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ABSTRACT With the rapid growth of installed capacity of photovoltaic (PV), the PV power stations
equipped with energy storage (ES) have become a new type of black-start power supply. Taking the
Photovoltaic-Battery Energy Storage Systems (PV-BESS) as the black-start power source can improve the
black-start ability of the regional power grid and broaden the application prospect of PV power generation.
In this paper, a stratified optimization strategy for black-start of PV-BESS is proposed, which combines
the key issues in the process of black-start of PV-BESS. Stratified optimization strategy is divided into
data analysis layer, optimization coordination layer and scheduling control layer. The data analysis layer
combines the requirements of the black-start process. Firstly, the similarity matrix ranking method is used to
improve the PV power prediction method. Secondly, based on probability inclination, the PV power index is
designed to evaluate the feasibility of black-start by calculating the PV lower limit power and the executable
probability inclination. The optimization coordination layer is based on the state space model of black-
start of PV-BESS, combined with the control strategy of PV as the main part and ES as the auxiliary part,
the optimization objectives of the maximum utilization rate of PV and tracking the ideal value of state
of charge (SOC) of ES is formulated. The optimal model is solved by model predictive control, and the
output power of PV and ES is controlled to complete the black-start process. The actual historical data in the
power grid with a high proportion of PV sources are used as the basic data for simulation. The simulation of
black-start based on MATLAB/Simulink verifies the rationality of the stratified optimization strategy, which
provides a reference for the realization of black-start of PV-BESS.

INDEX TERMS Black-start, stratified optimization strategy, photovoltaic-battery energy storage systems,
photovoltaic & energy storage coordination, photovoltaic power prediction.

NOMENCLATURE
PV Photovoltaic
ES Energy storage
PV-BESS Photovoltaic-Battery Energy Storage

Systems
LSSVM Least squares support vector machine
MPC Model predictive control

The associate editor coordinating the review of this article and approving
it for publication was Eklas Hossain.

SVM Support vector machines
Nr The number of PV units
PESS The charge/discharge power of ES(kW)
PPV−unit The predicted output power of

PV unit(kW)
PL The auxiliary power of thermal power

units(Load power of black-start) (kW)
PPV The total PV power
SOC state of charge
PPV−lim The lower limit of PV units power(kW)

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 127339

https://orcid.org/0000-0001-6344-6147


J. Li et al.: Stratified Optimization Strategy Used for Restoration With PV-BESS as Black-Start Resources

η The executive probability inclination of
black-start

N The total number of PV units in
PV power stations

NWF Numerical weather forecast
xdk The solar radiation intensity or tempera-

ture of d-day in historical day
xk The solar radiation intensity or tempera-

ture of the day to be predicted
n The sampling point of the solar radiation

intensity and temperature in a day
M The similarity matrix
mid The similarity between each factor

affecting the d-day and the predicted
day.

Fd The total similarity between the d-th his-
torical day and the day to be predicted

R The correlation coefficient
T The black-start period
x(k) The state variables at k time
u(k) The control variables at k time
r(k) The disturbance input at k time
y(k) The output variables at k time
PPV(k) The total PV power at k time(kW)
PPV−unit(k) The power prediction value of PV units

at k time(kW)
PPV−unit(k+1) The predicted PV unit power at

k+1 time(kW)
PPV−unitN The rated power of PV units(kW)
PESS(k) The charge/discharge power of ES at k

time(kW)
EESS(k) The capacity actually collected at k

time(kWh)
EESS(k+1) The ES capacity at k+1 time(kWh)
EESSL The ideal capacity of ES(kWh)
PL (k) The load power at k time(kW)
PL(k+1) The load power at k+1 time(kW)
1TESS The conversion coefficient from kW to

kWh
Nr(k) The number of PV units actually col-

lected at k time
Nr(k+1) The number of PV units actually col-

lected at k+1 time
1Nr The change value of PV unit number
1P The compensation power(kW)
PESSN The rated power of ES
SOCmax The upper limit of SOC of ES
SOCmin The lower limit of SOC of ES
SOC (k) The SOC of ES at k time
M The rolling period
β The change limit of the number of

PV units

I. INTRODUCTION
In recent years, several large-area blackouts have taken place
in the United States, Italy, China, India, Brazil and other
places [1]–[3]. The blackout in India on 30 July 2012 directly

affected the lives of more than 600 million people, which
are the largest power failure affecting the population in his-
tory [4]. In March 2018, the 3.21 blackout in Brazil affected
more than 53 million people, more than a quarter of the
national population, and caused 9300 MW of blackout load
loss. Large blackouts bring huge losses to the national econ-
omy. Black-start, the procedure to restore the power supply
by self-starting black start units (BSU), is the first task after
a severe blackout occurs [2], [3]. Fast and effective black-
start schemes can minimize the losses brought about by large
blackouts in power grids [5], [6].

Conventional black-start schemes use hydropower turbine
and gas turbine with great self-starting ability as black-
start sources, and relevant experiments have been carried out
in [7], [8]. Reference [9] presented the black-start experi-
ment using pumped-storage units as the power supply in the
Shandong power grid, China. Reference [10] analyzed the
black-start experiment using hydropower turbine and gas
turbine as the power supply in India. However, the uneven
distribution of water resources and the lack of water resources
in some areas limit the construction of hydropower units;
gas turbines require high-power diesel generator sets to pro-
vide start-up power and need to be turned on regularly for
maintenance. The high investment cost is not appropriate
for widespread use. Therefore, the participation of renewable
energy in the black-start process can effectively utilize nat-
ural resources and select different black-start power sources
according to the distribution of resources in different regions
[11], [12]. Reference [13] chose micro-grid as black-start
power supply and proposed an optimized restoration method
for a distribution network. A control method is proposed for
the power quality problem of micro-grid used as the black-
start source for [14], [15]. The participation of renewable
energy sources will greatly accelerate the process of black-
start development.

