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ABSTRACT This paper proposed a non-contact froth depth estimation approach based on machine vision.
Firstly, the froth images collected from sulphur flotation process under different working conditions are
processed to obtain froth features. Secondly, the working condition recognitionmodel based on froth features
of flotation process is built to recognize working conditions. Moreover, the key froth features are selected
by correlation analysis for various operating modes, which are the inputs of the estimation models for
froth depth. Finally, the estimation models of froth depth for different working conditions are established
based on the low dimensional process features, which are composed of the deep froth image features under
current working condition, and crucial process operating parameters, e.g., flow rates of air, tailing and
feeding. Experimental results demonstrate that the proposedmethod can significantly improve the measuring
accuracy, compared with traditional measuring method using physical liquid level meter.

INDEX TERMS Deep froth features, non-contact estimation, working condition recognition.

I. INTRODUCTION
Sulphur flotation process extracts high grade sulphur from
low grade minerals using flotation circuits [1]. The dynam-
ics of a sulphur flotation process is complex and influ-
enced by numerous operational variables, e.g., flow rate of
air, froth depth [2]. Due to sulphur’s naturally hydropho-
bic feature, chemical reagents are not necessary in sulphur
flotation [3]–[5]. Usually air flow rates for each cell of
sulphur flotation is set at some predefined value, which
can provide enough air bubbles for flotation [6]. And froth
depth is adjusted for each cell of sulphur flotation produc-
tion process by manipulating the flow rates of feeding and
tailing for the flotation cells. Thus, the froth depth for each
flotation cell are used as main adjusted variables in sulphur
flotation [7]. As the concentrate grade in the final sulphur
product determines the selling price, it is an economic index
of sulphur flotation performance [8]. Sulphur concentrate
grade is determined by the flotation working conditions and
mainly affected by froth depth of flotation cells [9]. As the
froth retention time is affected by the variation of froth depth,
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the value of froth depth has a large impact on the concentrate
grade [10]–[12]. Therefore, it is of great importance to obtain
an accurate measured value of froth depth for flotation cell to
realize the optimal control of flotation process.

In practice, froth depth is now measured via a float cou-
pled with an ultrasonic sensor. The detailed revision of the
conductivity-based approaches and the crucial advances are
presented [13]. An image-based measurement system using
a single digital camera and a circular float is proposed to
measure fill level of liquid tank [14]. Hostile production
environment, such as high temperature, heavy acid fog and
strong corrosion, impeded the long-term application of phys-
ical liquid level meter in sulphur flotation [15], while a thick
slurry would stick the liquid level meter such as the float,
resulting in the inaccurate measurement of froth depth for
flotation control. Thus, there is a general lack of on-line
instrumentation for froth depth. Conventionally, control of
sulphur flotation process mainly relies on the continual obser-
vation of froth appearance and regulation by experienced
operators with strong subjective. As the observation spot is
away from the control room, the operators are exhausted and
unable to adjust the process in time, resulting to the fluctuant
flotation conditions and low concentrate grade [16], [17].
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It is well known that the visual feature of froth can reflect
the comprehensive effect of multiple operating parameters
on the flotation process [18]. Therefore, froth appearance
is an important indicator of flotation working conditions.
The extraction of froth features are promoted by the devel-
opment of flotation monitoring systems based on image
processing and computer vision [19], [20]. Machine vision
based approach now becomes a useful tool for the monitor-
ing and control of flotation working conditions in industrial
field [21]–[23]. Driven by the development of online mon-
itoring system based on froth images, quantitative online
measurement of froth depth is urgently needed tomaintain the
operating parameters at reasonable range [24], [25]. Jampana
proposed a novel sensor for detecting the froth depth through
computer vision technology on video collected by a sight
glass camera at the interface between the pulp and froth level,
but the method is only available for the transparent vessel
in the laboratory [26]. Therefore, a non-contact estimation
approach based on features of froth images is proposed in
this paper to realize the estimation of froth depth for flotation
cells.

