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ABSTRACT Magnetic Induction (MI) is an efficient wireless communication method to deploy operational
internet of underground things (IoUT) for oil and gas reservoirs. The IoUT consists of underground things
which are capable of sensing the underground environment and communicating with the surface. The
MI-based IoUT enable many applications, such as monitoring of the oil rigs, optimized fracturing, and
optimized extraction. Most of these applications are dependent on the location of the underground things
and therefore require accurate localization techniques. The existing localization techniques for MI-based
underground sensing networks are two-dimensional and do not characterize the achievable accuracy of
the developed methods, which are both crucial and challenging tasks. Therefore, this paper proposes a
novel three-dimensional (3D) localization technique based on Isometric scaling (Isomap) for future IoUT.
Moreover, this paper also presents the closed-form expression of the Cramer Rao lower bound (CRLB)
for the proposed technique, which takes into account the channel parameters of the underground magnetic-
induction. The derived CRLB provides the suggestions for an MI-based underground localization system
by associating the system parameters with the error trend. Numerical results demonstrate that localization
accuracy is affected by different channel and networks parameters such as the number of underground things,
ranging error variance, size of the coils, and the transmitting power. The root mean square error performance
of the proposed technique shows that increase in the number of turns of the coils, transmitting power, and the
number of anchors improves the performance. Results also show that the proposed technique is robust to the
ranging error variance in the range of 10 to 30 %; however, a further increase in the ranging error variance
does not allow to achieve acceptable accuracy. Also, the results show that the proposed technique achieves
an average of 30 % better localization accuracy compare to the traditional methods.

INDEX TERMS Magnetic induction, isometric scaling, internet of underground things, three-dimensional,
localization, Cramer Rao lower bound.

I. INTRODUCTION
According to the report of the international energy agency
(IEA), the energy needs of the world is expected to escalate
by 40% in 2030 (see Fig. 1) [1]. This ever-increasing demand
for energy constitutes 20 % and 50 % escalation from the oil
and gas industries, respectively. However, the operating envi-
ronment of the oil and gas industries is challenging to fulfill
this inexorable demand for energy [2]. One of the primary
challenges of underground oil and gas reservoirs is to obtain
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their real-time information. This challenge can be addressed
by using the internet of underground things (IoUT) which
can optimize the production of oil and gas, monitor the flow
of oil and gas, and can monitor the reservoir [3]. The IoUT
based intelligent oil and gas fields can improve the accuracy,
integrity, and timeliness of the production process [4].

Although IoUT enable multiple applications for under-
ground oil and gas reservoirs, the challenging underground
environment prevents the use of conventional terrestrial wire-
less communication systems. Therefore, magnetic-induction
(MI) has emerged as a promising wireless communica-
tion technology to develop practical underground sensing
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FIGURE 1. World projected energy demand by IEA.

systems [5]–[14]. MI uses time-varying magnetic fields to
transmit the information in the underground environment.
MI provides reliable and long-range communication in the
underground environment as compared to its counterpart
electromagnetic waves (EM) [15]. The performance of the
EM in the underground is profoundly affected by proper-
ties of the subsurface environment such as soil structure,
underground medium (soil, water, sand, etc.), and water con-
tents [16]. However, all these impediments cause less atten-
uation to the MI-based communication systems. Besides, the
EM-based systems require large size antennas for commu-
nication, which is impractical for the underground environ-
ment. Hence, MI-based systems are more practical because it
relies on tiny size coil antennas.

Subsequently, efforts have been made in the recent past
to develop MI-based underground sensing systems. How-
ever, most of the applications of the underground sensing
systems such as monitoring of oil rig, optimized fracturing,
and collecting of geo-tagged sensing data, require location
information of the deployed sensors (underground things)
[15], [17]. Therefore, the authors in [17] have proposed a
localization scheme for underground sensing which utilizes
the magnetic induction channel for distance estimation. The
authors have used semi-definite programming (SDP) relax-
ation method for the distance estimation whereas the sensor
nodes position is estimated by leveraging alternating direc-
tion augmented Lagrangian method (ADM) and conjugate
gradient (CG) technique. The proposed solution in [17] is
for two-dimensional underground sensing network while the
three-dimensional (3D) nature of the underground environ-
ment requires 3D localization, which is more challenging.
Moreover, the existing localization solutions do not consider
the achievable accuracy for MI-based underground sensing
systems, which is a crucial design parameter for any position-
ing system. Therefore, motivated by the above challenges,
we present a novel MI-based 3D localization technique for
the IoUT and provide the theoretical accuracy limit for the
proposed technique. The major contributions of the paper are
summarized as follows:
• A realistic 3D architecture of MI-based IoUT is pre-
sented for oil and gas reservoirs. Based on the 3D

model, a novel localization technique is proposed which
takes into account the noisyMI-channel based estimated
distances and estimate the location of underground
things. The positions estimated by Isometric scal-
ing (Isomap) are refined by using a linear transformation
technique.