Nowadays, the installed capacity of PV is increasing year
by year [16], [17]. ES technology and PV power generation
technology are developing rapidly. For areas with abundant
lighting resources, more and more studies have been done on
the participation of PV power generation systems in power
system restoration. Reference [18] proposes an optimization
method to improve the restoration efficiency of the power
grid by using PV power plant as a black-start power supply.
In reference [19], a black-start strategy based on hierarchical
control is proposed for micro-grid with PV-BESS, which
improves the black-start capability of micro-grid. Because
of the fluctuation of PV power generation, it is necessary to
configure ES to suppress the fluctuation of PV output power
[16], [20]. Reference [21], [22] studies the control strategy
of PV-BESS under island operation mode, ES provides sta-
ble voltage and frequency for PV inverters. Reference [23]
presents a method to reduce the fluctuation of PV power
by hybrid ES. The black-start capability of a micro-grid is
enhanced by configuring ES in the micro-grid [24]. The
above research shows that the PV-BESS offers the opportu-
nity to act as a black-start power supply.
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When the PV-BESS is used as black-start power supply,
because of the randomness and uncertainty of PV power
generation [25], [26], the PV-BESS can only be the black-
start power supply in the executable period. Before the
start of a black-start process, it is necessary to determine
whether the PV-BESS is in the executable black-start period.
The influence of uncertainty of renewable generation on the
black-start process has been considered in previous studies.
In reference [27], the access time and capacity of wind power
are determined by the black-start value evaluation method to
determine whether the output power of wind power meets
the requirements of the black-start process. However, ref-
erence [27] regards wind power as an auxiliary black-start
power source. After the main black-start power source has
formed a small stable parallel system with the thermal power
unit, the follow-up process is accelerated by connecting wind
power. It is not suitable for the black-start process of the
main black-start power supply of wind power. In the pro-
cess of black-start of a micro-grid, reference [28] models
the uncertainty of black-start of micro-grid by discretizing
the probability distribution of prediction error and chooses
typical scenarios of black-start of the micro-grid to establish
probability function to determine the reference value of out-
put power of micro-grid. However, in reference [28], whether
renewable energy generation supports black-start process has
not formed a quantitative standard, which is not appropriate
for the black-start of PV-BESS. Reference [29] introduced
a black-start power supply selection method for renewable
energy generation systems in distribution networks. A renew-
able energy source which can assist the black start process
is chosen by power prediction and maximum likelihood esti-
mation. However, reference [29] divides the large power grid
into several small power grids for service recovery, aiming at
the maximum priority load recovery, which does not apply to
the feasibility assessment of specific systems. The reference
value of PV power can be obtained by PV power prediction
technology [30].

Because the ES device with charge/discharge power con-
straint and capacity constraint, when the PV output is insuffi-
cient or fluctuates violently during the black-start process,
there may be over-charging and over-discharging of ES,
which leads to the failure of the black-start. Also, the auxiliary
load changes frequently, so the energy coordination control
in black-start becomes more complex. How to coordinate the
output of PV and ES to ensure adequate load supply and keep
the SOC of ES at a reasonable level directly determines the
success of black-start. Reference [31] combines load tracking
with maximum power point tracking control to effectively
control PV output power and complete the black-start pro-
cess. However, in the process of choosing the PV control
strategy, the SOC of ES is not taken into account, which may
lead to over-charging and over-discharging of energy storage.
In reference [19], a black-start strategy based on hierarchical
control is proposed for PV/ES micro-grid. Different control
strategies are applied to single-phase micro-grid and three-
phase micro-grid respectively to coordinate the output power

of PV and ES to achieve black-start. However, the method
proposed in reference [19] is to assist three-phase micro-grid
with black-start through single-phase micro-grid, which is
not suitable for single PV-BESS. Reference [28] proposes
an optimization strategy for black-start power supply based
on MPC to reduce the time spent in the black-start process
by controlling the starting sequence of black-start units.
However, reference [28] solves a planning problem for black-
start of a micro-grid, which does not specify the coordinated
control between black-start power sources and is not suitable
for the coordinated control of PV and ES. In the above study,
no research has been carried out on the problems in the
process of the black-start of PV-BESS.

The above research on black-start of PV-BESS is to take
PV power generation as part of the micro-grid and the whole
micro-grid as the black-start power supply. Without consider-
ing the black-start power supply of PV-BESS, the feasibility
of black-start of PV-BESS and the coordinated control of PV
and ES are studied. Therefore, a stratified optimization strat-
egy for black-start of PV-BESS is proposed in this paper. The
stratified optimization strategy is divided into data analysis
layer, optimization coordination layer and scheduling control
layer. The data analysis layer combines with the requirements
of the black-start process. Firstly, based on the similarity
matrix sorting method, the training sample selection method
of the PV power prediction method is improved, and the PV
power prediction method suitable for a black-start process
is obtained. Based on the reference value of the PV output
power obtained from the prediction, the lower limit power of
PV and the executable probability inclination are calculated.
To evaluate the feasibility of black-start of PV-BESS. In the
optimization coordination layer, the control strategy of PV
as the main part and ES as the auxiliary part is formulated.
Based on the mathematical model of black-start of PV-BESS,
the optimal number of PV cells and the charge/discharge
power of ES are obtained through MPC to solve the opti-
mization objective. The actual historical data of the actual
power grid are taken as the basic data of simulation, black-
start simulation based on MATLAB is carried out to verify
the effectiveness and rationality of the proposed strategy.

The remainder of this paper is organized as follows:
Section II introduces the black-start process of PV-BESS and
describes the structure of black-start of PV-BESS. Section III
presents the stratified optimization strategy for black-start of
PV-BESS. Section IV is to verify the effectiveness of the
strategy by simulation. Finally, key conclusions are offered
in Section V.

II. PV-BESS USED FOR BLACK-START
A. BLACK-START PROCESS OF PV-BESS
After the PV power station receives the black start instruction,
Firstly, the output power of PV power station is evaluated
to determine the feasibility of black-start of PV-BESS. After
determining that the output power of PV power station can
meet the requirements of black-start. Second, the ES assist
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FIGURE 1. The black-start process of power grid based on PV-BESS.

FIGURE 2. Structural of black-start system with the PV-BESS as main power supply. The PV-BESS is mainly composed of PV and ESS.
The PV-BESS as black-start power to start auxiliaries of thermal power station.

the start-up of the PV power station, and the PV-BESS will
be used as the black-start power source to charge the transmis-
sion line. Finally, the PV-BESS gradually starts the auxiliary
engine of the thermal power plant until the output power of
the whole thermal power plant resumes.

The black-start process of power grid based on PV-BESS
is shown in Fig. 1.

B. STRUCTURE OF PV-BESS
The PV-BESS is mainly composed of PV generation system,
ES. Among them, the PV generation system is consisted of
N PV units, and a single PV unit is connected to the house-
service bus through an inverter to provide power for the
load [32]. The PV-BESS is formed by disposing the ES at
the bus of the PV power station. which is shown in Fig. 2.

After the power grid blackout, the PV-BESS as the main
control power supply of power grid system, the PV power
station operates in the maximum power output mode. Energy
Storage maintains voltage and frequency stability.

III. THE STRATIFIED OPTIMIZATION STRATEGY
At the beginning of black-start of PV-BESS, the randomness
of PV output power leads to the uncertainty of the feasibil-
ity of black-start of PV-BESS. In the process of black-start

of PV-BESS, the batch input of high power load and the fluc-
tuation of PV make the over-charging and over-discharging
of ES. Therefore, a stratified optimization strategy for black-
start of PV-BESS is proposed in this paper, which can ensure
that the PV output power meets the requirements of black-
start power and provide enough power for the load at the same
time.