In this paper, we design a non-contact estimation method
of froth depth by using machine vision technology. The froth
images collected from sulphur flotation process under dif-
ferent working conditions are processed to obtain froth fea-
tures. Then, the working condition recognition model based
on froth features of flotation process is built to recognize
working conditions. Moreover, the key froth features are
selected by correlation analysis for various operating modes,
which are the inputs of the estimation models for froth depth.
Finally, the estimation models of froth depth for different
working conditions are established based on the low dimen-
sional process features, which are composed of the deep
froth image features under current working condition, and
crucial process operating parameters, e.g., flow rates of air,
tailing and feeding. An experimental study indicates that the
proposed method can significantly improve the measuring
accuracy, compared with traditional measuring method using
physical liquid level meter.

The rest of the paper is organized as follows. Section II
presents the problem analysis. Section III gives a detailed
description of the proposed non-contact estimation approach
of froth depth based on features of froth images. Experimental
results are discussed in section IV. Section V concludes with
future areas for research.

II. PROBLEM ANALYSIS
Sulphur flotation process is designed to recover valuable sul-
phur from high acid leaching liquid in direct leaching process.
Therefore, sulphur flotation also reduces the environment
pollution. As sulphur is naturally hydrophobic, flow rate of
air and froth depth are two crucial operating parameters. A lot
of froths are generated through the air flow rate, and sulphur
attach to the froths and move to the surface of flotation
cell on account of buoyancy. The mineralized froths then
overflow from the flotation cell, forming the concentrate flow.

The underflow slurry outflows from the bottom of the flota-
tion cell, forming the tailing flow. The ratio of sulphur in
the concentrate, i.e., concentrate grade, is a vital indicator
of flotation working conditions. It is in the mill’s interest
to maximize the concentrate grade so as to raise the selling
price. Usually air flow rates for each flotation cell is set
at a constant value, which can provide enough air bubbles
for sulphur flotation. Therefore, the froth depth adjusted by
the flow rates of feeding and tailing determines the quality
of concentrate. As the overflow port is in a fixed position,
the sum of the froth depth and pulp level is constant. The
profile of a single sulphur flotation cell is shown in Figure 1.

FIGURE 1. The profile of a single sulphur flotation cell.

Determination of manipulated variables directly affects
the technical index, i.e., concentrate grade. Froth depth is
an important indicator of the operating condition. Precise
measurement of froth depth can support the determination
of manipulated variables. As feed flow rate of the flotation
undulates, the froth depth fluctuate drastically. Froth depth is
usually measured by a float coupled to an ultrasonic sensor
in industrial flotation cells. Hostile in-site environment, such
as high temperature, heavy acid fog and strong corrosion,
impeded the long-term application of physical liquid level
meter in sulphur flotation, while a thick slurry would stick the
float, leading to the incorrect measurement of froth depth for
sulphur flotation control. Thus, there is a general lack of on-
line instrumentation for froth depth. Froth visual appearance
is related with the froth depth, and it is also well recog-
nized as the indicator of flotation concentrate grade. With
the development of online monitoring system based on froth
images, the non-contact on-line estimation of froth depth
based on froth features is realizable to implement effective
manipulation of froth depth for optimal control of sulphur
flotation. There are a lot of froth features from which we can
choose to estimate the froth depth. Under different working
conditions, the froth depth is closely related to different froth
features.
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FIGURE 2. Framework for the estimation of froth depth.

For the froth image collection and features extraction,
an online monitoring system based on computer is estab-
lished. Image acquisition setup is composed of camera in
RGB mode with resolution of 1280∗960, high frequency
light, cover hook prevent camera from the surrounding envi-
ronment, optical fiber for image transformation to industrial
personal computer in control room. The camera is installed
vertically on the surface of the flotation cell, and froth images
in RGB mode are collected in real time. At the same time,
the relevant operating parameters and concentrate grade date
are collected in industrial field.

III. A NON-CONTACT FROTH DEPTH ESTIMATION
FRAMEWORK
The overall framework for the non-contact estimation is
shown in Figure 2. The online image and process data are
first collected. Then, the froth features are obtained and used
as the input of the working condition recognition model,
which infers the current working condition type. The offline
data are selected to build a historical database. The historical
database covers the main working conditions and is updated
when new or more representative case occurs. In the correla-
tion analysis block, the key froth features, which are highly
related to the process dynamics under current working con-
dition, are chosen out of the high-dimensional froth features.
By correlation analysis, the froth features not relevant under
current working condition are excluded from further process-
ing, in which the deep froth features are extracted to decrease
the dimension of the input variables for the final froth depth
estimation. This framework keeps the effects of the essential
influence factors on the froth depth, while accounts for these
influence factors in a low dimensional manner. Different with
the approach in [16], in the proposed froth depth estimation
block, only the low dimensional deep froth features and key

operating parameters are utilized as inputs, which reduces
the online computational burden. In addition, based on the
proposed approach, the froth depth can be estimated online.
Therefore, process control is easier to implement.

