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ABSTRACT Identification of vulnerable lines in power systems has great meaning to predict cascading
failures and prevent the blackouts. A novel approach to identify the vulnerable lines in power systems
based on the weighted H-index is proposed. Firstly, to remove the Kirchhoff’s law constraint in power
system, a second-level correlation network is constructed considering the secondary cascading failure. Then,
the relative node strength is defined in the second-level correlation network to improve the identification
effectiveness. Secondly, a weighted H-index is proposed, aiming at the disadvantages of the classic H-
index only suited for unweighted networks. The improved indicator is applied in the second-level correlation
network to identify the vulnerable lines of the power grid. The proposedmethod is verified in the IEEE-39 bus
system and a real-life regional power grid in China. The experimental results show that the proposed method
has higher precision compared with other methods. Specifically, the identification accuracy is improved by at
least 8.33% than existing methods in the IEEE-39 bus system. In addition, the weighted H-index has higher
discrimination and robustness than the classic H-index.

INDEX TERMS Vulnerable lines, weighted H-index, second-level correlation network, power system.

I. INTRODUCTION
In recent years, several blackouts have occurred in the
world [1]–[4]. Although these events are not so frequent,
every event has a catastrophic impact on the society [5]. The
blackouts in Brazil in March 2018 caused about a quarter
of consumers to lose power. Due to the overload trip of a
bus circuit breaker, the transmitting terminal converter station
lose the AC power, and caused bipolar shutdown. In addition,
the structure of the Brazilian power grid was unreasonable,
which caused the key AC/DC channel from north to south
to be affected, which eventually led to the cascading failure.
It can be noticed that some critical lines in the system have
contributed to the spread of the power outage range. There-
fore, searching these vulnerable lines can prevent and block
the occurrence of cascading failures effectively.

Great efforts in the identifying or searching vulnerable
lines in power systems have been made. The main work can
be roughly divided into two categories.

The associate editor coordinating the review of this article and approving
it for publication was Md Shihanur Rahman.

The first category is the power system state analysis based
on reductionism. It takes the power flow calculation as the
core and uses the deterministic or probabilistic method to
describe the cascading failure propagation process. Entropy
theory, risk assessment theory, and Monte Carlo simula-
tion are introduced to identify the vulnerable lines. In [6],
a comprehensive model based on branch power flow transfer
entropy and branch flow distribution entropy was established,
but it did not consider the influence of branch capacity on
the results. Therefore, an incremental power flow entropy
model was proposed in [7]. In addition, a line risk index
using line overload probability and power flow fluctuations
was constructed in [8]. These methods captured the operating
state of the system, but they lacked the consideration of
the overall system topology. The Monte Carlo simulation
method is known for its detailed modeling and accuracy of
results. Combinations of components that were likely to cause
cascading failures were identified in [9] and [10]. However,
due to the dimensionality disaster, the time cost of thismethod
was unacceptable.
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The second category method is based on complex net-
work theory. Many network properties (such as small
world [11], [12] and scale-free characteristics [13], [14]) and
component statistical properties were proposed to analyze the
dynamic behavior of the networks. However, the power flow
distribution in the power network line is closely related to the
line impedance, and does not flow along the shortest path.
In addition, the line current connected to the same node is
constrained by Kirchhoff’s law and has directionality. So,
classical complex network theory indicators (such as degree,
clustering coefficient and betweenness) do not evaluate the
importance of nodes or branches properly. Therefore, elec-
trical indicators were integrated into structural indicators to
improve identification accuracy. In [15]–[17] the power trans-
mission distribution factor were used to determine the maxi-
mum transmission capacity of the line, thereby reconsidering
the line betweenness. And electrical distance were presented
in [18]. Subsequently, the electrical betweenness [19], [20],
and the flow betweenness [21] were proposed, which con-
sidered the utilization on the line between the generator-load
pairs. In addition, the maximum flow theory had also been
introduced. In [22], the ratio of the flow of the target line to
the maximum flow was used to discriminate the importance
of the line. In [23], the importance of the line was judged by
superimposing the maximum flow in the extreme flow inter-
face. But in fact, the maximum flow method only considers
the structural vulnerability of the system, and the operating
state system is not fully taken into account. In addition, a load-
flow simulation approach was proposed to rank components
in availability assessment of multi-state systems [24], [25],
which is worth learning in the vulnerable assessment.