A. FRAMEWORK OF STRATIFIED OPTIMIZATION STRATEGY
The Framework of stratified optimization strategy is shown
in Fig. 3, which is divided into data analysis layer, optimiza-
tion coordination layer and scheduling control layer. Among
them, the data management mainly collects PV unit power,
load power, ES status, and black-start operation instructions,
as well as retrieves historical data of PV unit and numer-
ical weather forecast information for the period to be pre-
dicted. The data analysis layer combines the data in the
data management and evaluates the black-start of PV-BESS
through the PV power prediction and PV power index to
determine whether the black-start of PV-BESS is feasible.
Optimizing coordination layer optimizes the system through
MPC based black-start of PV-BESS control strategy, out-
puts reference values of PV cell number (Nr) and ES power
(PESS). The scheduling control layer combines the reference
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FIGURE 3. The framework of stratified optimization strategy for the PV-BESS. The framework of stratified optimization
strategy is divided into data analysis layer, optimization coordination layer and scheduling control layer. Firstly,
the feasibility of black-start of PV-BESS is calculated by data analysis layer. Then the optimal control quantity (Nr and PESS)
is obtained by optimization coordination layer, and the scheduling control layer judges and controls the PV unit controller
and the ES converter.

values of the number of PV cells and the reference values
of charge/discharge power of ES to realize the switch-on
management of PV cells and the charge/discharge power
management of ES.

Among them: the data analysis layer is mainly based on
the similarity matrix sorting method, designed a PV power
prediction method suitable for black-start, and obtained the
PV unit power reference value. Combining the lower limit
power of PV power index, the probability inclination of
black-start is calculated, and the feasibility of black-start is
evaluated. The optimal coordination layer is mainly based on
the correlation among PV, ES and load to establish a black-
start mathematical model. Rolling optimization and real-time
feedback are used to improve the accuracy of the model. The
optimization objective is solved by MPC, and the optimal

charge/discharge power of ES and the optimal number of PV
cells at the k+1 time are obtained.

B. FUNCTIONAL DESIGN OF DATA ANALYSIS LAYER
Before the start of black-start, because of the randomness and
uncertainty of PV power generation, whether the PV power
station has sustained output capacity and whether the output
power of PV power station meets the requirements of black-
start load power are the key issues of black-start of PV-BESS.
Therefore, this paper designs the data analysis layer. The data
analysis layer is divided into two parts: PV power predic-
tion and PV power index. Firstly, the reference value of PV
output power is predicted by PV power prediction. Based
on the reference value of PV output power, the PV power
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index is calculated to evaluate the feasibility of black-start
of PV-BESS.

1) IMPROVED PV POWER PREDICTION BASED ON
BLACK-START PROCESS
The requirements of black-start process for PV power pre-
diction are as follows: the black-start process lasts 30 to
60 minutes [16], so the ultra-short-term PV power prediction
method is selected; in order to recover the load as soon as
possible, the black-start process time should be reduced as
much as possible, so the PV power prediction method needs
shorter time and faster solution speed; and high accuracy of
PV power prediction is required.

As a intelligent algorithm, Support Vector Machine (SVM)
has been applied in PV power prediction in recent years,
and the prediction accuracy based on SVM is relatively
high [33]–[36]. Least Square Support Vector Machine
(LSSVM) is an improved algorithm of Support Vector
Machine (SVM), which can reduce the computational com-
plexity and speed up the solution while ensuring the accuracy.
Therefore, based on the similarity matrix sorting method,
this paper improves the least squares support vector machine
(LSSVM) prediction method so that the data analysis layer
can predict the PV power of the next hour at the fastest speed
with the premise of ensuring the accuracy.

The data analysis layer obtains the weather information of
the future period through numerical weather forecast and fil-
ters the historical data by comparing the seasons and weather
types and ranking the similarity matrix. The training sam-
ples with the highest similarity with the predicted days are
obtained to improve the prediction accuracy. The prediction
time scale is 1h, and the prediction flow chart is shown
in Fig. 4.

FIGURE 4. Flow chart of PV power prediction.

The selection of training samples and influencing fac-
tors (input variables) has a great impact on the prediction
accuracy. The selection of training samples is to select the
most similar data as training samples from the perspective of
influencing factors (input variables).

2) SELECTION OF PREDICTIVE TRAINING SAMPLES
Considering four factors (including season, weather type,
solar radiation intensity, and temperature), the similarity
between each historical day and the day to be predicted is
calculated, and the optimal training sample is selected.

Select the same season and weather type, the similarity
matrix can be calculated in the same season and weather type
data. According to the type of season, it can be divided into
spring, summer, autumn, and winter. If the predicted day is
the same as the historical day, m = 0, otherwise m = 1.
According to the type of weather, it can be divided into
sunshine, cloudy, and rain. If the predicted day is the same
as the historical day, m = 0, otherwise m = 1.
Euclidean distance is used to describe the similarity of

solar radiation intensity and temperature between historical
and predicted days, as in (1).

md =

√
n∑

k=1
(xdk − xk )2

n
(1)

where: xdk is the solar radiation intensity and temperature of
d-day in historical day; xk is the solar radiation intensity and
temperature of the day to be predicted; n is the sampling point
of the solar radiation intensity and temperature in a day.

The similarity matrix M is as shown in (2).

M = [mid ] (2)

where: M is the similarity matrix; mid is the similarity
between each factor affecting the d-day and the predicted day.

Then the data in the table are normalized and the total
similarity is as shown in (3).

Fd =
4∑
i=1

Rmid (3)

where: Fd is the total similarity between the d-th histori-
cal day and the day to be predicted; R is the correlation
coefficient.

Through sorting the total similarity of historical data,
the training samples of SVM are selected.

The correlation coefficients of PV output power, solar
radiation intensity and temperature are calculated by Pearson
correlation coefficient formula, which are shown in Table 1.

The training samples selected by similarity matrix and the
weather information obtained by numerical weather predic-
tion are used as input of the least squares support vector
machine (LS-SVM) prediction model to predict the output
power of photovoltaic cells during the black-start process.
After the reference output power at the factory bus of PV unit
is predicted from PV power prediction, whether the PV power
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TABLE 1. Correlation coefficient between PV power output and input
variables.

meets the requirement of black-start power is calculated by
the PV power index in the following section.

3) PV POWER INDEX
After predicting the reference value of PV output power, it is
necessary to form a quantitative standard to evaluate whether
the PV output power meets the requirement of black-start.
For this reason, this paper designs an evaluation index of PV
power based on probability inclination. Firstly, the lower PV
limit power of black-start is determined. By calculating the
probability inclination of PV power reference value, the fea-
sibility of black-start of PV-BESS is obtained.

In the process of black-start, the output power of photo-
voltaic power station should satisfy the power of self-service
system and provide power to the black-start load, as in (4).

NPPV-unit ≥ (1+ α)PL (4)

where: N is the number of PV units in PV power stations;
PPV−unit is the predicted output power of PV unit; PL is
the auxiliary power of thermal power units; coefficient α a
includes house-service electricity rate of PV, line loss per rate,
and reserved margin, α is taken as 0.072.

This paper defines the lower limit of PV power in black-
start, which is the minimum power PPV−lim of PV units
meeting the requirements of black-start power, as in (5).

pPV−lim =
(1+ α)PL

N
(5)

The execution process of the black-start is continuous in
time. The power curves of PV cells predicted by PV power
prediction are PV power function f (PPV−unit ), PV power
function f (PPV−unit ) and PV lower limit power function
f (PPV−lim), as shown in (6) - (7).