A. FROTH FEATURES EXTRACTION
It is shown that the froth features, such as bubble texture, size,
velocity, stability, are good indicators to the flotation working
conditions, and are believed to strongly associatewith process
variable, i.e. froth depth [27].

The froth images are colour image in RGB mode.
The classical texture calculation approach, e.g., Gray-Level
Co-occurrence Matrix (GLCM), texture spectrum, are pro-
posed for processing the gray images. The froth texture
feature is hard to describe precisely using the traditional
GLCM method based on some simple statistics, and the
colour information is not considered in the calculation pro-
cess using texture unit based texture spectrum method [28].
Therefore, the colour texture unit (CTU) based colour texture
distribution (CTD) method is designed to replace the texture
unit in texture spectrum method in my previous work in
Reference [16]. The CTD is defined as the probability density
function (PDF) of the CTU.

The froth images in RGB space are transformed to HSV
space, which is consistent with human visual perception,
by the following formulas:

V =
R+ G+ B

3

S = 1−
3

R+ G+ B
(min(R,G,B))

H = cos−1
[

(R− G)+ (R− B)

2
√
(R− G)2 + (R− B)(G− B)

]
(1)

in which, R 6= B or G 6= B.
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Then, H , S, V are quantized for 16 rank (0-15),
4 rank (0-3) and 4 rank (0-3), separately. Thus, the new colour
variable is proposed as follows:

C = 16H + 4S + V (2)

in which, the range of integer C is 0-255.
The detailed CTU calculation method can be referenced

in [16] through replacing the gray value by the new colour
variable C . As the CTD of sulphur froth is non-normal,
kernel density estimation approach is fitting for describ-
ing the CTD under different working conditions. Histogram
based approaches maintained the balance between approxi-
mate error and characteristic dimension, resulting in high cost
for large samples [29]. Thus, the kernel density estimation
method is most usually used.

Consider a dynamic random system with input variable
u(t) ∈ Rm and output variable x(t) ∈ [a, b] in sulphur
flotation is constructed. The probability density function of
output variable x(t) ranging from a to b, is formulated as
follows:

P(a ≤ x(t) ≤ b) =
∫ b

a
fker(x, u)dx (3)

in which, u(t) is control input variable, e.g., froth depth
which is a crucial operating parameter in the sulphur
flotation process. x(t) is the CTU feature of the sulphur
flotation images. The fker(x, u) denotes the CTD curve
of flotation froth images.

The fker(x, u) can be estimated using kernel density
estimators:

f̂ker(x, u) =
1
nh

n∑
i=1

K
(
x − Xi
h

)
=

n∑
i=1

wiK
(
x − Xi
h

)
(4)

in which, K ( x−Xih ) is the ith kernel function with∫
K ( x−Xih )dt = 1. h is the given window width. wi is the

relevant weight coefficient of the ith kernel function. The
kernel function suitable to the sulphur flotation images is
designed as follows:

K (
x − Xi
h

) =
1

h
√
2π

exp(
−( x−Xih )2

2
)−∞ <

x − Xi
h

<∞

(5)

in which, K ( x−Xih ) is the ith pre-set kernel function. Xi is the
midpoint of K ( x−Xih ) along the horizontal axis.

Define

K0(z) = [k1(z), k2(z), . . . , kn−1(z)]T (6)

W (t) = [w1(u),w2(u), . . . ,wn−1(u)]T (7)

in which, z = x−Xi
h .