• A closed-form expression for the Cramer Rao Lower
bound (CRLB) is also derived for the proposed 3D
MI-based IoUT localization technique. The derived
lower bound is useful to compare the results of different
MI-based underground localization systems.

• Numerical results are used to evaluate the performance
of the proposed localization technique which is com-
pared to the traditional methods and the derived CRLB,
concerning different channel and network parameters
such as range measurement errors, network size, and the
number of anchors for MI-based IoUT.

The remainder of the paper is organized as follows.
In section II and III, we present the related work and system
model respectively. Section IV and V present the proposed
3D localization technique and formulation of the CRLB
for MI-based IoUT, respectively. In section VI, we provide
numerical results to validate the performance of the proposed
technique. Finally, section VII concludes the paper.

II. RELATED WORK
The literature on localization techniques for terrestrial and
underwater wireless networks is rich. In [18] and [19]
classification of localization techniques for terrestrial and
marine wireless networks is presented respectively where
the localization schemes are categorized based on the
type of computation (centralized/distributed), ranging tech-
nique (range-based/range-free), and space (2D/3D). How-
ever, the research work on the development of localization
systems for the underground environment is limited due
to numerous challenges such as non-availability of global
positioning system (GPS) signals, high attenuation of radio
frequency (RF) and electromagnetic (EM) waves, light-less
environment, and narrow operational area. Even though
localization techniques for GPS-denied environment such as
underwater or indoor have been well developed, it is hard
to apply those techniques to underground localization [3].
Both underwater and indoor localization techniques are based
on either RF, acoustic, or optical signals [20]. However,
the subsurface environment does not support the use of these
signals, and therefore, the localization techniques developed
for the underwater or indoor environment cannot be directly
applied. Thus, a two-dimensional (2D) localization technique
has been proposed in [17] for MI-based sensing networks.
The authors in [17] have introduced the use of MI induction
for channel-based distance estimation where the underground
sensors were able to estimate the distances to their neigh-
bors and the anchor nodes. Furthermore, a modified SDP
relaxation-based technique is used, which jointly uses ADM
and CG to determine the final position of the sensors.
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However, in sparse underground sensing networks,
the connectivity of the network is limited due to
the short transmission distance of MI communication.
Hence, localization of the underground things is challenging
due to the limited connectivity, directionality of MI coils,
interference from the Earth’s magnetic field and underground
metals [12], [21], [22]. Hence, in [15] the authors have
investigated one of the challenges mentioned above, i.e., the
impact of minerals and rocks on the MI-based underground
localization. Attenuation properties have been estimated for
different mediums in the underground, which significantly
affects the performance of the localization techniques.

All of the above works consider two-dimensional localiza-
tion for MI-based underground sensor networks. However,
the subsurface environment is 3D and therefore requires 3D
localization techniques. Furthermore, to the best of author’s
knowledge, the existing works do not characterize the achiev-
able accuracy of the localization techniques. Therefore, moti-
vated by the issues mentioned above, we propose a novel 3D
dimensional localization technique, which is more realistic
for the underground environment. The proposed 3D dimen-
sional localization technique is based on Isomap, which is
well-suited for 3D environments. Moreover, we also pro-
vide analysis for the proposed 3D localization technique for
IoUT. Isomap-based proposed technique has better localiza-
tion accuracy compare to its counterparts, weighted centroid
(WC) [23], weighted-multidimensional scaling (WMDS)
[24], and local linear embedding (LLE) [25] because the
Isomap technique estimates the missing pairwise distance
in three-dimensional space more accurately. The centroid
localization techniques and its variants are not robust to the
ranging errors and therefore yields low localization accuracy.
Also, WC localization technique is center biased in nature,
which results in a large localization error for the boundary
nodes [23]. Moreover, they also require a large number of
anchor nodes to improve the localization accuracy. On the
other hand, WMDS and LLE provide an acceptable localiza-
tion accuracy for two-dimensional networks since they are
based on pairwise Euclidean distances. However, calculat-
ing the pairwise Euclidean distance in a three-dimensional
network may not be a good approximation since Euclidean
distance may fail to discover the nonlinear structure of
the network. Also, the WMDS and LLE methods preserve
the local structure, which reduces its complexity but may
not guarantee global convergence and therefore requires the
dense deployment of nodes in the network. Hence, we con-
sider and Isomap based approach, which takes into account
the 3D nature of the network by estimating the pairwise
geodesic distances. Note that the proposed Isomap-based
technique is centralized, which guarantees global conver-
gence at the cost of high complexity.