P+ = P(PPV−unit ) =
∫ T

0
f (PPV−unit )dv (6)

P− = P(PPV−lim) =
∫ T

0
f (PPV−lim)dv (7)

where: T is the black-start period; the relative size of the two
indicates the degree of bias to execute feasibility, the inclina-
tion of execution probability is as shown in (8).

η =
P+
P−

(8)

where: η is the executive probability inclination of black-
start; When η ≥ 1, the PV-BESS in black-start is relatively
carried out. When η < 1, the PV-BESS in black-start is not
relatively carried out. the over-charging and over-discharging
of ES.

C. FUNCTION DESIGN OF OPTIMIZATION
COORDINATION LAYER
In the black-start process, due to the input of high-power load
and the fluctuation of PV output power, over-charging and
over-discharging of ES occur, which leads to the failure of
ES to continue to use. Model predictive control (MPC) can
overcome the influence of time-varying and environmental
uncertainties and is gradually applied to power system opti-
mization control. At the same time, MPC can easily incorpo-
rate multiple constraints and can track multiple optimization
objectives simultaneously. It is suitable for solving the prob-
lem of the coordinated control of PV and ES in black-start
process.

The three elements of MPC are predictive model, rolling
optimization and feedback correction. The principle of MPC
is shown in Figure 5. Each axis represents time, the pre-
dictive time contains P time moments, and the control
time contains M time moments, and P ≥M. At the current
k-time, the optimal control command for the black-start of
PV-BESS in the control time is obtained by solving the
optimal problem in the control time on-line with the predicted
data of the corresponding predictive time (P), and only the
optimal control command for the first time (t=k+1) in the
control time is executed.

FIGURE 5. Rolling optimization time horizon of MPC. The predicted value
of the predicted time (P) is solved at k time, and the optimal output
control quantity (Nr and PESS) of the control time (M) is solved by the
predicted value, and the control command (Nr and PESS) is applied at
k+1 time.

In the black-start scene, the PV-BESS tracks the load
directly. The PV-BESS needs to provide sufficient power for
the load while maintaining the SOC of ESwithin a reasonable
range until the black-start is completed. For this reason, this
paper designs an optimal coordination layer based on Model
Predictive Control (MPC). Firstly, the state-space model of
black-start of PV-BESS process is established. Then, an opti-
mal control method for load tracking by switching PV cells
and ES assistant is proposed. In order to maximize the utiliza-
tion of PV and the SOC of ES tracking the ideal value as the
optimization goal, The number of PV cells and the power of
energy storage is optimized by MPC, the reference values of
the number of PV cells and the power of energy storage are
obtained.
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1) STATE SPACE MODEL
According to the theory of state space, assuming that the
current time is k time, the state variables x(k), the control
variables is u(k), the disturbance input is r(k), the output
variables is y(k), the state space equation can be established,
as in (9).{

x(k + 1) = Ax(k)+ B1u(k)+ B2r(k)
y(k) = Cx(k)+ D1u(k)+ D2r(k)

(9)

Based on state space theory, a load tracking model of
PV-BESS based on MPC is established. The power balance
equation is as shown in (10).

PL(k + 1) = PPV (k)+ PESS (k) (10)

where: PL(k+1) is the load power at k+1 time; PPV (k) is
the total PV power at k time; PESS (k) is the charge/discharge
power of ES at k time.

Considering the real-time feedback in the process of energy
optimization, the energy balance equation of ES is estab-
lished, as in (11).

EESS (k + 1) = EESS (k)−1TESSPESS (k) (11)

where: EESS (k+1) is the ES capacity at k+1 time; EESS (k)
is the capacity actually collected at k time; 1TESS is the
conversion coefficient from kW to kWh.

Considering the method of switching PV units in conjunc-
tion with ES to track load, the number Nr (k+1) of PV units
at k+1 time can be obtained, as in (12).

Nr (k + 1) = Nr (k)+1Nr (12)

where: Nr (k) is the number of PV units actually collected at
k time; 1Nr is the change value of PV unit number.
Equations (10), (11), and (12) are transformed into state

space models, as in (13).

 x1(k + 1)
x2(k + 1)
x3(k + 1)

 =
 0 0 0
0 1 0
0 0 1


 x1(k)
x2(k)
x3(k)


+

 1
−1T
0

0
0
1

 [
u1(k)
u2(k)

]
+

 1
0
0

 [r(k)]

 y1(k)
y2(k)
y3(k)

 =
 1 0 0
0 1 0
0 0 1


 x1(k)
x2(k)
x3(k)


(13)

where: the state variables x1, x2, and x3 are PL , EESS , and Nr ;
the control variables u1 and u2 are PESS and 1Nr ; the distur-
bance input r is PPV ; the output variables y1, y2, and y3 are
PL , EESS , and Nr .

2) OPTIMIZING OBJECTIVES
In each optimization cycle, The optimal values of the control
variables (PESS and 1Nr ) are solved, which converted to
static optimization in a fixed time. The optimization objec-
tives are as follows:

In the black-start process, PV is the main black-start
power supply. First, the difference between source and load
is reduced by switching PV cells. Then, the fluctuation of
PV output power is suppressed by ES. Therefore, the sub-
objective function J1 is designed: as in (14).

J1=min
k+M∑
k

(Nr (k+1)PPV−unit (k+1)−PL(k+1)−1P)2

(14)

where: PPV−unit (k+1) is the predicted PV unit power at
k+1 time; 1P is the compensation power.

Considering the power error caused by the PV power pre-
diction error, the PV power at k+1 time is used to compensate
the power error at k time. as in (15).

1P = PPV − Nr (k)PPV−unit (k) (15)

where: PPV−unit (k) is the power prediction value of PV units
at k time.

ES is an auxiliary black-start power supply. From the
point of view of ES itself, avoiding over-charging and over-
discharging of ES is an important factor affecting the com-
pletion of black-start of PV-BESS. From the control point of
view, controlling the ES capacity near the ideal value is con-
ducive to the safe and smooth start of black-start of PV-BESS.
Therefore, the sub-objective function J2 is designed by:

J2 = min
k+M∑
k

(EESS (k + 1)− EESSL)2 (16)

where: EESSL is the ideal capacity of ES.
The objective function at all times should satisfy power bal-

ance constraints, ES output power constraints, PV unit output
power constraints, and the SOC of ES constraints, which are
shown in (17∼21), respectively. In order to prevent frequent
switching PV units from introducing PV unit number change
limit β, the reference value of PV unit number is given after
optimizing the objective. By comparing the reference value
with the current number of PV units, when the difference is
greater than or equal to beta, the PV unit moves, and if it is
less than beta, the PV unit does not move as shown in (21).

nPPV−unit (k)+ PESS (k) = PL(k) (17)

−PESSN ≤ PESS (k) ≤ PESSN (18)

0 ≤ PPV−unit (k) ≤ PPV−unitN (19)

SOCmin ≤ SOC(k) ≤ SOCmax (20)

1Nr ≥ β (21)

where: PL(k) is the load power at k time; PESSN is the rated
power of ES; PPV−unitN is the rated power of PV units;
SOCmax and SOCmin are the upper and lower limit of SOC
of ES; SOC (k) is the SOC of ES at k time; β is the change
limit of the number of PV units.