As
∫ b
a f̂ker(z, u)dz = 1,

∫ b
a ki(z)dz = 1, i = 1, 2, . . . , n,

there exist n−1 unrelated weight coefficients. Thus the CTD
curve could be approximated as:

f̂ker(z, u) = KT(z)W (t)+ g(W (t))kn(z) (8)

in which, K (z) = K0(z), g(W (t)) = 1−
n−1∑
i=1

wi(u), g(W (t)) is

the relevant weight coefficient of kn(z).
Nevertheless, the classical kernel density estimation

method on the basis of the shifty kernel basis can not dis-
tinguish CTDs of flotation images under different working
conditions. The fixed kernel basis is designed to depict the
CTDs of flotation images. Therefore, the CTD curves could
be converted into dynamic weight vectors. Then the work-
ing conditions can be identified in sulphur flotation process.
Simultaneously, through the fixed kernel basis, the calculat-
ing cost is also decreased.

Watershed method is used to segment the sulphur flotation
froth images [19]. Then the average size of sulphur froth
image is calculated in sulphur flotation.

The velocity and stability features can be extracted by
macro-block tracking method [30]. Then the stability feature
can be calculated as follows:

s =
∑

i

∑
j

f (x)
N

f (x) =

{
0, |x1 − x2| ≥ t
1, |x1 − x2| < t

(9)

where x1 and x2 represent the pixel gray value of two con-
secutive images, respectively. t is threshold of froth image
stability, which is set at 20%. N is the total pixels in the
processing area of froth image.

B. WORKING CONDITION RECOGNITION MODEL
SVM is a typical classification approach. It treats the
classification problem in a constrained optimization pro-
gramming framework. However, solving the quadratic pro-
gramming problem is computationally expensive [31].
To reduce the computational burden, a sparse multiple-kernel
LS-SVM (SMLS-SVM) is adopted in this section [16]. It real-
izes the sparseness of solution in LS-SVM. By using Schmidt
orthogonalization theory, its kernel matrices are simplified to
decrease the computational complexity.

The classification problems of sulphur flotation working
conditions based on SMLS-SVM can be constructed as the
following optimization problem:

min

(
1
2
‖ω‖2 +

C
2

n∑
i=1

ei

)
(10)

in which, the restricted condition is yi (ϕ(xi) · ω + b) = 1−ei,
i = 1, 2, · · · , n. C is a regularization factor. ei is the error
between the expected output value and the actual output
value. ϕ(xi) is the nonlinear function, by which the input
space is projected into a space with higher dimensionality.
ω is the weight vector and b is the bias constant.

Through establishing the Lagrangian function and calcu-
lating the partial derivative, equation (10) could be converted
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into linear equations as follows:
0 1 · · · 1
1 K (x1, x1)+1/C · · · K (x1, xn)
...

...
. . .

...

1 K (xn, x1) · · · K (xn, xn)+1/C



b
α1
...

αn



=


0
y1
...

yn

 (11)

inwhich,αi are Lagrangemultipliers,K
(
xi, xj

)
= ϕT(xi)ϕ(xj)

is the kernel function that meets the Mercer’s condition.
Considering the superior local learning ability of normal

kernel and the good global generalization ability of polyno-
mial kernel, the multiple-kernel is designed by the integration
of the normal kernel and the polynomial kernel:

K = µK1 + (1− µ)K2 (12)

in which, K1 is the polynomial kernel function,
K1 = (x · xi + 1)d , K2 is the normal kernel function,
K2 = exp

(
−
|x−xi|2

2σ 2

)
, µ ∈ [0, 1].

On the basis of the equation (11), SMLS-SVMbasedwork-
ing recognition model in the sulphur flotation can be defined
as follows:

y =
n∑
i=1

αi

 2∑
j=1

µjKj (xi, x)

+ b (13)

The mapped vectors then form a mapped matrix
[ϕ(x1), · · · , ϕ(xn)]T, in which each column vector ϕ(xi)
(i = 1, 2, · · · , n) is a combination of basis vectors: ϕ(x1)...

ϕ(xn)

 =
α11 · · · α1m

. . .

αn1 · · · αnm


 ϕ(x̃1)...
ϕ(x̃m)

 (14)

in which,
[
ϕ(x̃1), · · · , ϕ(x̃m)

]T is a group basis of mapped
matrix, 1 ≤ i ≤ n. Therefore, the mapped matrix can be
replaced by the group basis of kernel matrix to realize the
sparseness of the SMLS-SVM.