Moreover, in the past, the estimation bounds for the time
of arrival [26], the angle of arrival [27], time difference of
arrival [28], and received signal strength [29] based localiza-
tion techniques have been investigated. Subsequently, these
findings have opened the door for developing accurate and

robust localization algorithms. Therefore, we expect the same
for our proposed lower bound for MI-based IoUT. The per-
formance of the localization techniques is characterized by
the CRLB, which is a non-linear estimation problem. Dif-
ferent CRLB analysis exists in the literature which not only
depends on the ranging method but also depends on the other
parameters such as multipath effect, number of anchors, and
network type (single hop or multi-hop) [30]–[32]. Due to
the simplicity and generic expressions of the CRLB, it is an
attractive analyzing tool for localization systems. Therefore,
in this paper, we derive the expression of the CRLB for
MI-based IoUT localization, which takes into account the
channel parameters of the underground magnetic-induction.
The derived CRLB provides the suggestions for an MI-based
underground localization system by associating the system
parameters with the error trend. The proposed 3D localiza-
tion technique and the derived expressions for the CRLB
are general enough to be applicable for various multi-hop
wireless communication networks. However, we primarily
focused on multi-hop MI-based IoUT localization since we
use the MI-based underground channel model for the range
estimation. The received power that we utilize for the range
estimation is based on the underground MI-communications.

III. SYSTEM MODEL
In this section, we first introduce the 3D architecture for
MI-based IoUT. Then the wireless propagation model is pre-
sented for the distance estimation.

A. MI-BASED IOUT SETUP
We consider the conventional network setup for 3DMI-based
IoUT which consists on N number of random underground
things and M number of anchor nodes as shown in Fig. 2.
The underground things are injected into the oil reservoir by
using hydraulic fracturing [33], [34]. The underground things
are uniformly distributed, and their positions are denoted by
S = {si}Ni=1 where si = {xi, yi, zi} represents the 3D position
of the i-th underground thing. As anchor nodes are necessary

FIGURE 2. System model.
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to find the position of the underground things, we assume
that the anchor nodes are attached to the fracturing well
with known positions {sj}Mj=1 where sj = {xj, yj, zj} is the
3D position of the j-th anchor. The anchor nodes use large
dipole antennas to communicate with the underground things
by using the MI communication link. Hence, the downlink
is a single hop channel (dotted black line in Fig. 2) while
the underground things use multi-hop channel for the uplink
transmission (solid red line in Fig. 2) due to their limited
range. In practice, the transmission range of MI coils is
enhanced by using the waveguide structure for coils [8].
Optimal deployment methods for underground waveguide
structures were investigated in [8]. We also assume that the
anchor nodes have higher transmission range as they can be
attached to the external power sources [33]. The underground
things can communicate to close by underground things and
the anchors by using magnetic induction.

Based on the above network setup, the problem of local-
ization is defined as, to estimate the unknown location of
underground things for a given set of anchors and estimated
MI-based distances. Note that the MI-based estimated dis-
tances between the underground things and the anchors are
shared with a central node at the surface which computes
the missing pairwise distances and determines the location
of underground things. The centralized node at the surface
creates a global map of the IoUT network with the location
of each underground node.

B. MI-BASED UNDERGROUND DISTANCE ESTIMATION
The information exchange between the transmitting node
and the receiving node in MI-based IoUT is accomplished
by using a time-varying magnetic field which is produced
by the modulated sinusoidal signal from the transmitter coil
antenna. The time-varying magnetic field induces current at
the receiver coil antenna which is demodulated to retrieve
the information. Fig. 3 shows a realization of an MI-based
transceiver. Consider that the current in the transmitting coil
is I = I0 e−jωt , where I0 is the direct current, ω is the angular
frequency, and t is the instantaneous time. This current can
then induce current in the nearby coil by the phenomena of
mutual induction. However, a single coil cannot guarantee
to receive an MI signal if the receiving coil is not well
coupled with the transmitting coil. Therefore, in the harsh
underground environment, we assume the tri-directional coil
receiver structure proposed in [9] for receiving strong MI

FIGURE 3. MI communication link.

FIGURE 4. Tri-directional MI communication.

signal (see Fig 4). The advantage of using a tri-directional MI
coil is that it provides omnidirectional coverage. The beams
from each coil are pointed along each axis of the Cartesian
coordinate system. Since the coils are orthogonal to each
other and do not interfere with each other, the signals from
all the three coils are combined at the receiver. Therefore,
the impact of misalignment between the coils is minimized,
such that the transmitted signal is received from at least a
single coil [9].