The optimal charge/discharge power of ES and the optimal
number of PV units at k+1 time are obtained by solving the
optimization objective.
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IV. SIMULATION VERIFICATION
Aiming at verifying the feasibility and validity of the strat-
ified optimization strategy in different working conditions,
the black-start process using the PV-BESS as the black-
start power source is simulated by MATLAB/Simulink. The
simulation time is 1 hour, Data sampling interval is 1 min.
The numerical examples in this paper are derived from the
measured data of a PV power station and a thermal power
station in Hohhot. The load in the black-start process is
auxiliary machines of the thermal power plant. In this paper,
the simulation process is designed according to the starting
sequence of auxiliary machine of thermal power plant. Take
starting a 300MW thermal power unit as an example. The
black-start simulation process is shown in Table 2.

TABLE 2. Black-start simulation process.

In the simulation, the capacity of PV power station is
40 MWp, consisting of 40 1MWp PV units, and PV units
number change limit β is 3. The rolling period M is 10min.
The type of ES is lithium battery with 5.5 MW·h, the maxi-
mum charge/discharge power of ES is 15MW, the initial SOC
is 0.6, the SOCmax is 0.9, and the SOCmin is 0.1. The auxiliary
units of thermal power plant are put into by batch operation,
which is shown in Fig. 6. The total power of auxiliary units
is 12.915 MW.

FIGURE 6. Load change curve in the black-start.

In this paper, the simulation process, first of all, the data
analysis layer evaluates the PV output power during the

black-start period to determine the feasibility of the black-
start of PV-BESS. Then, the coordinated distribution of the
output power of each power source and the status of the ES
during the load input process are analyzed. In this paper, two
power coordination modes are set up: mode one is to use
the black-start control strategy in this paper, and to solve the
optimal number of PV units and ES power through MPC;
mode two is to use the traditional control method, select a
certain number of PV units, start all at the beginning of the
black-start process, and only use ES to assist the PV power
station to track the load.

In order to verify the applicability of stratified optimiza-
tion strategy for different PV output power, according to the
influence of different weather types on PV output power,
the weather types of Hohhot in 2016 are classified into sunny
days, cloudy days, rain and snow days and overcast days [37].
Among them, the proportion of 157 days in sunny days is
42.9%, 118 days in cloudy days is 32.2%, 89 days in rain
and snow days is 24.3% and 2 days in overcast days is 0.6%,
as shown in Fig 7.

FIGURE 7. The proportion and days of weather types in Hohhot in 2016.

Among them, sunshine is abundant and PV output power
is abundant in sunny days; PV output power decreases while
fluctuation increases in cloudy weather affected by cloud
shading; PV output power is the smallest and the largest fluc-
tuation in rainy and snowy weather. Sunny, cloudy and snowy
weather accounted for 99.4% of the year. Because of the small
proportion of overcast days and the small fluctuation of PV
output power, this paper chooses sunny, cloudy and snowy
weather as typical weather types to simulate and verify.

Selecting 30 June 2016 (sunny), 5 May 2016 (cloudy) and
4 June 2016 (rainy) as typical days, assuming a blackout at
11:00, 11:00-12:00 is the black-start time. First, the output
power of PV units in the black-start on typical day is pre-
dicted by LSSVMand back propagation neural network (BP).
Meteorological information data are obtained from actual
measurements of PV power stations. In this paper, the relative
root mean square error rate (eRMSE), the relative maximum
error rate (eRmax) and accuracy rate are used as the basis
for judging the prediction effect. Table 3 shows that the
accuracy of the LSSVM method is higher than that of the BP
method. The results obtained are in agreement with those in
reference [33], [34].
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TABLE 3. PV power prediction results.

A. BLACK-START SIMULATION ANALYSIS ON SUNNY DAY
With the PV output power predicted by the data analysis
layer as a reference, the PV output power during the black-
start period is evaluated to determine whether the PV output
power meets the requirements of the black-start in sunny
days. The predicted results are shown in Fig. 8. According
to the method of Section 2, the lower limit power of PV is
346.1 kW, and the probability inclination of black-start of
PV-BESS is 2.62 in typical sunny days from 11:00 to 12:00.
Because the probability inclination of black-start of PV-BESS
is greater than 1, it is known that the output power of PVmeets
the requirement of black-light storage start-up.

FIGURE 8. 1-hour power prediction curve of 1MWp PV cell on typical
sunny day.

After confirming the feasibility of PV-BESS as black-start
power supply, the simulation of black-start process of PV-
BESS is carried out by combining two power coordination
modes.

Under sunny conditions. In mode one, the optimization
coordination layer controls the number of PV units and the
charge/discharge power of ES, so that the PV-BESS tracks
the load change. Fig. 9 shows that when t is 10 min, 20 min,
and 30 min, the optimization coordination layer controls the
PV unit controller, increases the corresponding number of PV
units, and controls the output power of ES to suppress the
fluctuation of PV output power fluctuation. When t is 40 min
and 50 min, the number of PV units required to be increased
is less than the limit of PV unit number change (β), in order
to prevent frequently switching PV units, the number of PV

FIGURE 9. Output power of the PV-BESS running in mode one on typical
sunny day.

units remains unchanged. When t = 55 min, the difference
between load power and PV output power increases as PV
output power decreases, so the optimization coordination
layer controls the PV unit controller to increase three PV
units, and the ES mode is changed from discharging mode
to charging mode to maintain the SOC of ES at a reasonable
level. The SOC of ES has been controlled between 0.5 and
0.7, following the ideal value of 0.6, as shown in Fig 11.

Under sunny conditions. In mode two, 16 PV units are
determined according to formula (4) to meet the power
requirement of black-start load, so 16 PV units are started at
the beginning of black-start, and only ES is used to assist PV
power station to track load. At t is 0-10 min, no load input,
PV output power for ES charging, which is shown in Fig. 10.
When t = 9 minutes, the SOC of ES reaches the upper limit
of 0.9, as shown in Figure 11. Because there is no load input,
the PV output power continues to charge the ES. After the ES
reaches the upper limit of 0.9, the ES cannot absorb the excess
PV output power, the power of the system is unbalanced, and
the black-start of PV-BESS is forced to stop.

In the process of black-start of PV-BESS, according to
the stratified optimization strategy in this paper, the feasi-
bility of the black-start of PV-BESS is determined by data
analysis layer, and then the number of PV units and the
charge/discharge power of ES are controlled by the optimiza-
tion coordination layer. By comparing and analyzing the two
power coordination modes in black-start process, we can see
that: the mode one is to coordinate ES and PV output power
by optimizing the coordination layer so that the PV-BESS
can track load well, and SOC of ES are kept in a reasonable
state. In mode two, due to the sufficient PV output power
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FIGURE 10. Output power of the PV-BESS running in mode two on typical
sunny day.