In SMLS-SVM, schmidt orthogonalization algorithm is
utilized to obtain the group basis

[
ϕ(x̃1), · · · , ϕ(x̃m)

]T. Each
mapped vector ϕ (xa) is orthogonalized as:

ϕt+1(xa) = ϕt (xa)− (ϕt (xa)T vt )vt (15)

where vt =
ϕt (xi)√

ϕt (xi)T ϕt (xi)
.

Therefore, the Gram’s form of kernel matrix is:

G(a, b) = ϕ(xa)Tϕ(xb) = K (xa, xb) (16)

thus

Gt+1(a, b) = Gt (a, b)−
Gt (a, xi)Gt (b, xi)

Gt (xi, xi)
(17)

On the basis of G(i, i) value for each column vector, the
column vector in column xi relevant to the maximum G(i, i)

value is chose. After that, the rest of column vectors are
orthogonalized.

There exist multiple working conditions in sulphur
flotation process, thus there is a multiclass classification
problem, which can be divided into many two class prob-
lems. One versus one (OVO) strategy is superior in sample
imbalance and a few classes conditions, which establishes
k(k − 1)/2 two classes classifiers based on SMLS-SVM
between any two classes. Then, the most votes from the all
classifiers are selected as the classification result. Therefore,
OVO SMLS-SVM strategy has been utilized for the recogni-
tion of sulphur flotation working conditions.

C. CANONICAL CORRELATION ANALYSIS
Sulphur flotation possesses various working conditions.
Under different working conditions, the association pattern
among the process variables is different. Therefore, after the
type of working condition is determined, it is required to
select appropriate froth features for the estimation of froth
depth by analyzing the correlation between the froth depth
and process variables. The correlation analysis between froth
depth and process variables can be regarded as correlation
analysis between two sets of variables. Therefore, in this
study, canonical correlation analysis (CCA), which measur-
ing the correlation of the linear combinations of two vectors,
is adopted.

CCA finds linear combinations of the two variable sets,
such that the correlation between the two linear combinations
are maximized. Different with traditional correlation analy-
sis method which gives the correlation between two single
variables, it provides the overall correlation between the two
linear combinations. In addition, CCA is simple and easy to
implement. Denote the two variable sets as x and y, zx and
zy are sub sets of x and y, then the value to be maximized in
CCA is

γ =
E[zxzy]√
E[z2x]E[z2y]

(18)

If denote zx and zy as zx = kTx x and zy = kTy y, then

γ =
E[kTx xy

Tky]√
E[kTx xxTkx]E[kTy yyTky]

=
kTx Cxyky

kTx CxxkxkTy Cyyky
(19)

The canonical correlation between x and y can be found by
calculating the eigenvalue equations

C−1xx CxyC
−1
yy Cyx k̂x = γ

2k̂x

C−1yy CyxC
−1
xx Cxyk̂y = γ

2k̂y (20)

where k̂x and k̂y are the normalized canonical correlations.

D. DEEP FROTH FEATURE EXTRACTION
For the ease of application, deep froth feature extraction
is conducted to further obtain the low-dimensional froth
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depth indicators from the high-dimensional key froth fea-
tures. By deep froth feature extraction, the underlying pat-
terns in the inputs can be detected via multiple levels of
representation.

In order to enable automatic deep froth feature extraction,
stacked auto encoders (SAE), which is composed of multiple-
level and stacked auto encoders, is utilized in this study.
Auto-encoder (AE) is the basic component of SAE. It is
composed of an input layer, one hidden layer and one output
layer. It reconstructs the input signal by encoding and decod-
ing, aiming tominimizing the reconstructing error. Therefore,
SAE keeps the original information and can extract the latent
variables. The SAE is composed of stacked AEs. The latent
representation of one AE is the input of its subsequent AE.
By limiting the size of the hidden units, the high-dimension
of the key froth features can be reduced.

Consider a single AE, it firstly extracts the latent vari-
ables Li from the original input signal I i using an encoder,

Li = F(P iI i + qi) (21)

which is then reconstructed to form the outputs Î i using a
decoder

Î i = F′(P ′iLi + q
′

i) (22)

where F and F′ are the activation functions,. P i, qi,
P ′i and q

′

i are weighting matrices and bias vectors which can
be obtained via training, i.e., minimizing following index

ξ (P i, qi, P
′

i, q
′

i) =
N∑
j=1

∥∥∥Î i − I∥∥∥2 (23)

where N is the amount of samples for training.
The latent variables obtained by the last AE are utilized as

the deep froth features, which are then sent to the froth depth
estimation algorithm as input.

