluation function is
then used to evaluate the node of the tree. Dynamic random-
ization selecting is applied to select one node randomly from
the high quality interval with the top 15% of the compre-
hensive evaluation scores. Assume X represent the number
of steps in Go. When t1 ≤ X ≤ t2, repeat the steps of the
following pseudocode (See Algorithm 1).

1) LAYERED PRUNING METHOD
Searching lots of nodes in the game tree needs a large of
time and space resources. Pruning methods are very nec-

121722 VOLUME 7, 2019



X. Li et al.: Middle Game Search Algorithm Applicable to Low-Cost PC for Go

Algorithm 1Middle-Stage Algorithm for Go
1: Set the current situation as the root node of the search tree
Sroot ;

2: while timeremain do
3: Extend the tree by MCTS for the root node Sroot ;
4: Prune the branches using the proposed PDKAUCT;
5: Evaluate the remain nodes using the proposed com-

prehensive evaluation function based on domain knowl-
edge and the UCT algorithm;

6: Select a node S randomly as the target move using the
proposed RSHQI method;

7: return S;
8: Replace Sroot with S;
9: end while

Algorithm 2 Pruning Methods
1: function Pruning()
2: for i = 0→ n do
3: Evaluate node i using domain knowledge;
4: Output evaluated value set d(d1, d2, . . . , dn);
5: Sort by descending d ;
6: Pruning 20% nodes ranked at the bottom of set d ;
7: Return evaluated value of the rest 0.8n nodes;
8: end for
9: for i = 0→ 0.8× n do

10: Evaluate node i using the UCT alogrithm with
UCB1 formula;

11: Output evaluated value set u(u1, u2, . . . , un);
12: Sort by descending u;
13: Pruning 20% nodes ranked at the bottom of set u;
14: Return evaluated value of the rest 0.8*0.8n nodes;
15: end for
16: end function

essary to subtract nodes with poor performance and can
improve the search efficiency to some extent. Pruning meth-
ods applied in the go game searching algorithm include
domain-knowledge-based pruning, progressive pruning, soft
pruning, relative pruning, absolute pruning, etc. [31]–[33].
Domain knowledge based pruning methods and UCT based
pruning methods are effective currently among the different
methods. They can not only improve the search efficiency
but also contribute more to the gaming power. Therefore,
we proposed a layered pruning method that evaluate the
nodes before subtracting. It is composed by two sequent
steps.

First, evaluate the nodes according to domain knowledge
and subtract the branches with the low value score ranked
at the bottom 20%. Second, evaluate the remained nodes
according to UCB1 [37] and subtract the branches with the
low value score ranked at the bottom 20%. 20% is selected
as the pruning ratio according to Pareto’s principle. The
pruning methods is described in the following pseudocode
(See Algorithm 2).

TABLE 1. Different weight distribution schema of domain knowledge and
UCT evaluation.

2) COMPREHENSIVE EVALUATION FUNCTION
A comprehensive evaluation function with dynamic adjusted
parameters combining domain knowledge and UCT algo-
rithm is described in detail in this section. The parameters
were adjusted according to test data.

For a node i in the game tree, the static evaluation value of
its domain knowledge is denoted as di(0 ≤ i ≤ 360) while
the UCB1 evaluation value is represented by ui(0 ≤ i ≤ 360).
The evaluation value of the current gameVi can be formulated
as follows:

Vi = f (t)× di + g(t)× ui (9)

where f (t) and g(t) are weight function of domain knowl-
edge evaluation and UCB1 evaluation. They are adjustable
parameters, satisfying 0 � f (t) ≤ 1, 0 � g(t) ≤ 1,
and f (t) + g(t) = 1. Pruning method based on domain
knowledge performs better than other pruning methods in
improving chess power [22], [31]. Therefore, the weight of
domain knowledge evaluation is greater than that of the UCT
evaluation, i.e., f (t) ≥ g(t). The weight values are adjusted
according to actual test results of the go program. Suppose
f (t) = (0.5, 0.6, 0.7, 0.8, 0.9). According to the five suits of
UCB1 evaluation weight and domain knowledge evaluation
weight, five different weight distribution schema, A, B, C, D,
and E, are listed in Table 1. Five different weight distribu-
tion schema were applied to develop 19×19 board Go game
respectively. In order to select a better weight distribution
scheme, the five programs are compared using a circular
game. One program plays 100 games against another for
each pair of programs. The compassion of winning rates with
different weight distribution schema are shown in Fig.3.