FIGURE 11. SOC curve of ES.

and small load input in the early stage, when the ES state
reaches the upper limit of 0.9, the ES cannot absorb the
excess PV output power, resulting in power imbalance, and
the black-start process is forced to stop. The feasibility and
effectiveness of the proposed strategy are verified.

B. BLACK-START SIMULATION ANALYSIS ON CLOUDY DAY
The probability inclination of typical days is calculated to
determine whether the PV output power meets the require-
ments of black-start in cloudy weather. The predicted results
are shown in Fig. 12. The method of Section 2 that the
probability inclination of black-start of PV-BESS is 1.73 at
11:00-12:00 in the typical cloudy day. Since the probability
inclination of black-start of PV-BESS is greater than 1, it is
known that the output power of PV meets the requirement of
black-start and can be used for black-start of PV-BESS.

After confirming the feasibility of PV-BESS used as
black-start power supply, combining two power coordination

FIGURE 12. 1-hour power prediction curve of 1MWp PV cell on typical
cloudy day.

modes, the simulation of black-start process is carried out on
cloudy day.

Under Cloudy conditions. In mode one, the optimization
coordination layer controls the number of PV units and the
charge/discharge power of ES to make the PV-BESS follow
the load change. As shown in Fig. 13, When t = 10 min,
20 min, and 30 min, due to the increase of load, the optimiza-
tion coordination layer increases the corresponding number
of PV units. At the same time, the output power of ES is
controlled to suppress the fluctuation of PV output power
fluctuation. When t = 40 minutes, the number of PV units
needed is less than the limit of PV unit number change (β).
In order to prevent frequent switching of PV units, the num-
ber of PV units remains unchanged. When t = 49min, due
to the increase of PV output power and ES capacity, the
optimization coordination layer cut off four PV units, and

FIGURE 13. Output power of the PV-BESS running in mode one on typical
cloudy day.
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FIGURE 14. Output power of the PV-BESS running in mode two on typical
cloudy day.

FIGURE 15. SOC curve of ES.

the ES mode is changed from charging mode to discharging
mode. The SOC of ES has been controlled between 0.5 and
0.7, following the ideal value of 0.6, as shown in Fig 15.

Under Cloudy conditions. In mode two, 22 PV units are
determined according to formula (4) to meet the power
requirement of black-start load, so all 22 PV units are started
at the beginning of black-start, and only ES is used to assist
PV power station to track load. In t is 0-10 min, no load input,
PV output power charge for ES, which is shown in Figure 14.
When t= 10 minutes, the SOC of ES reaches the upper limit
of 0.9, as shown in Figure 15. Because there is no load input,
the PV output power continues to charge the ES. After the ES
reaches the upper limit of 0.9, the ES cannot absorb the excess
PV output power, the power of the system is unbalanced, and
the black-start of PV-BESS is forced to stop.

The above simulation shows that in typical cloudy weather,
the data analysis layer determines the feasibility of the

black-start of PV-BESS firstly, and then through the com-
parison of mode one and mode two, it can be seen that the
stratified optimization strategy can reasonably coordinate and
control the output power of PV and ES to meet the load
demand to achieve black-start, which verifies the feasibility
and effectiveness of the proposed strategy.

C. BLACK-START SIMULATION ANALYSIS ON RAINY DAY
Taking the PV output power predicted by the data analysis
layer as a reference, it is determined whether the PV output
power meets the requirement of black-start on rainy days.
The predicted results are shown in Fig. 16. The method of
Section 2 that the probability inclination of the black-start of
PV-BESS is 0.87 at 11:00-12:00 in typical rainy days.
Because the probability inclination of the black-start of
PV-BESS is less than 1, the output power of PV cannot meet
the requirement of black-start, so the black-start of PV-BESS
cannot be carried out.

FIGURE 16. 1-hour power prediction curve of 1MWp PV cell on typical
rainy day.

From the above simulation, we can see that in typical rainy
days, the data analysis layer first evaluates the feasibility of
the black-start of PV-BESS, because the PV output power is
insufficient, so the PV-BESS cannot be used as the black-start
power supply in this period.

From all the above simulations, it can be seen that in
the typical sunny and cloudy days, the data analysis layer
calculates that the probability inclination of black-start of
PV-BESS is greater than 1, so the black-start of PV-BESS
can be carried out; in the typical rainy days, the data analysis
layer calculates that the probability inclination of the black-
start of PV-BESS is less than 1, so the black-start of PV-BESS
cannot be carried out. This is shown in Table 4.

TABLE 4. Feasibility assessment results for typical days.
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TABLE 5. Comparison of two power coordination modes.

In the black-start process on a typical sunny day, by com-
paring the two power coordination modes, it can be seen that
the average and maximum difference between the PV and
the load in mode one are 2.4% and 14.6% of that in mode
two. The maximum and minimum SOC values of ES in mode
one are 0.62 and 0.56, within the range of 0.5-0.7. In mode
two, the maximum and minimum SOC values of ES are
0.9 and 0.6, and the ES is overcharged. Mode one completes
the black-start, whereas mode two fails to complete the black-
start due to overcharging of ES.

In the black-start process on a typical cloudy day, by com-
paring the two power coordination modes, it can be seen that
the average and maximum difference between the PV and the
load in mode one are 3.3% and 15.3% of that in mode two.
The maximum and minimum SOC values of ES in mode one
are 0.68 and 0.6, within the range of 0.5-0.7. In mode two, the
maximum and minimum SOC values of ES are 0.9 and 0.6,
and the ES is overcharged. Mode one completes the black-
start, whereas mode two fails to complete the black-start due
to overcharging of ES. From the comparison of different
modes of the PV-BESS under different weather conditions,
it can be seen that the optimization coordination layer reduces
the depth of charge/discharge power of ES, prevents the
over-charging and over-discharging of ES, and improves the
utilization of PV. This is shown in Table 5.

The stratified optimization strategy proposed in this paper
firstly evaluates the feasibility of the black-start of PV-BESS
through data analysis layer, which can determine whether the
output power of the PV-BESS can meet the power require-
ment of black-start load. Then the optimization coordina-
tion layer can effectively coordinate the output power of PV
and ES, make the output power of the PV-BESS meet the
load requirement, and prevent the over-charging and over-
discharging of ES. The stratified optimization strategy in this
paper can effectively evaluate the feasibility of the black-start
of PV-BESS, and coordinate the output power of PV and ES
to complete black-start.