E. FROTH DEPTH ESTIMATION ALGORITHM
As conventional physical detect method of froth depth in the
sulfur flotation process is not reliable, a new non-contact
estimate method of froth depth on the basis of relevance
vector machine(RVM)method is proposed. The froth features
of flotation images, which is processed through the correla-
tion analysis and deep froth feature extraction, and the air
rate and the flow rate of tail and feeding for the sulphur
flotation process are chosen for the inputs of estimate models
under different conditions. For the probability relationship
between froth depth and froth image features, the relevance
vector machine method based on sparse Bayesian theory is
used to established froth depth on-line estimate model under
different conditions. RVM method learns based on the priori
knowledge of samples, and output prediction value with its
variance [32], [33]. The output probability can characterize
the contribution rate of samples to model to avoid the over-
fitting caused by setting parameters manually.

Suppose that the training sample set is {zi, hFi}Mi=1, let
zi ∈ RNk (k = 1, 2, . . . , 6) is the input deep froth features,

hFi(i = 1, 2, . . . ,M ) is the froth depth value under six differ-
ent flotation conditions. Nk is the input number in different
six flotation conditions, M is the number of training sample.
So RVM model of froth depth is defined over the input space
as follows:

hFi = f (zi;w)+ εn (24)

where εn is the independent random noise. It is Gaussian,
zero-mean and variance δ2. Therefore,

p (hFi|w) = N
(
ti|f (zi;w) , σ 2

)
(25)

where N (·) is the Gaussian distribution defined as follows:

N
(
x|µ, σ 2

)
=

1
√
2πσ

exp
(
−
(x − µ)2

2σ 2

)
(26)

The nonlinear function f (zi;w) can also be formulated as
a linearly weighted combination of basis functions

f (zi;w) =
M∑
i=1

ωiK (z, zi)+ ω0 (27)

where K (z, zi) represents the Gaussian kernel function,
w = (ω0, ω1, . . . , ωM )T is the the weighted parameter vector
of the kernel functions. M represents the number of kernel
functions. As hFi is assumed to be independent, the likelihood
of the training data set is

p(hF |w, σ 2) = (2πσ 2)−
M
2 exp{−

1
2σ 2 ‖hF −8w‖

2
} (28)

where

hF = (hF1, hF2, . . . , hFM )T,

8M×(M+1) = [φ(z1), φ(z2), · · · , φ(zM )]T

φ(zi) = [1,K (zi, z1),K (zi, z2), · · · ,K (zi, zM )]T.

To avoid the over-fitting phenomenon in the estimation
of w and σ 2 using maximum-likelihood, an explicit prior
probability distribution is defined as a constraint

p (w|α) =
M∏
i=0

N
(
ωi|0, α

−1
i

)
(29)

where αi is the independent hyperparameters that decide the
prior distribution of ωi, and α = [α0, α1, α2, . . . , αM ]T.
From the Bayesian rule, the posterior parameter distribu-

tion can be calculated as:

p(w|hF, α, σ 2) =
p(hF|w, σ 2)p(w|α)

p(hF|α, σ 2)
= (2π )−(M+1)/2|6|−1/2

× exp
[
−
1
2
(w− µ)T6−1(w−µ)

]
(30)

where6 denotes the posterior covariance,µ is the mean, and:

6 = (σ−28T8+ A)−1

µ = σ−268ThF

with A = diag(α0, α1, · · · , αM ).
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FIGURE 3. Froth images under different working conditions, with (a) to (f) indicating classes 1 to 6.

Therefore, α and δ2 can be estimated by finding an opti-
mal combination of the hyperparameters to maximize the
marginal likelihood function [19]. After obtaining the optimal
value αopt and σ 2

opt , for a new datum z∗, the predicted froth
depth h∗F can formulated as:

p(h∗F |hF , αopt , σ
2
opt )=

∫
p(h∗F |w, σ

2
opt )p(w|hF , αopt , σ

2
opt )dw

=N(h∗F |µh∗F , (σ
2)∗) (31)

whereµh∗F = µ
Tϕ(z∗) is predictive mean, and (σ 2)∗ = σ 2

opt+

ϕ(z∗)T
∑
ϕ(z∗) is the predictive variance.