From Figure 3, it can be seen that B weight distribution
scheme, which is with the highest winning rate 0.545, is much
better than other categories. Therefore, B scheme is selected
as the parameter set of the comprehensive evaluation func-
tion.

3) NODE SELECTING METHOD
The moves with the maximum winning expectation at some
certain steps may not indicate a final victory in subsequent
games. In this paper, a high-quality node interval with the top
15% evaluation scores is constructed. One node located in
the high-quality interval is selected randomly rather than the
node with the highest score. The process of node selecting

VOLUME 7, 2019 121723



X. Li et al.: Middle Game Search Algorithm Applicable to Low-Cost PC for Go

FIGURE 3. Winning rates comparison among five schema.

FIGURE 4. Winning rates comparison among different high-quality node
intervals.

method is in the following. First, sort the child nodes of
the current situation in descending order of their evaluation
weights. Second, construct the high-quality node interval
range with evaluation weights in top 15% range. Finally,
a node is randomly selected from this interval to perform
game tree expansion. The range of the high-quality interval
15% was determined according to actual test data. During
the test, we set V1, V2, V3, and V4 to be the ranges schema
with the top 5%, 10%, 15%, and 20% evaluation scores
respectively. The four different high-quality node interval
schema were applied in the 19×19 board Go respectively.
Experiments were conducted to select the optimal scheme by
playing circular games among the programs using V1, V2,
V3, and V4. A total of 100 games were played between each
pair of programs. The winning rates of different schema are
shown in Fig.4. It can be seen that V3 with the highest the
highest winning rate 0.554 is the best schema from Fig.4.
Therefore, the high-quality node interval with the top 15%
evaluation scores was selected as the target range.

IV. EXPERIMENT RESULTS AND ANALYSIS
We developed the search program named Mucgo for three
categories boards using the proposed algorithm based on
hypothesis test and dynamic randomization for the middle
stage of go game. In order to verify the performance of

TABLE 2. Methods applied in Mucgo, Gnugo3.6 and Gnugo3.8.

TABLE 3. Hardware configuration of program running environment.

this new algorithm, we conducted experiments extensively to
compare chess power and computation consumption of the
proposed Go programwith those of Gnugo3.6 and Gnugo3.8.
There are some difference for different boards of Mucgo.
The proposed algorithm was used for all stages in 9×9 and
13×13 boards. But in 19×19 board, the proposed algorithm
was used for the middle stage, while a pattern-matching
method based on domain knowledge was used for the start
and final stages. Gungo3.6 uses a pattern-matching method
based on domain knowledge, whereas Gnugo3.8 uses a pure
UCT algorithm without pruning branches. The main meth-
ods and algorithm applied in the three programs are listed
in Table.2. Mucgo, Gnugo3.6 and Gnugo3.8 were deployed
on a normal configuration desktop computer. Mucgo played
against Gnugo3.6 and Gnugo3.8 automatically on the GoGui
gaming platform. 9 and 13 board programs were running on
one computer and 19 board programs were running on the
other computer. Details on the running environment for these
Go programs of different board sizes are given in Table.3.

A. CHESS POWER EVALUATION COMPARED WITH
GNUGO3.6 AND GNUGO3.8
Automatic gaming experiments on the two desktop comput-
ers lasted approximately 1 month. A tournament was played
to evaluate the chess power of Mucgo compared to that
of Gnugo3.6 and Gnugo3.8; the results of this tournament
are illustrated in Fig.5 and Fig.6. In the top bar, Mucgo
plays against specialized programs on a 9×9 board; in the
central bar, Mucgo plays against specialized programs on a
13×13 board; and in the bottom bar, Mucgo plays against
specialized programs on a 19×19 board. Each bar shows
the results from Mucgo’s perspective: win (W; green), draw
(D; gray), or loss (L; red). The left part in Fig.5 shows
the wins, draws, and losses of Mucgo on 9×9, 13×13, and
19×19 boards when playing against Gnugo3.6. The win,
draw, and loss rates are 52.42, 21.32, and 26.26 percentage

121724 VOLUME 7, 2019



X. Li et al.: Middle Game Search Algorithm Applicable to Low-Cost PC for Go

FIGURE 5. Chess power comparison with Gnugo3.6.