Recently, the method of constructing dual graphs based
on the cascading failure process has attracted great interest
from scholars [26]. Power network structure was modeled
as weighted or unweighted undirected graphs, and cascading
index, pure and extended spectral metrics were used to assess
the vulnerable lines [27]. Further, a correlation network based
on N-1 contingency was established in [28]. A more detailed
dual graph based on N-1-1 was established in [29]. In [30]
and [31], a spatio-temporal correlation graph of the orig-
inal network was established. A common feature of these
graphs is that they are capable of capturing the topological
and physical state characteristics simultaneously. In addition,
the Kirchhoff’s law coupling between the branch states is
solved. Based on these graphs, various indicators in com-
plex network theory are applied to identify vulnerable nodes
(corresponding to vulnerable lines in the original network).
In [32], the impactive and susceptible lines were identified
based on the idea of load redistribution. Ma et al. [33] applied
the PageRank algorithm to screen the vulnerable lines. Struc-
tural hole [34], K-shell decomposition [35] had also been
applied to the identification of vulnerable lines. In addition,
a Bayes network was established to predict the cascading
failure propagation based on N-1 contingency [36].

However, the blackouts propagate in the form of
cascade faults. The correlation network established by the

N-1 contingency [28], [33]–[35] only grasped the first stage
of the cascading failure process, the depth of the fault chain
was insufficiently grasped, and the vulnerability of the line in
the latter failure stage cannot be well quantified, which may
result in omissions or misidentifications.

Jorge Hirsch proposed the H-index [37] in 2005, which
aimed to quantify the research results as independent individ-
uals. And the H-index was considered to be a major improve-
ment on many of the previous measures, and was widely
used to assess the number of academic output and academic
research of researchers. Recently, the study in [38] has shown
that the degree, H-index and k-shell of network nodes are the
initial, intermediate and steady state of the dynamic process,
and the H-index is a good trade-off. In many cases, the
H-index can quantify the influence of nodes better than the
degree and k-shell.

Inspired by the research in [38], an approach based on
the weighted H-index to identify the vulnerable lines was
proposed. Firstly, a second-level correlation network is con-
structed in order to overcome the disadvantages of the first-
level correlation network constructed in [28] and [33]–[35],
which only grasped the first stage of the cascading failure
process. Then, to improve the identification effectiveness,
the relative node strength is defined in the second-level cor-
relation network. Secondly, a weighted H-index is proposed
in order to overcome the disadvantages of the classic H-index
only for unweighted networks. Then the improved indicator is
applied in the second-level correlation network to identify the
vulnerable lines of the power grid. Comparative experiments
with existing methods have been conducted in the IEEE-39
bus system and a real-life regional power grid in China. The
main contributions are as follows.
• The correlation network that only considers the first-
level cascading failure is improved, and a second-level
correlation network that considers the secondary cascad-
ing failure is established, which can further grasp the
dynamic link between the grid branches.

• A weighted H-index indicator is proposed in order
to overcome the disadvantages of the classic H-index
only for unweighted networks. And the weighted
H-index extends the calculation range of the H-index
from integer range to the real number range.
It improves the identified network type of the indi-
cator, including weighted networks and unweighted
networks.

The rest of this paper is organized as below. Section II
considers the secondary cascading failure process and estab-
lishes a second-level correlation network of the power grid.
In section III, we propose the weighted H-index indicator,
which is suitable for the identification of node influence in the
weighted second-level correlation network. The systematical
procedure of the vulnerable lines identification is shown in
section IV. The proposedmethod is verified in the simulations
of the IEEE-39 bus system and a regional power grid in
China in section V. Finally, conclusions are presented in
section VI.
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II. CONSTRUCTION OF SECOND-LEVEL
CORRELATION NETWORK
In the cascading failure of power systems, the most basic
damage to the system is the outage of a single line, because
the removal of the node is equivalent to stopping all lines
connected to it. Therefore, in order to better reflect the
coupling relationship between lines in the power network,
reference [35] uses the N-1 contingency to reflect the corre-
lation of the transmission branches on the active power trans-
mission, and constructs the correlation network. However,
the blackouts propagate in the form of cascade faults. In most
cases, there will be multilevel faults. In [35], only the first-
level fault is grasped, and the latter-level faults are ignored.
In view of this, a second-level correlation network consider-
ing secondary faults is proposed, in order to reflect the power
transfer situation and coupling relationship between power
lines more deeply without greatly increasing the amount of
computation.

