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ABSTRACT Most autonomous mobile robots are often equipped with monocular cameras and 3D LiDARs
to perform vital tasks such as localization and mapping. In this paper, we present a two-stage extrinsic
calibration method as well as a hybrid-residual-based odometry approach for such camera-LiDAR systems.
Our extrinsic calibration method can estimate the relative transformation between the camera and the LiDAR
with high accuracy, allowing us to better register the image and the point cloud data. After the calibration, our
hybrid-residual-based odometry can be used to provide real-time, accurate odometry estimates. Our approach
exploits both direct and indirect image features. The sensor motions are estimated by jointly minimizing
reprojection residuals and photometric residuals in a nonlinear optimization procedure. Experiments are
conducted to show the accuracy and robustness of our extrinsic calibration and odometry algorithms using
both public and self-owned real-world datasets. The results suggest that our calibration method can provide
accurate extrinsic parameters estimation without using initial values, and our odometry approach can achieve
competitive estimation accuracy and robustness.

INDEX TERMS Camera-LiDAR system, hybrid-residual, extrinsic calibration, odometry.

I. INTRODUCTION
Simultaneous localization and mapping (SLAM) is a vital
task of most autonomous mobile robots, and LiDAR and
camera are the two most widely used sensors for such tasks.

SLAM algorithms using camera images are often referred
as visual SLAM, they use abundant texture information to
estimate ego-motion, either by using image features [1] or by
using direct pixel intensities [2], [3]. Recent methods are
capable of running at real-time with relatively high accu-
racy and using a monocular camera at a low cost. However,
monocular visual SLAM suffers inherently from the scale-
ambiguity problem.

SLAM algorithms using LiDAR point clouds are based
on point-cloud registration using algorithms such as
ICP [4] or NDT [5]. As the LiDAR can provide direct
3D point-measurements, LiDAR-based algorithms are often
superior in mapping accuracy. However, due to the limited
number of laser beams in the LiDAR, the point cloud are
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rather sparse in the vertical direction. This can pose difficul-
ties in the registration.

Camera-LiDAR odometry tries to exploit both the laser
point cloud data and the camera image information for esti-
mating the ego-motion. A combination of accurate but sparse
spatial measurements from laser scans and dense appearance
information from camera images have the potential to com-
plement each other for the task of motion estimation. Such
a system has shown remarkable potential in both mapping
accuracy and robustness in recent studies [6]–[8].

In this paper, we focus on camera-LiDAR systems and
address at first the extrinsic calibration problem, and then,
the odometry problem.

We study the camera-LiDAR extrinsic calibration problem
so that the LiDAR and camera data can be accurately reg-
istered under a common reference frame, thereby laying a
good foundation for camera-LiDAR odometry. We propose a
two-stage calibration method inspired by the works of Huang
and Stachniss [9] and Pandey et al. [10]. The first calibration
stage aims to obtain a proper initial guess of the extrinsic
parameters by exploiting constraints between the motions
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of individual sensors. The second calibration stage further
refines the result by registering the LiDAR reflectivity infor-
mation to the image intensity information using a metric call
mutual information, assuming the camera and LiDAR have
a sufficiently overlapped field of view (FOV). Experimental
results show that our method can achieve accurate calibration
results.

In the second part of this paper, we study the camera-
LiDAR odometry problem. In our previous work [11],
we proposed an odometry framework for RGB-Depth sen-
sors which are similar to camera-LiDAR systems but can
provide much denser close-range depth information (e.g.,
the Kinect sensor). For RGB-Depth sensors, our previous
work jointly minimizes the reprojection residuals, the pho-
tometric residuals and the depth residuals altogether in a
novel hybrid-residual-based optimization model. By exploit-
ing multiple types of information, the robustness and accu-
racy of odometry estimates are greatly enhanced. However,
in case of camera-LiDAR system, such an approach cannot be
adapted easily as the depth information provided by LiDAR
is much sparser than the image pixels, rendering the depth
residuals and 3D landmark features rarely sufficient. In this
paper, we address these issues and propose camera-LiDAR
odometry which exploits both direct and indirect image fea-
tures (assuming the camera and LiDAR have a sufficiently
overlapped FOV). By performing depth-interpolation, our
approach can obtain sufficient landmark features and provide
accurate ego-motion estimates. Experiments are conducted to
evaluate the accuracy and robustness of our odometry algo-
rithms using both public and self-owned real-world datasets.
The results suggest that our odometry approach can achieve
competitive estimation accuracy and robustness.