points on a 9×9 board; 53.54, 19.45, and 27.01 percentage
points on a 13×13 board; and 51.82, 25.43, and 22.75 per-
centage points on a 19×19 board, respectively. It can be seen
that the winning rate is higher than 50 percentage points and
the loss rate is below 35 percentage points. AsMucgo is a pro-
gram developed using the proposed MAHTADR algorithm,
which includes a layered pruning method, a comprehensive
evaluation function, and a new node selecting method, and
Gnugo3.6 is a program developed using a pattern-matching
method based on domain knowledge, Mucgo performs better
than Gnugo3.6 when chess power is considered. The exper-
iments verify that the proposed middle stage algorithm can
improve the chess power effectively when compared with
the pattern-matching algorithm used in Gnugo3.6. The auto-
matic game experiments between Mucgo and Gnugo3.8 on
the two desktop computers lasted approximately 15 days.
A total of 891 valid and complete 9×9 board game records,
1195 valid and complete 13×13 board game records, and
970 valid and complete 19×19 board game records were
collected. The right part in Fig.6 shows the wins, draws,
and losses of Mucgo on 9×9, 13×13, and 19×19 boards
when playing against Gnugo3.8. The win, draw, and loss
rates are 52.14, 24.81, and 23.05 percentage points on a
9×9 board; 51.42, 18.56, and 30.02 percentage points on a
13×13 board; and 50.96, 16.42, and 32.76 percentage points
on a 19×19 board, respectively. Evidently, Mucgo has a
higher winning rate and a lower loss rate against Gnugo3.8.
Gnugo3.8 is a program developed using the UCT algo-
rithm and it includes no pruning method or improvements.
In contrast, Mucgo is developed using the proposed algo-
rithm with considerable improvements; thus, it outperforms
Gnugo3.8 when considering chess power. The experiments
verify that the proposed algorithm performs better than the
UCT algorithm used in Gnugo3.8 in terms of chess power.

1) SEARCH TIME AND RAM COST COMPARISON WITH
GNUGO3.8
To verify the performance of the proposed algorithm in
terms of reducing search time and RAM costs, we com-
pared the average search time and RAM cost of one move

FIGURE 6. Chess power comparison with Gnugo3.8.

FIGURE 7. Average search time per move.

FIGURE 8. Average RAM cost per move.

of Mucgo and Gnugo3.8. The result is shown in Fig.7 and
Fig.8. The search time and storage consumption is very
low for the algorithm without using deep neural network.
These parameters are of no obvious significance on the
9×9 and 13×13 boards because the search space is not large
enough. Therefore, we only conducted experiments compar-
ingMucgo andGnugo3.8 on a 19×19 board. In the first game,
Gnugo.8 played as black and Mucgo played as white. The
two programs played 215 moves in total to the outcome of
the game. In the second game, Gnugo3.8 played as white and
Mucgo played as black. They played 209 moves in total to
the outcome of the game. For each move, the search time and
RAM cost were recorded. The average search time and RAM
cost was determined by calculating the mean values of all the
moves for both Mucgo and Gnugo3.8.

In Fig.7, the red bars represent the average search
time, which was 433 ms and 521 ms for Mucgo and
Gnugo3.8, respectively. Mucgo reduced the average search
time by approximately 17 percentage points compared to

VOLUME 7, 2019 121725



X. Li et al.: Middle Game Search Algorithm Applicable to Low-Cost PC for Go

Gnugo3.8.In Fig.8, the blue bars represent the average RAM
cost for one move, which was 212 MB and 235 MB for
Mucgo and Gnugo3.8, respectively. Mucgo reduced the aver-
age RAM cost by approximately 10 percentage points com-
pared to Gnugo3.8. AsMucgo used a layered pruning method
based on domain knowledge and the UCT algorithm, it could
effectively reduce the search time and RAM cost compared
to Gnugo3.8, which did not prune the search tree. These
experiments verify that the proposed pruning method is very
effective in saving both time and space resources.