In order to take the topology characteristics and the state
characteristics into account simultaneously, an improved cor-
relation matrix based on the original power system is pro-
posed.

Step1:Calculate system benchmark power flow and record
capacity margins for each line.

Step2: Cut each branch in turn and the power flow incre-
ment matrix 1P is obtained by power increase of other
branches caused by the initial fault.

Step3: Judge whether or not the branch power exceeds the
limit. If not, the process proceeds to step 4. Otherwise, the
element value corresponding to the branch in the matrix 1P
is reserved, then the over-limit branch is broken, the system
power flow is calculated again, and the power increment
matrix 1P is updated according to the second power flow
increment.

Step4: The improved correlation matrix R is obtained by
dividing each element in the power increment matrix 1P by
the capacity margin of the corresponding branch.

According to step 2, the power increment matrix 1P is
shown in (1).

1P =


0 1p12 1p13 · · · 1p1n

1p21 0 1p23 · · · 1p2n
1p31 1p32 0 · · · 1p3n
...

...
...

. . .
...

1pn1 1pn2 1pn3 · · · 0

 (1)

where 1pij is the power increase of branch j after branch i is
broken, and n represents the total number of branches in the
system.

According to the actual operating characteristics of the
power system, the specific elements in (1) are defined [33]
as follows.

1pij =

0, PijPj > 0&
∣∣∣Pij∣∣∣ < ∣∣Pj∣∣∣∣∣Pij − Pj∣∣∣ , other

(2)

FIGURE 1. A power system and its correlation network.

where Pij represents the active power flow of branch j after
the breaking of branch i, and Pj represents the initial active
power flow of branch j.

The definition of 1pij in (2) considers the direction of
the power flow. 1) When the direction of the power flow is
constant, if the branch power flow decreases after the initial
fault, the initial fault is considered to have no effect on the
line, so1pij equals to 0. 2) When the direction is unchanged,
if the line power flow increases after the initial fault, or the
direction of the power flow changes,1pij is considered to be
the absolute value of the power flow variation.

Since1pij only reflects the absolute influence of the break-
ing of line i on line j, the capacity margin of line j is not
considered, so the degree of interference experienced by line j
due to the breaking of line i cannot be fully reflected. In addi-
tion, it has no practical significance considering the impact of
line breaking on itself. Thus we define the correlation matrix
R of the original network in (3).

1rij =

{
1pij/Mj, i 6= j
0, i = j

(3)

In (3), 1rij is the element of matrix R, and it represents the
influence of the breaking of line i on line j,Mj represents the
capacity margin of line j.

The second-level correlation network corresponding to
the original power network can be established based on R.
Fig. 1 is a power system and its correlation network. It can
be noticed that the branches in the original power network
are mapped into nodes in the correlation network, and the
edge in the correlation network reflects the coupling rela-
tionship between the branches in the original power network
vividly. The improved second-level correlation network has
better coupling degree than the first-level correlation network
established in [35]. And the connection between branches is
tighter, which can better reflect the system power transfer in
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FIGURE 2. Node A and its adjacent nodes.

the process of cascading failures. To sum up, some advan-
tages of the correlation network are highlighted as follow.

1) It reflects the coupling relationship between the
branches in the original power network specifically,
including the structural and state characteristics.

2) The Kirchhoff’s law coupling between the original
grid branches is mapped into a general relationship
coupling, which facilitates the direct use of complex
network theory.

3) Transform the problem of branch vulnerability assess-
ment into a node one.

It can be thoughted that the second-level correlation net-
work captures the first two main processes of cascading
failure, and it is a bidirectional weighted network which
removes the Kirchhoff’s law coupling between the branches
in the original power grid. The vulnerability assessment of
the branch in power grid is transformed into the evaluation
of important nodes in the second-level correlation network,
which facilitates the direct application of complex network
theory indicators (such as degree, betweenness). The existing
literature uses the K-shell decomposition method to iden-
tify the influence of nodes in the first-level correlation net-
work [35]. Recent study [38] has shown that the degree,
H-index and K-shell are the initial, intermediate and steady
state of a dynamic process, and the H-index is a good trade-
off. In many cases, H-index can quantify the influence of
nodes better than degree and K-shell. However, the classical
H-index is only suitable for unweighted networks. Consid-
ering that the second-level correlation network is a weighted
network, we propose the improved weighted H-index to iden-
tify the influence of nodes in the second-level correlation
network, which represent the vulnerability of the branches.