IV. EXPERIMENTAL STUDY
To test the feasibility and performance of the non-contact
froth depth estimation approach, an experimental study was
conducted using video, image and data collected from a real
sulphur flotation plant. The image features were extracted via
an image analysis software.

The data collection campaign covers six typical working
conditions, as illustrated by Figure 3. Figure 3(a) shows the
image of working condition C1, i.e., pulp overflow, which
indicates large area of pulp, rather than bubble, overflow.
Under this working condition, the depth of froth is below
10 mm, resulted in a low concentrate grade (lower than 30%).
Figure 3(b) shows the image of working condiiton C2. Under
this working condition, the number of froth is rare. There are
few bright white spots on the froth image. The froth depth
is also thin, which is usually larger than 10 mm and less
than 50 mm. In addition, the low mineral content is low., The
concentrate grade is larger than that of working condition C1,
however, less than 50%. Figure 3(c) shows the froth image
under working condition C3. Under this working condition,
the froth bubbles are brittle and have uneven size. Most of

the bubbles are small. A small portion of the bubbles is big
and brittle. The froth depth are the concentrate grade are
larger than C2’s, however, less than 100mm and 60%, respec-
tively. Figure 3(d) shows the image of working condition C4.
In Figure 3(d), bubbles are small and have even size. The
froth depth is and concentrate are larger C3’s, however, less
than 180 mm and 70%, respectively. Figure 3(e) shows the
image of working condition C5, which is ideal working con-
dition. Under this working condition, the froth is small, even,
well-loaded with minerals and collapsed. The froth depth
is between 180 mm and 250 mm. The concentrate grade is
higher than 70%. Figure 3(f) shows image of working condi-
tion C6. Under this working condition, the froth is extensively
stable and dry due to a high froth depth (above 250 mm).
The froth images under the above working conditions are
collected and analyzed under the same resolution, angle, light
condition, position, view scale, etc.

Through the analysis of froth images under different work-
ing conditions, the relationship of the froth depth and the con-
centrate grade is established in Figure 4. As can be seen from
Figure 4, the sulphur concentrate grade increases with the
growth of the froth depth within certain range. However,
the concentrate grade decreases when the froth depth reaches
the critical value. Through the data and experience knowl-
edge from the sulphur flotation site, it is shown that the
range of froth depth value is 0-350mm. The froth depth of
classes 1 to 5 show an increasing trend. When the froth depth
is above 280mm, the concentrate grade may decrease with
the increase of the froth depth. In the class 6, the froth depth
is usually at 300-350mm from the data analysis of sulphur
flotation site.

The colour texture feature CTD of Figure 3(e) is shown
in Figure 5. According to the amount of froth colour texture
unit, the CTD is represented using kernel bases, as shown
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FIGURE 4. Relationship between the froth depth and the concentrate grade.

FIGURE 5. Surface froth colour texture distribution.

FIGURE 6. Normal kernel estimation and the weight coeffcients.

in Figure 6. The window width of the kernels is h. As CTD of
the image is multimodal, 25 kernel bases with are applied in
the approximation, see the dashed line in Figure 6. Two dotted
curves illustrate the multiplication between the first/second
kernel basis and the corresponding weight coefficients. The
solid line is the estimation of froth CTD. Figure 7 shows
the approximation of actual CTD of sulphur froth image
in Figure 3(e) using kernel density estimation method.

FIGURE 7. Normal kernel based approach for the approximation of the
actual CTD.

The result indicates that the kernel estimation method
can represent the froth CTD with high accuracy and low
dimensionality.

The average size of sulphur froth image is calculated by
using the watershed method. The relationship between the
bubble size and the concentrate grade under different working
conditions is shown in Figure 8. The bubble number of class 1
and class 2 is rare. As is shown in Figure 8, the average bubble
size of classes 2 to 4 is 1-5mm. Usually, the concentrate grade
increases with the decrease of the bubble size. In class 3 the
average size is about 4-5mm and the concentrate grade is
low. In class 5, the average size is about 1-2mm, and the
concentrate grade reaches above 70%. However, as shown
in Figure 8, the single size feature is difficult to recognize
the working condition. Thus, the other features must be
considered.