V. CONCLUSION
Go game is generally divided into layout, mid-game and
final stage, and the mid- game has a great influence on the
outcome. Therefore, this paper considered the game progress
and specially designed a search algorithm on the base of
hypothesis testing and dynamic randomization for the mid-
dle stage of Go. The 500 game data of Go players Coulee,
Li Shishi, Li Changhao and Zhou Ruiyang were analyzed.
The fit goodness test and the maximum likelihood estimation
method were used to verify the distribution of the threshold
interval steps at which the game enter middle stage. We got
the threshold interval steps at which game enter final stage by
the same method. Thus, the threshold interval of the middle
stage was gotten. The proposed algorithm framework has
three main parts: a layered pruning branch method, a compre-
hensive evaluation function with adjustable parameters, and a
new selecting node method based on dynamic randomization.
The layered pruning method based on domain knowledge
and UCT was used to subtract the branches with the lower
evaluation score which were ranked behind 20%. To evaluate
the tree nodes after pruning, a comprehensive evaluation
function was proposed. The parameters of the evaluation
function were adjusted dynamically, and the parameters with
better performance were selected according to the experi-
mental results. This is practical to improve the chess power.
To expand the tree, a new selecting node method was given
in this paper. Instead of selecting the node with the highest
comprehensive evaluation score, select the high-quality node
interval with the comprehensive evaluation score in the top
15%, and dynamically select one node from this interval to
expand. This 15% high-quality node interval was selected
as a better-performing interval according to experimental
data. The algorithm was applied to design and implement
9×9, 13×13, and 19×19 boardGo,namedMucgo. Automatic
game experiments were conducted extensively with different
versions (Mucgo, Gnugo3.6, and Gnugo3.8) for three Go
categories of 9×9, 13×13, and 19×19 boards respectively.

The experiments verify that the proposed middle stage
algorithm based on the hypothesis theory and dynamic
randomization can improve the chess power effectively
when compared with the pattern-matching algorithm used in
Gnugo3.6. It also performs better than the UCT algorithm
used in Gnugo3.8 in terms of chess power. It can effec-
tively reduce the search time and RAM cost compared to
Gnugo3.8.

Some research problems still need to be addressed. For
example, the illustration of the reasonable pruning percent-
age, the existence of optimal parameters for the compre-
hensive evaluation function, and the existence of an optimal
high-quality node interval. In the future, research on a general
Go artificial intelligence model with light weight deep neu-
ral network structure, which considerably shortens training
time and requires almost no human knowledge should be
conducted.

ACKNOWLEDGEMENT
Songting Deng made some experiments. Yongji Li fufiled
some programming work.

REFERENCES
[1] H. Huang, S. Guo, G. Gui, Z. Yang, J. Zhang, H. Sari, and H. Adachi,

‘‘Deep learning for physical-layer 5G wireless techniques: Opportunities,
challenges and solutions,’’ IEEE Wireless Commun., to be published.

[2] H. Huang, Y. Song, J. Yang, G. Gui, and F. Adachi, ‘‘Deep-learning-based
millimeter-wave massive MIMO for hybrid precoding,’’ IEEE Trans. Veh.
Technol., vol. 68, no. 3, pp. 3027–3032, Mar. 2019.

[3] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, and T. A. Lillicrap,
‘‘A general reinforcement learning algorithm that masters chess, shogi,
and go through self-play,’’ Science, vol. 362, no. 6419, pp. 1140–1144,
Dec. 2018.

[4] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap,
F. Hui, L. Sifre, G. van den Driessche, T. Graepel, and D. Hassabis,
‘‘Mastering the game of go without human knowledge,’’ Nature, vol. 550,
no. 7676, pp. 354–359, 2017.

[5] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland,
G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King,
D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, ‘‘Human-level
control through deep reinforcement learning,’’ Nature, vol. 518, no. 7540,
pp. 529–533, 2015.

[6] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,
G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and
D. Hassabis, ‘‘Mastering the game of go with deep neural networks and
tree search,’’ Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[7] Y. Tian and Y. Zhu, ‘‘Better computer go player with neural network
and long-term prediction,’’ 2015, arXiv:1511.06410. [Online]. Available:
https://arxiv.org/abs/1511.06410

[8] F. Ya. (2016).Deepzengo Claimed to Defeat Alphago. [Online]. Available:
https://www.leiphone.com/news/201611/YwcDpatPjff5xxEa.html

[9] X. Lu and Q. Zhang. (2018). Yuandong Tian, Member of Facebook, Open
Source of the ELF Opengo. [Online]. Available: https://www.jiqizhixin.
com/articles/2018-05-03-7

[10] Y. Wei. (2018). Website Built for Leela. [Online]. Available:
https://hhpetra.github.io/leelachinese/d_wv=1031

[11] C. E. Shannon, ‘‘Programming a computer for playing chess,’’ inComputer
Chess Compendium. New York, NY, USA: Springer, 1988, pp. 2–13.

[12] X. Li and L. Wu, ‘‘A multi-modal searching algorithm in computer go
based on test,’’ in Proc. Chin. Intell. Automat. Conf. Berlin, Germany:
Springer, 2015, pp. 143–149.