III. VULNERABLE LINES IDENTIFICATION BASED ON
WEIGHTED H-INDEX
A. CLASSIC H-INDEX
The H-index indicator was proposed by Jorge Hirsch
in 2005 [37], which is applied to quantify the research results
of researchers as independent individuals and has beenwidely
used in academia. A scientist has index h if h of his or her Np
papers have at least h citations each and the otherNp–h papers
have less than h citations each.
From the perspective of complex networks, the H-index

can identify node influence in an unweighted network.
As shown in Fig. 2, node A has four adjacent nodes with node
strengths of 2, 3, 4, and 5, respectively. Node A has 4 adjacent
nodes with strength ≥ 2, and 3 adjacent nodes with strength
≥ 3, but no 4 adjacent nodes with strength≥ 4. According to
the definition of H-index, HA = 3.

FIGURE 3. Two small weighted networks.

FIGURE 4. Bidirectional weighted network topology.

In fact, most of the networks in real life are weighted
networks. Different edge weights have different functions,
and the edge weights are not all integers. When the concept
of H-index is extended to the correlation network estab-
lished in this paper, the classical H-index only considers
the influence of adjacent nodes, ignoring the importance of
edge weights which will reduce the accuracy of vulnera-
ble lines identification. Further more, the calculation result
is an integer, which has low discrimination. For example,
as shown in Fig. 3, the H-index of nodes B and C are
both 3, so the influence of the two nodes cannot be compared.
Therefore, this paper proposes a weighted H-index calcula-
tion method that considers adjacent nodes and edge weights,
which makes it suitable for the identification of node influ-
ence in the correlation network. Section B shows the specific
process.

B. IMPROVED WEIGHTED H-INDEX
It can be noticed from the previous section that the accuracy
and recognition of the classic H-index will be reduced when
identifying the influence of nodes in weighted networks.
However, the second-level correlation network we estab-
lished is a bidirectional weighted network, so we improve the
classic H-index considering the contribution of adjacent node
strength and edge weight simultaneously.

First, referring to the definition of node strength in complex
networks, only the influence of the target node on its adjacent
nodes is considered, and the absolute strength of the node is
defined as

Si =
∑
j∈0i

wij (4)

In (4), Si is the absolute node strength, wij represents the
edge weight pointed by node i to node j, and 0i is the set
of all adjacent nodes pointed by node i. In the bidirectional
weighted network shown in Fig. 4, 01 = {2, 3, 5, 6}.
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In the second-level correlation network, the out-degree
indicates the influence on its adjacent nodes, and the in-
degree indicates the influence of its adjacent nodes on itself.
So when defining the absolute strength of a node, we only
focus on the impact on other nodes in (4).

In power system, the failure of the target line may cause
the power to exceed the limit of other lines. Correspondingly,
in the correlation network, the value of wij will be greater
than 1, which increases the risk of cascading failure. There-
fore, the relative node strength is introduced to define the
weighted H-index, as shown in equation (5) and (6).

WHi =WH
{(
wij, Sj|i

)
j∈0i

}
(5)

where

Sj|i =
(
wαij · S

β
j

) 1
α+β

(6)

In (5),WHi is the weighted H-index of node i. WH is referred
to as the calculation operator of weighted H-index. Sj|i rep-
resents the strength of node j relative to node i. In (6), α and
β represent adjustment factors. The node with a largerWH is
more vulnerable to its corresponding line.

In the second-level correlation network, the nodes’ out-
degree indicates the influence on other nodes. The more the
number of node’s out-degree, the wider the scope of the
node’s impact. The greater the weight of the node’s out-
degree, the deeper the influence on its adjacent nodes. There-
fore the weighted H-index defined by (5) fully combines
the depth and breadth of the node’s influence in the system,
and has a deeper portrayal of the node’s influence. So the
weighted H-index reflects the vulnerability of the original
network branch in the cascading failure process. Thus, it is
reasonable to apply the indicator to identify vulnerable lines
of the power grid.