V. CONCLUSION
When the PV-BESS is used as black-start power supply, due
to the randomness of PV power generation, the uncertainty of
the feasibility of black-start of PV-BESS, and the fluctuation
of high-power load input and PV output power, the problem
of over-charging and over-discharging of ES appears. In this
paper, a stratified optimization strategy suitable for the black-
start of PV-BESS is designed to make the output power of
PV-BESS meet the requirements of black-start power, while
the SOC of ES is kept in a reasonable range. A simula-
tion verification of black-start of a local power grid with a
high proportion of PV power supply is carried out based on
MATLAB/Simulink.

The results of this study can be summarized as follows:
1) In this paper, a stratified optimization strategy suitable

for the black-start of PV-BESS is designed, which
mainly solves the uncertainties of the feasibility of the
PV-BESS as black-start power supply and the prob-
lems of over-charging and over-discharging of ES. The
data analysis layer based on PV power index and PV
power prediction and the optimization coordination
layer based onMPC are established respectively, which
can ensure that PV output power meets the requirement
of black-start power and provide enough power for
load, and provide a reference for renewable energy to
participate in black-start.

2) In view of the uncertainty of the feasibility of the
PV-BESS as a black-start power source, the data analy-
sis layer of stratified optimization strategy is designed
in this paper. Firstly, based on similarity matrix sort-
ing and combining the characteristics of black-start
process, a PV power prediction method suitable for
black-start is designed. Then, aiming at meeting the
black-start load, a PV power index for the black-start of
PV-BESS is proposed based on probability inclination,
and the PV lower limit power of black-start is defined.
The probability inclination of black-start is calculated
by combining the PV lower limit power. The feasibility
of black-start of PV-BESS is evaluated.

3) Aiming at the problem of over-charging and over-
discharging of ES in the process of the black-start of
PV-BESS, in this paper, an optimal coordination layer
of stratified optimization strategy is designed. Firstly,
the state-space model of the black-start of PV-BESS
is established. Then, an optimal control method for
load tracking by switching PV cells and ES assistant
is proposed. The multi-objective optimization function
is solved byMPC to control the output power of PV and
ES so that the PV-BESS can provide sufficient power
for the load under the condition of energy storage con-
straints.

In this paper, the feasibility of the black-start of PV-BESS
and the coordinated operation of PV and ES are preliminarily
studied, but the effects of load input and fluctuation of PV on
voltage and frequency are not considered. Therefore, the con-
trol strategies of PV and ES need to be further studied in the
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future. At the same time, after the black-start of PV-BESS,
how the PV-BESS can be used for the subsequent restoration
of the power grid needs to be further studied on the parallel
technology between the PV-BESS and thermal power units in
the future.

REFERENCES
[1] W. J. Liu, Z. Z. Lin, F. S. Wen, and G. Ledwich, ‘‘Intuitionistic fuzzy

Choquet integral operator-based approach for black-start decision-
making,’’ IET Generation, Transmiss. Distribution, vol. 6, no. 5,
pp. 378–386, May 2012.

[2] G. Patsakis, D. Rajan, I. Aravena, J. Rios, and S. Oren, ‘‘Optimal black
start allocation for power system restoration,’’ IEEE Trans. Power Syst.,
vol. 33, no. 6, pp. 6766–6776, Nov. 2018.

[3] Y.-T. Chou, C.-W. Liu, Y.-J. Wang, C.-C. Wu, and C.-C. Lin, ‘‘Develop-
ment of a black start decision supporting system for isolated power sys-
tems,’’ IEEE Trans. Power Syst., vol. 28, no. 3, pp. 2202–2210, Aug. 2013.

[4] A. Castillo, ‘‘Risk analysis and management in power outage and restora-
tion: A literature survey,’’ Electr. Power Syst. Res., vol. 107, pp. 9–15,
Feb. 2014.

[5] C. Xia, C. Li, H. Lan, Z. Du, and Y. Chen, ‘‘Frequency regulation strategy
based on variable-parameter frequency limit control during black start,’’
IET Gener., Transmiss. Distrib., vol. 12, no. 17, pp. 4002–4008, Sep. 2018.

[6] M. C. Lian, Z. G. Dong, and S. Li, ‘‘The regional power grid black-start
scheme evaluation based on TOPSIS,’’ J. Northeast Dianli Univ., vol. 34,
no. 2, pp. 32–37, Apr. 2014.

[7] W. Sun, C.-C. Liu, and L. Zhang, ‘‘Optimal generator start-up strategy for
bulk power system restoration,’’ IEEE Trans. Power Syst., vol. 26, no. 3,
pp. 1357–1366, Aug. 2011.

[8] A. Ketabi, A. Karimizadeh, and M. Shahidehpour, ‘‘Optimal generation
units start-up sequence during restoration of power system considering
network reliability using bi-level optimization,’’ Int. J. Elect. Power Energy
Syst., vol. 104, pp. 772–783, Jan. 2019.

[9] C. L. Moreira, F. O. Resende, and J. A. P. Lopes, ‘‘Using low voltage
MicroGrids for service restoration,’’ IEEE Trans. Power Syst., vol. 22,
no. 1, pp. 395–403, Feb. 2007.

[10] P. Mukhopadhyay, V. Pandey, A. P. Das, C. Kumar, P. A. R. Bende,
K. K. Parbhakar, J. Agasty, R. P. Rakhia, and C. Felix, ‘‘Black start
experiences for 400 kV hydro power plant in western regional grid of
India,’’ in Proc. Nat. Power Syst. Conf. (NPSC), Bhubaneswar, India,
Dec. 2016, pp. 1–6.

[11] Y. Liu, R. Fan, and V. Terzija, ‘‘Power system restoration: A literature
review from 2006 to 2016,’’ J. Mod. Power Syst. Clean Energy, vol. 4,
no. 3, pp. 332–341, Jul. 2016.

[12] C. Li, S. Zhang, J. Zhang, J. Qi, J. Li, Q. Guo, and H. You, ‘‘Method
for the energy storage configuration of wind power plants with energy
storage systems used for black-start,’’ Energies, vol. 11, no. 12, p. 3394,
Dec. 2018.

[13] J. Li, X.-Y. Ma, C.-C. Liu, and K. P. Schneider, ‘‘Distribution system
restoration with microgrids using spanning tree search,’’ IEEE Trans.
Power Syst., vol. 29, no. 6, pp. 3021–3029, Nov. 2014.

[14] B. Zhao, X. Dong, and J. Bornemann, ‘‘Service restoration for a renewable-
powered microgrid in unscheduled island mode,’’ IEEE Trans. Smart Grid,
vol. 6, no. 3, pp. 1128–1136, May 2015.

[15] J. Li, Y. Ma, G. Mu, X. Feng, G. Yan, G. Guo, and T. Zhang, ‘‘Optimal
configuration of energy storage system coordinating wind turbine to par-
ticipate power system primary frequency regulation,’’ Energies, vol. 11,
no. 6, p. 1396, May 2018.

[16] B. Zhang, P. Dehghanian, and M. Kezunovic, ‘‘Optimal allocation of PV
generation and battery storage for enhanced resilience,’’ IEEE Trans. Smart
Grid, vol. 10, no. 1, pp. 535–545, Jan. 2019.