The velocity and stability are calculate by using the
approach introduced in Section III. The relationship between
froth velocity and concentrate grade is shown in Figure 9.
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FIGURE 8. The relationship of the bubble size and the concentrate grade.

FIGURE 9. The relationship of the froth velocity and the concentrate
grade.

The relationship between the stability and concentrate grade
is shown in Figure 10. As is shown in Figure 9, the concen-
trate grade deteriorates with the increase of the froth velocity.
The velocity of class 2 is higher than the velocity of class 5.
It reflects the theory that the sticky froth with high mineral
content moves slowly, whereas the hydrated froth moves
quickly. As indicated by Figure 10, the concentrate grade
increases with the growth of the froth stability. The stability of

FIGURE 10. The relationship of the stability and the concentrate grade.

FIGURE 11. The estimation result of froth depth under different working
conditions.

class 2 is lower than the velocity of class 5. It is demonstrated
that the froth is stiff when the stability is high so that the froth
with high mineral content flows into the concentrate, result-
ing the high concentrate grade. Otherwise, the froth is brittle
when the stability is low so that the froth with high mineral
content flows into the slurry, resulting the low concentrate
grade. The dynamic features, such as velocity and stability,
can reflect the variation of the working conditions. However,
it is must to be considered with the static features, such as
size and colour texture, to recognize the overlap portion of
working conditions.

For the working condition recognition, the testing sample
has 360 historical froth videos, in which 240 videos for
training and the rest for validation. After extracting the
froth features from the six types of images under different
working conditions, the high-dimensional features, including
CTD based 25 weights, bubble size, velocity and stability,
were reduced by the SAE method mentioned in Section III.
Nine latent variables were chosen as inputs of SMLS-SVM
classifiers. Table 1 shows the classification results using
SMLS-SVM. The classification rate of each class was
above 85%. An overall classification rate of 90.83% was
obtained. Therefore, the performance of the proposed
approach is satisfactory.

For the froth depth estimation, the testing data, including
froth image features, froth depth, flow rates of air, tailing and
feeding are collected, consist of 600 groups of data under
different working conditions. The first 540 groups of data are
used in training and the rest 60 groups of data are used for val-
idation purposes for different working conditions. The canon-
ical correlation analysis (CCA) is used to analyze and select
crucial features which influence the froth depth under six
different working conditions, respectively. Through the anal-
ysis, the colour texture, bubble size, velocity and stability are
crucial features for classes 3 to 6. The colour texture, velocity
and stability are crucial features for class 1 and class 2.
Then the SAE approach is used to decrease the dimension
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TABLE 1. Classification of SMLS-SVM method (total accuracy rate is 90.83%).

of the froth features so as to obtain the low dimensional deep
froth features. Then the low dimensional deep froth features
and key operating parameters, e.g., flow rates of air, tailing
and feeding, are chosen as inputs of RVM model to estimate
the froth depth. The number of inputs is eleven for classes 3
to 6, and is ten for class 1 and class 2. The estimate result
of froth depth by using RVM model is shown in Figure 11.
As is shown in Figure 11, the average relative error is 5.26%,
and the maximal relative error is 13.12%. It is shown that
the froth depth estimate model can satisfy the long-term
requirement on measurement accuracy and stability for the
sulphur flotation site.

V. CONCLUSION
In this paper, a non-contact estimation method of froth
depth by using machine vision technology is proposed. Our
approach takes the advantage of froth features of froth image
to recognize the working conditions. Under different working
conditions, the crucial froth features which influence the froth
depth are different. Thus, the different features are selected by
the correlation analysis under different working conditions.
Then the froth features are reduced into low dimension space
by SAE to obtain the deep froth features. Finally, the low
dimensional deep froth features and key operating parameters
are utilized as inputs of the estimate model based on RVM.
For the probability relationship between froth depth and froth
image features, RVM based on sparse Bayesian theory can
offer prediction value with its variance. The output proba-
bility can characterize the contribution rate of samples to
model to avoid the overfitting caused by setting parameters
manually. The experiment results demonstrate that desired
estimate result for froth depth is achieved using the proposed
method. In the future, our work will focus on the optimal
control of flotation based on the estimate of froth depth.
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