It should be noted that in equation (6), we use geometric
mean rather than arithmetic mean to define relative node
strength. When wij > 1, the multiplicative form can be
used to strengthen the strength of the adjacent nodes, and the
coupling relationship between the lines can be characterized
better. The value of α should not be too small, otherwise the
meaning of relative node strength is lost. In addition, when
the absolute node strength Sj is close to 0, then the relative
node strength should also be close to 0. Therefore, in the sense
of geometric mean, the appropriate range of values for the
parameter α is given as bellow

α ∈ [0.5− δ, 0.5+ δ] (7)

where, δ is a small positive number. We will verify the
rationality of the parameter setting range in subsequent
simulations.

In Fig. 3, according to equation (5) and (6), the weighted
H-index of nodes B and C can be expressed as (here we
simply let α = 0, β = 1).

WHB = WH{(1.5, 2), (0.6, 3), (2.3, 4), (1.2, 5)}
WHC = WH{(1.5, 2), (0.6, 3), (1.8, 4), (0.5, 5)}

TABLE 1. Weighted H-Index computational process of nodes B and C.

Now the problem comes. How to calculate WHB and WHC?
To solve this problem, we propose an algorithm for comput-
ing the weighted H-index of node i as shown in Algorithm1.
The weighted H-index of nodes B and C in Fig. 3 are

calculated based on Algorithm 1, and the process is shown
in Table 1.

The SEW in Table 1 indicates the sum of the edge weights
for all adjacent nodes whose node strength are greater than
or equal to the value in the ‘‘Node Strength’’ column. Take
node B as an example, it has four adjacent nodes, each
of which has a strength of 2, 3, 4, and 5. And the corre-
sponding EW are 1.5, 0.6, 2.3 and 1.2, respectively. For the
first adjacent node, the SEW is 1.5+0.6+2.3+1.2=5.6. The
temporary weighted H-index of node B (WHBT ) equals to
min{2, 5.6} = 2. After traversing all the adjacent nodes, the
final weighted H-index of node B (WHB) is max{WHBTi} =
3.5. Similarly, the final weighted H-index of node A (WHA) is
max{WHATi}= 2.9. It can be seen that the weighted H-index
calculation results have a significant difference between
node B and node C, rather than the HB = HC = 3 under the
calculation of classic H-index, indicating the effectiveness of
the proposed algorithm.

Algorithm 1 Weighted H-Index Calculate
1: Input network parameters
2: for i = 1 : L(L is the number of nodes)
3: Set WHi to zero.
4: Calculate the strength of all adjacent nodes of node i
5: Sort all adjacent node strengths of node i in

ascending order, get the sequence S = {S1|i, S2|i, · · ·,
SM |i}, M is the length of sequence S.
And the edge weights corresponding to the sequence
S is W = {wi1, wi2, · · ·, wiM}.

6: for k = 1: M
7: SUMWk =

∑
m win s.t. win >= wik .

8: WHTi = min{Sk|i, SUMWk}.
9: WHi = max{WH i, WHTi}.
10: end for
11: end for

In fact, the classic H-index is a special case of the weighted
H-index, that is, all the edgeweights in the classic H-index are
1. In Fig. 2, the weighted H-index of node A can be expressed
by equation (5) as

WHA =WH{(1, 2), (1, 3), (1, 4), (1, 5)}
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FIGURE 5. Node A and its adjacent nodes with small weight.

According to the proposed algorithm, the calculation result is
still WHA = 3.
The weighted H-index also improves the robustness of

the classic H-index. Specifically, in Fig. 5(a), node A
has four adjacent nodes with node strengths of 2, 3, 4,
and 5, respectively. From the perspective of classic H-index,
HA = H{2, 3, 4, 5} = 3. The weights of edges are ignored
(as shown in Fig.2(b), the weight 0.001 indicates weak link
between the two nodes), which will not detect the presence of
small-weight, high-strength nodes and lead to a misleading
results. Therefore, in order to overcome this defect, we pro-
posed the weighted H-index algorithm in Algorithm 1. In the
new algorithm, the weights of every edge will be compared.
Small weights can only make a weak contribution to the final
weighted H-index. For instance in Fig.5(b), the weight of
node 4 (0.001) can be regarded as a disturbance. Under the
calculation of classic H-index, the HA = 3. If the weight
0.001 is deleted, HA = 2, which is significantly different
from the original. However, in the calculation of the weighted
H-index, WHA = WH{(1, 2), (1, 3), (0.001, 4), (1, 5)} =
2.001. Further more, if the weight 0.001 is deleted, WHA =
WH{(1, 2), (1, 3), (1, 5)} = 2, which can’t be affected by
the weak weight (disturbance). Thereby, it can be noticed that
the algorithm will automatically filter out low-weight edges
(disturbance) but the classic H-index can’t. So the weighted
H-index will not be affected by small-weight, high-strength
nodes like the node 4 in Fig.2(b) which could be regarded as
a disturbance. Therefore the system’s robustness is improved.