Based on the magnetic induction, the relationship between
the transmit and received power at high frequency f and large
number of transmitter coil turns Nt is given in [35] as

Prj =
ωµPtiNrjNtir

3
ti r

3
rj sin

2 αij

16R0d6ij
, (1)

where ω is the angular frequency, µ is the permeability of
soil, Pti is the transmit power,Nrj is the number of turns in the
receiver coil, rti and rri are the diameters of the transmitter and
receiver coil respectively, αij is the angle between the axes of
the transmitter and receiver coils, R0 is the resistance of a unit
length loop, and dij =‖ si − sj ‖ is the distance between the
transmitter and the receiver coil. The received power expres-
sion in (1) has been experimentally validated in [9]. Note that
the path loss equation in (1) do not consider the effect of skin
depth due to their little impact on the low carrier frequencies.
However, in case of soil medium, the frequencies range is
wide and therefore skin depth effect needs to be considered.
Therefore, the distance between any two underground things
in the presence of skin effect is written as

d̂ij = f (Prj ) = arg
{
dij|2

}
(2)

where 2 is given in [17] as

2 = 10
(Pti−Prj )

10 − 1 =
16R0tR0r d

3
ij

ω2µ2NtiNrir
3
ti r

3
rjG

2(σ, ω, dij)
. (3)

In (3) the term G2(σ, ω, dij) represents the loss due to skin
depth where σ is the electrical conductivity of the soil.

IV. PROPOSED 3D LOCALIZATION TECHNIQUE
Based on the MI-based channel the distances between any
two nodes i and j is estimated using (2). Since the transmis-
sion range of MI-links in the underground environment is
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limited, each node can only estimate distance to the close by
nodes. These single neighborhood distances are shared with
the central station at surface. The central station employs a
matrix completion strategy such as shortest path estimation
to find the missing pairwise distance as follows:

ρij =

{
d̂ij if dij ≤ dm,

d̂ih(1) +
∑L−1

k=1
d̂h(k),h(k+1) + d̂h(L)j otherwise,

(4)

where dm is the maximum transmission distance of the coil, L
represents the number of hops between node i and j whereas
h(1), . . . , h(L) are the indices of the intermediate coils which
are determined by the Dijkstra shortest path algorithm [36].
Here, for simplicity, we consider uniform power allocation
for each underground coil for homogeneous connectivity.
However, different power allocation strategies can be used,
which can result in different magnetic vectors, generating a
heterogeneous connected network [37]. The heterogeneous
connected networks will require topology control mecha-
nisms, such as the one in [38] and the references therein. The
pairwise distances in (4) will significantly change in case of
heterogeneous connectivity.

Collection of all the values of ρij results in the following
diagonal squared geodesic distance matrix (SGDM)

9 =

 0 · · · ρ2i,(N+M )
...

. . .
...

ρ2(N+M ),1 · · · 0

. (5)

Matrix 9 is a square symmetric matrix where ρij = ρji
and ρii = 0. Once matrix 9 is formed, then dimensionality
reduction techniques such as multidimensional scaling, prin-
cipal component analysis, and Isomap can be used to visu-
alize the high dimensional distances into low-dimensional
coordinates [39]. In this paper, we use Isomap techniques
because it is more suited for three-dimensional architec-
tures [40]. Isomap tries to minimize the following cost func-
tion to reduce the high-dimensional estimated distances into
three-dimensional lower space coordinates

8(S) =
∑
ij

(ρ2ij− ‖ si − sj ‖2), (6)

where ‖ si − sj ‖2 is the squared Euclidean distance between
node i and j. Isomap tries to minimize the above cost function
over all combinations of i and j. The analytical solution for
the minimization of (6) does not exist. However, a gradient
basedminimization approachwas proposed byKrusal in [41].
In Kruskal’s approach, a centering operator G = I − 11′

1′1 is
applied to the SGDM, i.e., − 1

2G9G, where I is the identity
matrix and 1 is the vector of ones. The double centering oper-
ation subtracts the row and column means of a matrix from
its elements and then adding the grand mean. This operation
results in a double centered matrix, H = −G9GT /2, where

the elements of H are given as

hij=−0.5
(
ρ2ij−

1
T

T∑
i=1

ρ2ij−
1
T

T∑
j=1

ρ2ij−
1
T 2

T∑
i=1

T∑
j=1

ρ2ij

)
,

(7)

where T = N +M . Taking the Eigenvalue decomposition of
H yields

S̃ = V
√
U, (8)

where V and U are the eigenvectors and eigenvalues of H
respectively. The dimensions of V and U are T × 3 and
3 × 3 respectively, for 3D estimation. S̃ is a T × 3 matrix
where each row represents the 3D coordinate of a node with
respect to other nodes in the network. Note that the 3D
coordinates are relative to each other and do not have an
actual coordinate system. To convert these local coordinates
of the nodes to geographic coordinates, linear transformation
techniques such Helmert transformation [42] or Procrustes
analysis [43] is used. Based on the anchor positions and linear
transformation, the location of the nodes are estimated as
follows:

Ŝ = $ς (S̃)+ τ (9)

where $ , ς , and τ are the rotation, scaling, and trans-
lation factors respectively. These transformation elements
mainly rely on the total number of anchors and their loca-
tions. Consider that the real location of anchor nodes is
Sa = {s1, s2, . . . sM } and their estimated locations are S̃e =
{s̃1, s̃2, . . . s̃M }, then cost function for the Procrustes analysis
is defined as

f ($, τ, ς ) =
M∑
i=1

(s̃i − ς$ T si − τ )T × (s̃i − ς$ T si − τ )

(10)

The optimal values of $ , τ , and ς is obtained by mini-
mization of (10). To minimize (10), we consider that ca =
1
M

∑M
i=1 si and ce = 1

M

∑M
i=1 ŝi as the centroid of the real

and estimated location of anchor nodes, respectively. Putting
the values of ca and ce in (10) yields

f ($, τ, ς ) =
M∑
i=1

(
(s̃i − ce)− ς$ T (si − ca)

+ s̃i − ς$ T si − τ
)T

×

(
(s̃i − ce)− ς$ T (si − ca)

+ s̃i − ς$ T si − τ
)
. (11)

Solving (11) yields optimal τ as follows

τ = ce − ς$ T ca. (12)
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Considering that ce = ca = 0 and putting τ in (11) yields

f ($, τ, ς ) =
M∑
i=1

(s̃i − ς$ T si)T (s̃i − ς$ T si). (13)

It is worthy to note that the function in (13) is convex. There-
fore, the optimal value of ς is obtained by differentiating (13)
with respect to ς as follows

ς =
Tr
(
Sa$ S̃Te

)
Tr
(
SaS̃Te

) (14)

where Tr(·) represents the trace operator. Finally, the optimal
value of$ is obtained from the Eigenvalue decomposition of
SaS̃Te . Major steps of the proposed localization technique are
described in algorithm 1.

Algorithm 1 Proposed Isomap Based Localization
Algorithm

Input: Single hop noisy geodesic distances d̂ij and set of
anchors
Output: Location estimation of all the underground nodes,
i.e., Ŝ
1: Compute the SGDM matrix 9 by using (5)
2: Use (4) to estimate the missing geodesic pairwise distances
3: Use (8) to estimate the initial position of the underground
sensors
4: Use Procrustes analysis to get the final estimated location
by using (9)
5: return: Location estimations Ŝ

V. THEORETICAL ANALYSIS
In this section, we analyze the performance of the proposed
localization method by deriving the lower bound for the error
variance, i.e., the CRLB. The achievable accuracy of any
localization technique can be characterized by the CRLB.
Therefore, in this section we derive the closed form expres-
sion for the MI-based IoUT localization. As, the received
power for MI-links is affected by the background noise bij
which is modelled as zero mean Gaussian random variable
with variance σ 2

ij [9]. The probability density function (PDF)
of the noisy received power P̃rj is written as

f (P̃rj |si, sj) =
1

σij
√
2π

exp

(
−

(P̃rj−Prj )
2

2σ2ij

)
. (15)

Based on the above PDF, the derivation of the CRLB consists
of the following steps.

1) LOG-LIKELIHOOD RATIO CALCULATION
The concept of log-likelihood function is used in various
signal processing applications to compute the Fisher infor-
mation matrix (FIM) for estimation and detection [44].

The log-likelihood ratio is calculated from the PDF in (15)
as follows:

`[dB] = − log(σij
√
2π )+ log

(
exp
−

(P̃rj−Prj )
2

2σ2ij

)
. (16)

However, computing the FIM from the log-likelihood
function is a challenging task, particularly when it is
intractable [44]. Therefore, in most of the cases, the log-
likelihood function is calculated by assuming that the rang-
ing information is an independent and identically distributed
(i.i.d) random variable [45]. Hence, The joint log-likelihood
ratio for all the underground things is given as

L =
N∑
i=1

M∑
j=1

log
(
f (P̃rj |si, sj)

)
. (17)

2) COMPUTATION OF THE FISHER INFORMATION MATRIX
FIM tells us about how much information (localization accu-
racy) can be achieved from the noisy received power [46]. The
FIM constitutes of sub-matrices for the three-dimensional
location estimation given as

I =

Ix,x Ix,y Ix,z
ITx,y Iy,y Iy,z
ITx,z ITy,z Iz,z

 . (18)

The elements of the sub-matrices in FIM are derived from
the second order derivatives of the log-likelihood function
defined in (17). The elements of the sub-matrices are calcu-
lated as

Ix,xi=l = E
(
∂2`ij

∂x2i

)
, (19)

Ix,yi=l = E
(
∂2`ij

∂xiyi

)
, (20)

Ix,zi=l = E
(
∂2`ij

∂xizi

)
, (21)