[13] S. Gelly and Y. Wang, ‘‘Exploration exploitation in go: UCT for Monte-
Carlo go,’’ in Proc. Neural Inf. Process. Syst. Conf. On-Line Trading
Explor. Workshop, 2006, pp. 1–9.

[14] L. Kocsis and C. Szepesvári, ‘‘Bandit based Monte-Carlo planning,’’
in Proc. Eur. Conf. Mach. Learn. Berlin, Germany: Springer, 2006,
pp. 282–293.

[15] P. Auer, N. Cesa-Bianchi, and P. Fischer, ‘‘Finite-time analysis of the
multiarmed bandit problem,’’ Mach. Learn., vol. 47, no. 2, pp. 235–256,
2002.

[16] S. Gelly andD. Silver, ‘‘Combining online and offline knowledge in UCT,’’
in Proc. 24th Int. Conf. Mach. Learn., 2007, pp. 273–280.

121726 VOLUME 7, 2019



X. Li et al.: Middle Game Search Algorithm Applicable to Low-Cost PC for Go

[17] S. He, Y. Wang, F. Xie, J. Meng, H. Chen, S. Luo, Z. Liu, and
Q. Zhu, ‘‘Game player strategy pattern recognition and how UCT algo-
rithms apply pre-knowledge of player’s strategy to improve opponent AI,’’
in Proc. Int. Conf. Comput. Intell. Modelling Control Automat., Dec. 2008,
pp. 1177–1181.

[18] D. P. Helmbold and A. Parker-Wood, ‘‘All-moves-as-first heuristics in
monte-carlo go,’’ in Proc. IC-AI, 2009, pp. 605–610.

[19] S. Gelly and D. Silver, ‘‘Monte-Carlo tree search and rapid action
value estimation in computer go,’’ Artif. Intell., vol. 175, no. 11,
pp. 1856–1875, 2011.

[20] R. Coulom, ‘‘Efficient selectivity and backup operators in Monte-Carlo
tree search,’’ in Proc. Int. Conf. Comput. Games. Berlin, Germany:
Springer, 2006, pp. 72–83.

[21] G. Gui, H. Sari, and E. Biglieri, ‘‘A new definition of fairness for
non-orthogonal multiple access,’’ IEEE Commun. Lett., vol. 23, no. 7,
pp. 1267–1271, May 2019.

[22] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton,
‘‘A survey of Monte Carlo tree search methods,’’ IEEE Trans. Comput.
Intell. AI Games, vol. 4, no. 1, pp. 1–43, Mar. 2012.

[23] G. Gui, H. Huang, Y. Song, and H. Sari, ‘‘Deep learning for an effec-
tive nonorthogonal multiple access scheme,’’ IEEE Trans. Veh. Technol.,
vol. 67, no. 9, pp. 8440–8450, Sep. 2018.

[24] K.-H. Chen, ‘‘Dynamic randomization and domain knowledge in
Monte-Carlo tree search for go knowledge-based systems,’’ Knowl.-Based
Syst., vol. 34, pp. 21–25, Oct. 2012.

[25] Q. F. Zhang, ‘‘Research and implementation of the parallel 9× 9 go game
engine based on cuda architecture,’’ M.S. thesis, School Softw., Beijing
Univ. Posts Telecommun., Beijing, China, 2012.

[26] S. B. Fu, ‘‘Research on the image recognition of go competition on
the handheld mobile terminal platform,’’ M.S. thesis, School Elect. Sci.
Technol., Nanjing Univ., Nanjing, China, 2012.

[27] Y. Tang, ‘‘Research and application of machine learning algorithm for
go computer games,’’ M.S. thesis, School Comput. Sci. Eng., Chongqing
Univ. Technol., Chongqing, China, 2012.

[28] J. Guo, ‘‘Research on several upper limit values in go artificial intelli-
gence,’’ M.S. thesis, School Math. Statist., Central South Univ., Changsha,
China, 2013.

[29] C.-S. Lee, M.-H. Wang, G. Chaslot, J.-B. Hoock, A. Rimmel, O. Teytaud,
S.-R. Tsai, S.-C. Hsu, and T.-P. Hong, ‘‘The computational intelligence
of MoGo revealed in Taiwan’s computer go tournaments,’’ IEEE Trans.
Comput. Intell. AI Games, vol. 1, no. 1, pp. 73–89, Mar. 2009.