Therefore, by the (5) for the weighted H-index and the
proposed weighted H-index algorithm, a weighted H-index
calculation method suitable for real-number ranges can be
obtained, which can be used for node influence calculation
in second-level correlation network (even all weighted net-
works) and has a higher discrimination and robustness than
the classic H-index.

IV. VULNERABLE LINES IDENTIFICATION PROCEDURE
According to the previously established second-level corre-
lation network and weighted H-index algorithm, a system-
atical network vulnerable lines identification procedure is
proposed.

Step1: Obtain the basic parameters of the power network
and calculate the benchmark power flow.

Step2: Construct an improved correlation matrix R of the
original power system according to the correlation matrix
establishment method proposed in Section II. The improved
second-level correlation network is constructed mapping the

line in the original power system into a node, and take the
elements in the correlation matrix R as edge weights.

Step3: Calculate the weighted H-index for each node
according to (5) (6) and the weighted H-index calculation
algorithm proposed in section III.

Step4: Sort the nodeweightedH-index in descending order
using the calculation results in step4, and the node number
corresponds to the line number in the original power system.
The node with a larger weighted H-index means that the
corresponding line in the original grid is more vulnerable.

V. CASE STUDY
A. VERIFICATION INDICATOR
Line vulnerability attack research can be applied to identify
faults that have a serious impact on the system. The general
method is to selectively remove certain lines from the net-
work, and then take the decline of the network performance
as ameasure of the line vulnerability. Themetrics include net-
ability [16], system load loss, and so on. Vulnerability attacks
mainly include random line attacks, static deliberate attacks,
and dynamic attacks.

In the cascading failure simulation study in [39], based on
the DC OPA model, the slow dynamic process is neglected,
and the heavy-duty trip and hidden faults are considered, and
the physical characteristics of the grid are characterized more
deeply and meticulously. On this basis, the AC OPA model
is applied to perform static deliberate attacks on the lines in
the order of line numbers. The vulnerable lines identified by
the weighted H-index algorithm are verified. The number of
simulations is set to N times, and the average load loss after
each line is attacked is counted, as shown in (8). The larger
the value of Ploss(n), the more vulnerable the line is. And
the order of the vulnerable lines derived from Ploss is called
cascading failure simulation(CFS) ordering [40].

Ploss(n) =

N∑
n=1

ploss(n)

N
(8)

In (9), Ploss(n) is referred to as the average load loss of the
system after the attack of the line n, ploss(n) represents the
system load loss after the line n after each attack, and N is
the number of attacks.

B. IEEE-39 BUS SYSTEM
The IEEE-39 bus system is a transmission network in New
England, USA, consisting of 39 nodes, 46 branches, and
10 generators, of which generator 31 is a balancing machine.

In CFS, the number of simulations is set to 10000, and the
average load loss with each line as the initial fault is obtained.
Based on this, the validity of the proposed method is verified.

The first m lines identified by the proposed method are
compared with the first m lines in the CFS order. If there are
k lines that match the CFS, then we define the identification
accuracy as k/m. Table 2 shows the comparison between the
identification results of weighted H-index(WH) and the first
12 lines of the CFS ranking results when α = 0.5. The second
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TABLE 2. Weighted H-Index Identification Results in IEEE-39 bus system.

TABLE 3. Comparison of identification accuracy of different methods.

column is the result of CFS sorting, and the third column
is the sorting result of WH. There are 10 lines that match
the two, so the accuracy is 10/12=83.33%. The vulnerable
degree (VD) is list in the fourth column. Lines 13, 23 are lines
identified incorrectly.

In order to further verify the identification effect of the
proposedmethod,WH is comparedwith the existingmethods.
• Apply the weighted H-index to the first-level correlation
network (WH_1).