Iy,yi=l = E
(
∂2`ij

∂y2i

)
, (22)

Iy,zi=l = E
(
∂2`ij

∂yizi

)
, (23)

and

Iz,zi=l = E
(
∂2`ij

∂z2i

)
, (24)

respectively. Similarly, the non-diagonal elements are given
as

Ix,xi6=l = E
(
∂2`ij

∂xixl

)
, (25)

Ix,yi6=l = E
(
∂2`ij

∂xiyl

)
, (26)

Ix,zi6=l = E
(
∂2`ij

∂xizl

)
, (27)
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Iy,yi6=l = E
(
∂2`ij

∂yiyl

)
, (28)

Iy,zi6=l = E
(
∂2`ij

∂yizl

)
, (29)

and

Iz,zi6=l = E
(
∂2`ij

∂zizl

)
, (30)

where E(·) is the expectation operator. To derive the diagonal
elements of each sub-matrix, we put the value of Prj in the
above sub-matrices and solve it. Expression for the diagonal
elements are obtained in Appendix A as follows

Ix,xi=l =
3k

σ 2
ij

(
2k

‖ si − sj ‖7
−

28k(xi − xj)2

‖ si − sj ‖8

+
k

‖ si − sj ‖7
−

8(xi − xj)2)
‖ si − sj ‖5

)
(31)

Ix,yi=l =
60 k2(xi − xj)(yi − yj)

σ 2
ij ‖ si − sj ‖8

, (32)

Ix,zi=l =
60 k2(xi − xj)(zi − zj)

σ 2
ij ‖ si − sj ‖8

, (33)

Iy,yi=l =
3k

σ 2
ij

(
2k

‖ si − sj ‖7
−

28k(yi − yj)2

‖ si − sj ‖8

+
k

‖ si − sj ‖7
−

8(yi − yj)2)
‖ si − sj ‖5

)
(34)

Iy,zi=l =
60 k2(yi − yj)(zi − zj)

σ 2
ij ‖ si − sj ‖8

, (35)

and

Iz,zi=l =
3k

σ 2
ij

(
2k

‖ si − sj ‖7
−

28k(zi − zj)2

‖ si − sj ‖8

+
k

‖ si − sj ‖7
−

8(zi − zj)2)
‖ si − sj ‖5

)
(36)

where k =
ωµPtiNrj r

3
ti
r3rj sin

2 αij

16 R0 G2(σ,ω,dij)
. Similarly solving (25) to (30)

for the non-diagonal elements yields

Ix,xi6=l = −
3k

σ 2
ij

(
2k

‖ si − sj ‖7
−

28k(xi − xj)2

‖ si − sj ‖8

+
k

‖ si − sj ‖7
−

8(xi − xj)2)
‖ si − sj ‖5

)
(37)

Ix,yi6=l = −
60 k2(xi − xj)(yi − yj)

σ 2
ij ‖ si − sj ‖8

, (38)

Ix,zi6=l = −
60 k2(xi − xj)(zi − zj)

σ 2
ij ‖ si − sj ‖8

, (39)

Iy,yi6=l = −
3k

σ 2
ij

(
2k

‖ si − sj ‖7
−

28k(yi − yj)2

‖ si − sj ‖8

+
k

‖ si − sj ‖7
−

8(yi − yj)2)
‖ si − sj ‖5

)
(40)

Iy,zi6=l = −
60 k2(yi − yj)(zi − zj)

σ 2
ij ‖ si − sj ‖8

, (41)

and

Iz,zi6=l = −
3k

σ 2
ij

(
2k

‖ si − sj ‖7
−

28k(zi − zj)2

‖ si − sj ‖8

+
k

‖ si − sj ‖7
−

8(zi − zj)2)
‖ si − sj ‖5

)
. (42)

Substituting the values of (31) to (42) in (18) completes the
FIM.

3) CRAMER RAO LOWER BOUND
Finally the CRLB is calculated from the inverse of the FIM
which is given as

CRLB = I−1x,x + I−1y,y + I−1z,z . (43)

Thus, we have developed a generalized CRLB for MI-based
IoUT which is the function of different channel and network
parameters such as operating frequency, number of turns
of the coils, radius of the coils, transmit power, noise vari-
ance, number of anchors, and number of underground things.
The derived CRLB provide the suggestions for an MI-based
underground localization system by associating the channel
and network parameters with the error trend.

VI. NUMERICAL RESULTS
In this section, we provide numerical results to validate the
performance of the proposed 3D localization technique and
compare with the derived CRLB, in a 3D underground oil
reservoir setup. The performance of the proposed technique
for MI-based IoUT is tested under various network settings.