[30] B. Bouzy, ‘‘Move-pruning techniques for Monte–Carlo go,’’ in Advances
in Computer Games. Berlin, Germany: Springer, 2005, pp. 104–119.

[31] J. Huang, Z. Liu, B. Lu, and F. Xiao, ‘‘Pruning in UCT algorithm,’’ in Proc.
Int. Conf. Technol. Appl. Artif. Intell., Nov. 2010, pp. 177–181.

[32] J. Jin and Y. Su, ‘‘An improved adaptive genetic algorithm,’’ Comput. Eng.
Appl., vol. 41, no. 18, pp. 64–69, 2005.

[33] W. M. Bian, ‘‘The application of hypothesis test in quality system audit,’’
Chem. Ind. Times, vol. 18, no. 4, pp. 52–54, 2004.

[34] W.W.Wang andW. Zhengming, ‘‘New criteria and arithmetic for calculat-
ing the resolution in sar images based on hypothesis test,’’ Signal Process.,
vol. 24, no. 5, pp. 853–858, 2008.

[35] YiCheng Weiqi Wang. Accessed: Oct. 15, 2018. [Online]. Available:
http://www.eweiqi.com/

[36] Y. J. Cai, ‘‘Note on two types of errors of statistical hypothesis tests,’’ Appl.
Statist. Manage., vol. 18, no. 3, pp. 30–35, 1999.

[37] Z. Q. Liu and W. F. Li, Foundation of Modern Computer Go Games.
Beijing, China: Beijing University of Posts and Telecommunication, 2011.

XIALI LI was born in Henan, China, in 1979.
She received the M.S. degree in computer
science and technology from Xi’an Jiaotong
University (XJTU), Xi’an, China, in 2004. From
October 2008 to August 2009, she was a Visiting
Scholar with The University of Edinburgh, U.K.
Her research interests include computer games and
artificial robotics. She is the author of three books
and more than 50 articles, and she holds more than
two inventions.

ZHENGYU LV was born in Guiyang, Guizhou,
China, in 1992. He received the bachelor’s degree
in engineering from the Minzu University of
China, in 2015, where he is currently studyingwith
the Modern Education Technology. His research
interests include computer game and artificial
robotics.

SONG WANG was born in Baoding, Hebei,
China, in 1994. He received the bachelor’s degree
in engineering from Beijing Union University,
in 2017, where he is currently studying with the
Modern Education Technology. His research inter-
ests include computer game and artificial robotics.

ZHI WEI was born in Guangxi, China. He received
the B.S. degree from Wuhan University, China,
and the Ph.D. degree from the University of Penn-
sylvania, in 2008. He is currently anAssociate Pro-
fessor with the Department of Computer Science,
New Jersey Institute of Technology. His research
interests include datamining, statistical modelling,
and machine learning with applications to data
enriched fields.

XIAOCHUAN ZHANG was born in Sichuan,
China, in 1965. He received the M.S. degree from
Chongqing University (CQU), Chongqing, China,
in 1991. He is currently a Full Professor and
the Deputy Dean with the School of Artificial
Intelligence, Chongqing University of Technology
(CQUT). He is also the Chairman of Computer
Game Professional Committee of CAAI. He is
the author of three books, more than 90 arti-
cles, received four provincial and ministerial level

awards for science and technology and teaching, and holds more than three
inventions. His research interests include computer games, intelligent robot,
and software engineering.

LICHENG WU was born in Jiangxi, China,
in 1972. He received the bachelor’s degree from
the Beijing University of Aeronautics and Astro-
nautics (BUAA), Beijing, China, in 1995, and
the Ph.D. degree in robotics from the Institute
of Robotics, BUAA, in 2000. In 2001 and 2002,
he held a postdoctoral position with the State Key
Laboratory of Intelligent Technology and Systems,
Department of Computer Science and Technology,
Tsinghua University, where he was promoted as

an Associate Professor, in 2008. He was with the School of Information
Engineering, Minzu University of China, in November 2009, where he was
promoted as a Full Professor, in January 2013. From November 2006 to
November 2007, he was a Visiting Scholar with Polytechnic di Milano and
Cassino University, Italy. He is currently a Full Professor and the Dean of
the School of Information Engineering, Minzu University of China, Beijing.
He is the author of three books and more than 80 articles, and he holds more
than three inventions. His research interests include artificial intelligence,
computer game, and robotics.

VOLUME 7, 2019 121727