• The maximum flow method (MF) [22].
• The improved maximum flow method (IMF) [23].
• PageRank algorithm (PRA) [33]
• Cascading index (CEI) [27], [41]

Table 3 shows the comparison of the first 12 lines of the
different methods. From the perspective of accuracy, the iden-
tification accuracy ofWH is higher than that of othermethods.
On the one hand, the accuracy of using the weighted H-index
in the second-level correlation network is higher than that in
the first-level correlation network, indicating the effective-
ness of the improvement to the first-level correlation network.
On the other hand, no matter the weighted H-index is used in
the second-level correlation network or the first-level correla-
tion network, the identification accuracy is higher than that of
MF, IMF and PRA. It is worth noting that CEI was originally
a vulnerability indicator, and its sorting result is very similar
to that of WH. Only one of the first 12 lines is different.
In the case of system load shedding (CFS) as a verification

FIGURE 6. Schematic diagram of line vulnerability distribution.

indicator, WH is slightly better than CEI. That is to say,
the method proposed in this paper can describe the power
flow transformation more accurately after the line is attacked.
Attacking the lines identified by the method proposed in this
paper makes it easier for the system to approach the self-
organized critical state.

In addition, we further compared WH with pure and
extended spectral vulnerable metrics under N -1 contingency
proposed in [27]. We choose the two different weights of fl
(power flow in the line) and PRl (line percentage of rating,
different from the PageRank algorithm in [33]) for each line.
Under each weight, the four spectral metrics, the natural con-
nectivity (λ), the effective graph resistance (R), the spectral
radius (ρ) and the algebraic connectivity (µ2) are calculated
separately, and the identification results are shown in Table 4.
Overall, the accuracy of WH indicator is higher than that of
pure and extended vulnerable metrics. It can be observed that
the spectral metrics based on the weight fl failed to identify
the vulnerable lines. This can be explained as the fl-based
indicators ignore the line capacity. The identification results
of WH and spectral radius indicators are close, but WH is
slightly better than the spectral radius(ρ) metric.

In summary, in the comparison with other literature meth-
ods as mentioned above, the effectiveness of the proposed
WHmethod has been verified, and the identification accuracy
is higher than other methods. Specifically, the identification
accuracy is improved by at least 10/12-9/12=8.33%.

C. REAL-LIFE REGIONAL POWER GRID OF CHINA
This section analyzes a regional power grid in China as an
example. The system has 86 nodes, 100 branches, 15 gener-
ators. For convenience, we call the grid the CQ grid here.

Table 4 lists the comparison of the identification results
of the proposed method (α = 0.5) in the CQ grid with the
CFS ordering. In the first 10 lines, the weighted H-index
identification results are consistent with the CFS ranking
results with an accuracy of 80%. Among them, lines 23 and
89 are identified incorrectly, but their rankings are close to
the bottom, 7th and 8th respectively.
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TABLE 4. Comparison of WH and spectral metrics under the weight of fl and PRl.

TABLE 5. Weighted H-Index identification results in CQ grid.

Fig. 6 is a schematic diagram of the vulnerability distribu-
tion of the grid lines with geographic information. The darker
the color, the higher the vulnerability of the line. As can be
seen, most of the lines have very low vulnerability, but a small
number of lines have very high vulnerability. Lines 16 and
line 33 have a vulnerability of 3.8, with the highest degree
of vulnerability in this area. These two lines are the highest
voltage 220kV double-circuit transmission lines in the sys-
tem, and line 16 is the key connection line connecting the
east and west subnets. Line 33 ensures that the power of the
connected generator can be normally delivered. If lines 16 and
33 are attacked, a large range of power flow will be caused,
and even a cascading failure will occur.

Next we will compare the identification results with other
approaches mentioned in section B, electrical distance [18]
and random results. Top 6 lines are selected from the above
method and removed from the system sequentially. The
remaining load is calculated shown in Fig. 7. After contin-
uously attacking 6 lines according to the identification result
of WH, the residual load of the system is less than 60%,
which can be considered as a very large power blackout.
After continuously attacking 6 lines according to the IMF
identification result, the system residual load is 70%, and
randomly selecting the line to attack the network has almost
no impact on the system. The simulation results show that
the system is more sensitive to the weaker lines identified in
this paper than the other methods, and these lines should be
protected in a focused manner.

FIGURE 7. System residual load under different removal strategies.

FIGURE 8. Identification accuracy under different α.