A. SIMULATION PARAMETERS
We consider a 15 × 15 m3 cubic fracture with 60 nodes
randomly and uniformly distributed as shown in Fig. 5.
Table 1 presents the simulation parameters which are taken
mainly from [17]. Also, we consider the practical value
of average temperature for the underground oil and gas
reservoirs, i.e., 145◦ [47]. The results are also compared
to well-known network localization techniques such as
weighted centroid [23], weighted-multidimensional scaling
[24], and local linear embedding [25]. In the following, first,
we examine the effect of noise variance on the performance of
the CRLB. Then, we evaluate the performance regarding the
number of turns of the coils, coils size, and transmit power.
Root mean square positioning error (RMSPE) is considered
as an evaluation metric for all the simulations which is given
as

RMSPE=

√∑N
i=1(x̂i−xi)2+(ŷi−yi)2+(ẑi−zi)2

N
, (44)

where {xi, yi, zi} and {x̂i, ŷi, ẑi} are the actual and estimated
position of node i respectively.
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FIGURE 5. (a) Proposed technique with RMSE of 0.45 m; (b) LLE method
with RMSE of 1.6 m; (c) WMDS method with RMSE of 3.21 m.

B. COMPARISON OF LOCALIZATION ACCURACY
In this subsection, we compare the localization accuracy
of the proposed Isomap-based localization technique with
WMDS [24] and LLE [25]. Fig. 5 shows that the localization
accuracy of the proposed technique is better thanWMDS and
LLE in the three-dimensional space. The localization accu-
racy of the proposed method, LLE, and WMDS is 0.45 m,
1.6 m, and 3.21 m, respectively. LLE and WMDS fail to
discover the nonlinear structure of the three-dimensional net-
work, which results in low localization accuracy. Note that for

TABLE 1. Simulation parameters.

FIGURE 6. CRLB vs. Ranging error variance.

these results we kept the ranging error variance to 0.1 m and
also we did not show the results forWCL due to its significant
localization error (more than 10 m) for the boundary nodes.

C. EFFECT OF RANGING ERROR ON LOCALIZATION
ACCURACY
Fig. 6 shows the adverse effect of ranging error variance
on the accuracy of the proposed localization technique for
the IoUT. The ranging error and the non-availability of all
pairwise distances limit the performance of every network
localization scheme. Since we have assumed that the ranging
error follows zero-mean Gaussian distribution with variance
σ 2; therefore, we evaluate the performance of the proposed
localization technique in terms of ranging error variance
σ 2
= 0.1 − 0.8 m. Note that, it is common to model the

ranging error as a Gaussian distribution for localization in
various wireless networks. For instance, in [17] and [48],
the ranging error is modeled as a Gaussian random variable
with zeromean and variance σ 2 for localization in underwater
optical wireless networks and underground MI-based sensor
networks, respectively. Note that the results in Fig. 6 are
averaged over 500 different network setups with 60 under-
ground things randomly distributed in 15× 15× 15m3 cubic
fracture. Fig. 6 shows that Isomap-based proposed technique
has better localization accuracy compared to its counterparts,
WC, WMDS, and LLE because the Isomap technique esti-
mates the missing pairwise distance in three-dimensional
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FIGURE 7. CRLB vs. Number of turns in the receiver.

FIGURE 8. RMSPE vs. Number of turns in the receiver.

space more accurately by taking into account the nonlinear
structure of the network.

D. EFFECT OF COIL SIZE ON LOCALIZATION ACCURACY
Fig. 7 shows CRLB as a function of the number of turns
in the coil of the underground sensors. Results of CRLB
in Fig. 7 are obtained at a frequency of 13 MHz with noise
variances of 0.1, 0.3, and 0.7 m respectively. Fig. 7 shows
that increasing the number of turns of the coils improve the
localization accuracy. Moreover, to show the effect of Nr ,
we kept σ 2

= 0.1 m in fig. 8 and compared the results of the
proposed techniquewithWC,WMDS, and LLE. Fig. 8 shows
that increasing Nr improves the localization accuracy and
due to the better estimation of missing distance, the proposed
technique outperforms the traditional schemes.

Nevertheless, increasing the number of turns of the coil
may increase the size of the coil where the small size
of fracturing well requires small size coils. Therefore,
in Fig. 9, we have investigated the impact of coil size on

FIGURE 9. CRLB vs. Coil size.

FIGURE 10. CRLB vs. Transmit power.

the performance of the achievable accuracy. It is clear from
Fig. 9 that for a given ranging error variance, the achievable
accuracy improves with the increase in the coil size from
0.01m to 0.04m. Note that the coil design parameters such as
the number of turns and coil size need to be adjusted based on
the results in Fig. 7 and Fig. 9 to achieve a certain localization
accuracy.