[17] G. B. M. A. Litjens, E. Worrell, and W. G. J. H. M. van Sark, ‘‘Eco-
nomic benefits of combining self-consumption enhancement with fre-
quency restoration reserves provision by photovoltaic-battery systems,’’
Appl. Energy, vol. 223, pp. 172–187, Aug. 2018.

[18] W. Jing, C. H. Lai, W. S. H. Wong, and M. L. D. Wong, ‘‘A comprehensive
study of battery-supercapacitor hybrid energy storage system for stan-
dalone PV power system in rural electrification,’’ Appl. Energy, vol. 224,
pp. 340–356, Aug. 2018.

[19] Z. Xu, P. Yang, Z. Zeng, J. Peng, and Z. Zhao, ‘‘Black start strategy
for PV-ESS multi-microgrids with three-phase/single-phase architecture,’’
Energies, vol. 9, no. 5, p. 372, May 2016.

[20] W. Liu, L. Sun, Z. Lin, F. Wen, and Y. Xue, ‘‘Multi-objective restoration
optimisation of power systems with battery energy storage systems,’’
IET Gener. Transm. Distrib., vol. 10, no. 7, pp. 1749–1757, May 2016.

[21] X. U. Shaohua and L. I. Jianlin, ‘‘Grid-connected/island operation control
strategy for photovoltaic/battery micro-grid,’’ Proc. CSEE, vol. 33, no. 34,
pp. 25–33, Dec. 2013.

[22] M. B. Delghavi, S. Shoja-Majidabad, and A. Yazdani, ‘‘Fractional-order
sliding-mode control of islanded distributed energy resource systems,’’
IEEE Trans. Sustain. Enery, vol. 7, no. 4, pp. 1482–1491, Oct. 2016.

[23] H. Shuai, J. Fang, X. Ai, J. Wen, and H. He, ‘‘Optimal real-time operation
strategy for microgrid: An ADP-based stochastic nonlinear optimization
approach,’’ IEEE Trans. Sustain. Enery, vol. 10, no. 2, pp. 931–942,
Apr. 2019.

[24] Q. Fu, A. Nasiri, V. Bhavaraju, A. Solanki, T. Abdallah, and D. C. Yu,
‘‘Transition management of microgrids with high penetration of renewable
energy,’’ IEEE Trans. Smart Grid, vol. 5, no. 2, pp. 539–549, Mar. 2014.

[25] P. Lin, Z. Peng, Y. Lai, S. Cheng, Z. Chen, and L. Wu, ‘‘Short-term
power prediction for photovoltaic power plants using a hybrid improved
Kmeans-GRA-Elman model based on multivariate meteorological fac-
tors and historical power datasets,’’ Energy Convers. Manage., vol. 177,
pp. 704–717, Dec. 2018.

[26] W.Wei and Z. Shujian, ‘‘Analysis on the operation stability of photovoltaic
inverter in weak grid,’’ J. Northeast Electr. Power Univ., vol. 38, no. 1,
pp. 8–14, Feb. 2018.

[27] M. Ye, Y. Liu, X. Gu, S. Han, and Q. Hu, ‘‘Black-start value evaluation of
wind power using a conditional risk method and its application,’’ Power
Syst. Technol., vol. 42, no. 11, pp. 3796–3805, Nov. 2018.

[28] Y. Zhao, Z. Lin, Y. Ding, Y. Liu, L. Sun, and Y. Yan, ‘‘A model predictive
control based generator start-up optimization strategy for restoration with
microgrids as black-start resources,’’ IEEE Trans. Power Syst., vol. 33,
no. 6, pp. 7189–7203, Nov. 2018.

[29] A. Sharma, D. Srinivasan, and A. Trivedi, ‘‘A decentralized multi-agent
approach for service restoration in uncertain environment,’’ IEEE Trans.
Smart Grid, vol. 9, no. 4, pp. 3394–3405, Jul. 2018.

[30] M. Yang, X. Chen, J. Du, and Y. Cui, ‘‘Ultra-short-term multistep wind
power prediction based on improved EMD and reconstruction method
using run-length analysis,’’ IEEE Access, vol. 6, pp. 31908–31917,
Jun. 2018.

[31] L. Yingpei and H. Yaxin, ‘‘A coordinated control strategy of PV battery-
energy storage hybrid power system for black-start,’’ Power Syst. Technol.,
vol. 41, no. 9, pp. 2979–2986, Sep. 2017.

[32] J. Li, T. Zhang, L. Qi, and G. Yan, ‘‘A method for the realization of
an interruption generator based on voltage source converters,’’ Energies,
vol. 10, no. 10, p. 1642, Oct. 2017.

[33] H. A. Kazem and J. H. Yousif, ‘‘Comparison of prediction methods of
photovoltaic power system production using a measured dataset,’’ Energy
Convers. Manage., vol. 148, pp. 1070–1081, Sep. 2017.

[34] F. Wang, Z. Zhen, B. Wang, and Z. Mi, ‘‘Comparative study on KNN and
SVM based weather classification models for day ahead short term solar
PV power forecasting,’’ Appl. Sci., vol. 8, no. 1, p. 28, Jan. 2018.

[35] J. Li, J. K. Ward, J. Tong, L. Collins, and G. Platt, ‘‘Machine learning
for solar irradiance forecasting of photovoltaic system,’’ Renew. Energy,
vol. 90, pp. 542–553, May 2016.

[36] C. Wang and J. Lei, ‘‘Ultra-short-term power output forecasting of dis-
tributed photovoltaic based on error classification,’’ South. Power Syst.
Technol., vol. 9, no. 4, pp. 41–46, 2015.

[37] J. Tan, C. Deng, W. Yang, N. Liang, and F. Li, ‘‘Ultra-short-term pho-
tovoltaic power forecasting in microgrid based on Adaboost clustering,’’
Automat. Electr. Power Syst., vol. 41, no. 21, pp. 33–39, Nov. 2017.

127352 VOLUME 7, 2019


	INTRODUCTION
	PV-BESS USED FOR BLACK-START
	BLACK-START PROCESS OF PV-BESS
	STRUCTURE OF PV-BESS

	THE STRATIFIED OPTIMIZATION STRATEGY
	FRAMEWORK OF STRATIFIED OPTIMIZATION STRATEGY
	FUNCTIONAL DESIGN OF DATA ANALYSIS LAYER
	IMPROVED PV POWER PREDICTION BASED ON BLACK-START PROCESS
	SELECTION OF PREDICTIVE TRAINING SAMPLES
	PV POWER INDEX

	FUNCTION DESIGN OF OPTIMIZATION COORDINATION LAYER
	STATE SPACE MODEL
	OPTIMIZING OBJECTIVES


	SIMULATION VERIFICATION
	BLACK-START SIMULATION ANALYSIS ON SUNNY DAY
	BLACK-START SIMULATION ANALYSIS ON CLOUDY DAY
	BLACK-START SIMULATION ANALYSIS ON RAINY DAY

	CONCLUSION
	REFERENCES