D. ANALYSIS OF THE INFLUENCE OF PARAMETER α ON
IDENTIFICATION RESUILTS
Fig. 8 shows the variation of the identification accuracy with
the parameter α using the proposed method in two cases.
It can be observed from Fig. 8 that the influence of the

parameter α on the identification accuracy tends to change
stepwise. That is, the accuracy remains constant within a
certain range. With α changes, the overall accuracy remains
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TABLE 6. Algorithm time consumption in IEEE-39 bus system and CQ grid.

FIGURE 9. Discrimination comparison between the weighted H-index and the classic H-index. (a) Weighted H-index identification
results, where ‘‘WH_x-level_39’’ indicates that the weighted H-index is applied to the x-level correlation network of the
IEEE-39 node system, x=1,2. (b) Classic H-index identification results, where ‘‘H_x-level_CQ’’ indicates that the classic H-index is
applied to the x-level correlation network of the CQ grid.

between 0.67 and 0.83. When α is less than 0.3, the accuracy
is relatively low, and without exception, when α is taken
as 0, the accuracy is the lowest. At this time, the equation
(5) uses the absolute node strength in the correlation network
rather than the relative, which illustrates the effectiveness
of the relative node strength proposed in this paper. When
0.4 < α < 0.55, the identification accuracy is the highest,
indicating that the parameter range given in (7) is reasonable.
In addition, regardless of how α changes, the weight H-index
is more accurate in the second-level correlation network than
in the first-level correlation network. It shows the effec-
tiveness of this paper on the improvement to the first-level
correlation network.

E. TIME COMPLEXITY ANALYSIS OF THE ALGORITHM
The computational complexity of the first and second-level
correlation networks varies with the network, and the estab-
lishment time of the second-level correlation network is
greater than that of the first. Specifically, in the two test
networks of this paper, the time consumed by the identi-
fication algorithm based on the first and second-level cor-
relation networks is shown in Table 6. It can be noticed
from the Table 6 that the algorithm consumption time based
on the second-level correlation network is greater than that
on the first. When the network size is larger, the difference
between the two is larger, but both are within an order of
magnitude. In addition, the time consumed by the method
is much less than the calculation time of the verification
indicator CFS. Therefore, the calculation time of the method

based on the second-level correlation network is acceptable.
When using a server with better performance, the algorithm
consumption time will be further shortened, and it is expected
to realize online application.

F. COMPARISON OF THE DISCRIMINATION BETWEEN
WEIGHTED H-INDEX AND CLASSIC H-INDEX
Aiming at the shortcomings of the classic H-index identi-
fication, we use the weights of the edges to improve the
solution process of the classic H-index. In order to compare
the effects before and after the improvement, the weighted
H-index and the classical H-index (CH) are applied to identify
the vulnerable lines in the IEEE-39 bus system and the CQ
grid according to the first-level and second-level correlation
network. The results are shown in Fig. 9. In Fig. 9(b), the CH
values will remain constant within a certain range whatever in
which system or correlation network. That is, the vulnerabil-
ity of these lines is the same. The CH does not distinguish
these lines’ vulnerability. In contrast, in Fig. 9(a), the WH
values decrease in turn as the order of the lines increases,
and have a high discrimination for each line. This shows
the effectiveness of this paper on the improvement of the
classic H-index.

VI. CONCLUSION
This paper proposes a method based on weighted H-index
for vulnerable lines identification. Two major contributions
are made to existing methods. Firstly the correlation network
that only considers the first-level cascading failure [33]–[35]
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is improved, and a second-level correlation network that con-
siders the secondary cascading failure is established, which
can further grasp the dynamic link between the grid branches
and transforms the branch vulnerability assessment problem
into an easy-to-handle node one cleverly. The second-level
correlation network can further grasp the topological and
electrical characteristics of the power system more fully than
the traditional reduction-based analysis method [22], [23].
Secondly a weighted H-index indicator is proposed in order
to over-come the disadvantages of the classic H-index only
for unweighted networks. In addition, the weighted H-index
extends the calculation range of the H-index from integer
range to the real number range. It improves the identified
network type of the indicator, including weighted networks
and unweighted networks.

In fact, the proposed weighted H-index can be used not
only for power grid, but also suitable for other weighted
networks such as water pipeline networks, energy transport
networks, and the like.

Although the correlation network considering the
secondary fault has higher identification accuracy than the
correlation network only considering the primary fault, there
are still two lines of misunderstanding in the first 10 lines,
which demonstrates the complexity of the mechanism of cas-
cading failure propagation. Therefore how to further improve
the identification accuracy will be the focus of our future
work.
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