E. EFFECT OF TRANSMIT POWER ON
LOCALIZATION ACCURACY
Finally, we evaluate the performance of the proposed tech-
nique for MI-based IoUT regarding the transmit power. The
transmit power of commercially available coils for MI com-
munications varies from 100 mW (20 dBm) to 200 mW
(23 dBm). Therefore, we kept the range of 20−23 dBm for the
transmit power with the different type of coils. Fig. 10 shows
that increasing the transmit power improves the achievable
accuracy for a given type of coil. Moreover, we have also
compared the results of the proposed technique with WC,
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FIGURE 11. RMSPE vs. Transmit power.

WMDS, and LLE in Fig. 11 where the localization accuracy
of all the techniques improves with an increase in the transmit
power (for Nr = 30). Moreover, Fig. 11 also show that the
proposed method performs better and achieves the CRLB due
to better estimation of the missing distances.

According to the above results, the proposed localization
technique and the CRLB is the function of MI-based chan-
nel and network parameters. Therefore, all these parameters
should be taken into account to develop a robust and accurate
MI-based IoUT localization system.

VII. CONCLUSION
In this paper, we propose a novel 3D localization technique
based on Isometric scaling for the IoUT. Also, we derived
the CRLB for the proposed MI-based localization technique.
Our proposed method outperforms the traditional network
localization schemes because Isometric scaling estimates the
missing pairwise distances more accurately in 3D architec-
tures. We examined the effects of numerous parameters such
as the number of anchors, coil size, number of turns in the
coil, ranging error, and transmit power on the performance of
the proposed technique. Subsequently, we found out from our
analysis that increasing the range error variance reduces the
localization accuracy. Conversely, increasing the number of
turns in the coil or reducing the size of the coil improves the
localization accuracy. Furthermore, the effect of transmitting
power is evaluated, which shows that an increase in trans-
mit power improves the localization accuracy. The proposed
3D localization technique and the theoretical analysis and
findings in this paper open the door for the development of
location-aware MI-based IoUT.

APPENDIX
DERIVATION OF THE ELEMENTS FOR THE FIM
Using the PDF in (16) the partial derivatives are calculated as

∂`ij

∂xi
=

1

2σ 2
ij

(
−

∂P̂2rj
∂xi
−

∂P2rj
∂xi
+
∂Prj P̂rj
∂xi

)
. (45)

Putting the value of Prj in (45) yields

∂`ij

∂xi
=

1

2σ 2
ij

(
−

∂

∂xi

(
k2‖ si − sj ‖−6

)
+ P̂rj

∂

∂xi

(
k‖ si − sj ‖−3

))
. (46)

Taking the partial derivative of (46) with respect to xi yields

∂`ij

∂xi
=

1

2σ 2
ij

(
k212(xi − xj)
‖ si − sj ‖7

+
kP̂rj6(xi − xj)

‖ si − sj ‖6

)
. (47)

Now the second-order partial derivative of (48) results in

∂2`ij

∂x2i
=

k

σ 2
ij

(
6 k

‖ si − sj ‖7
−

84 k(xi − xj)2

‖ si − sj ‖8

+
3P̂rj

‖ si − sj ‖4
−

24(xi − xj)2

‖ si − sj ‖5

)
. (48)

Now using the fact that E(P̂rj ) = Prj , (48) is simplified as

E
(
∂2`ij

∂x2i

)
=

3 k

σ 2
ij

(
2 k

‖ si − sj ‖7
−

28 k(xi − xj)2

‖ si − sj ‖8

+
k

‖ si − sj ‖7
−

8(xi − xj)2

‖ si − sj ‖8

)
. (49)

Similarly, the other terms can be easily obtained as follows

E
(
∂2`ij

∂y2i

)
=

3k

σ 2
ij

(
2k

‖ si − sj ‖7
−

28k(yi − yj)2

‖ si − sj ‖8

+
k

‖ si − sj ‖7
−

8(yi − yj)2)
‖ si − sj ‖5

)
, (50)

E
(
∂2`ij

∂z2i

)
=

3k

σ 2
ij

(
2k

‖ si − sj ‖7
−

28k(zi − zj)2

‖ si − sj ‖8

+
k

‖ si − sj ‖7
−

8(zi − zj)2)
‖ si − sj ‖5

)
(51)

E
(
∂2`ij

∂xiyi

)
=

60 k2(xi − xj)(yi − yj)

σ 2
ij ‖ si − sj ‖8

, (52)

E
(
∂2`ij

∂xizi

)
=

60 k2(xi − xj)(zi − zj)

σ 2
ij ‖ si − sj ‖8

, (53)

E
(
∂2`ij

∂yizi

)
=

60 k2(yi − yj)(zi − zj)

σ 2
ij ‖ si − sj ‖8

. (54)

The non-diagonal terms can also be obtained in the similar
fashion. Finally all these derived elements complete the FIM
for the CLRB.
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