The main contributions of this paper are as follows:
• An accurate two-stage camera-LiDAR extrinsic calibra-
tion approach;

• A novel hybrid-residual-based odometry method for
camera-LiDAR systems;

• A novel occlusion-filtering approach for improving
accuracy in both extrinsic calibration and odometry.

II. RELATED WORK
In this section, we provide an overview of related work
for extrinsic calibration and odometry problems regarding
camera-LiDAR systems.

A. EXTRINSIC CAMERA-LiDAR CALIBRATION
Previous extrinsic calibration methods can be categorized
into two categories: the target-based and target-less methods.

Target-based methods involve using fiducial objects with
known geometry to perform the calibration [12]–[14]. Such
kind of approach can often provide accurate calibration
results. However, due to the requirement of fiducial objects
and human interventions, these calibration methods cannot
be done on-the-fly or in-field easily.

Many works are focused on target-less calibration, includ-
ing motion-based and feature-based calibration methods.

Motion-based calibration methods [9], [15], [16] estimate
the extrinsic parameters by using a series of relative pose
measurements of the sensors, while feature-based calibration
methods [10], [17]–[21] extract features from the camera and
lidar data and then estimate the parameters by minimizing the
reprojection error of the corresponding features.

Among the motion-based methods, Shiu and Ahmad [15]
solve a set of homogeneous transform equations in the form of
AX = XB, where (A,B) represents the relative motions of two
modalities and X is the six Degree of Freedom (DOF) relative
transformation parameters between the modalities. Huang
and Stachniss [9] estimate not only the extrinsic parame-
ters but also the motion errors by using the Gauss-Helmert
paradigm, thereby improving the calibration accuracy and
robustness significantly.

Among the feature-based methods, Liao et al. [17] and
Moghadam et al. [18] use 3D line features from the point
clouds and corresponding 2D line segments from camera
images when exploiting the statistical dependence of the sen-
sor data. Boughorbal et al. [19] and Williams et al. [21] esti-
mate the extrinsic parameters by using a χ2 test to maximize
the correlation between the sensor data. Napier et al. [20]
optimize a correlation measure between the laser reflec-
tivity and grayscale image values to calibrate a 2D push-
broom lidar and a camera system. Pandey et al. [10] address
the camera-LiDAR calibration problem by maximizing the
mutual information between the sensor measured surface
intensities. Such a method can achieve accurate calibration
results if provided sufficient data and a proper initial guess.

According to our experience, feature-based calibration
approaches can often provide satisfying results if a proper ini-
tial guess is provided. Motion-based calibration approaches,
on the other hand, are often not accurate enough for proper
point-cloud-to-image registration, but it can tolerate a noisy
initial guess and even work without using one. Therefore,
we propose to combine the advantages of both methods
by using a two-stage calibration method where a motion-
based approach serves as an initial calibration, and a mutual-
information-based approach further refines the estimate. The
work of Liao et al. [17] has a similar idea, but they rely on
a line-feature based method as the second stage, which has a
strong dependence on the structured environment and is likely
to fail in an unstructured scene. Our approach does not has
such limitation and can work with nature scenes.

B. CAMERA-LiDAR ODOMETRY
There are direct and indirect methods for camera-LiDAR
odometry problems. The indirect approaches, also known as
feature-based, extract image keypoints from the image and
their depth information from the LiDAR point cloud. A set of
such keypoints are then used to estimate the sensor motions.
For example, Zhang et al. [8] proposed a method utilizing
keypoints both with and without depth measurements. The
motion is estimated by minimizing the reprojection errors
of keypoints. Andreasson et al. [7], [22] utilize all the key-
points as well, but they address the missing depth problem
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with vision-based depth interpolation. Direct methods are a
kind of methods which do not extract image features but
use pixel intensity values directly. Shin et al. [6] use the
projected laser points to perform a multi-frame photometric
optimization the same as the DSO visual-SLAM odome-
try [2]. Della Corte et al. [23] proposed amulti-cue photomet-
ric point cloud registration approach which considers color,
depth, and normal information, however, it is designed for
RBG-Depth sensors.

III. THE TWO-STAGE CALIBRATION FRAMEWORK FOR
LiDAR AND CAMERA
In this section, we present our two-Stage extrinsic calibra-
tion method for camera-LiDAR systems. Our calibration
approach combines a motion-based approach and a mutual-
information-based approach. Our motivation is that, on the
one hand, the mutual-information-based approach can pro-
vide more accurate calibration results but require a proper
initial guess of the extrinsic calibration. On the other hand,
the motion-based approach can work without an initial guess,
but its estimate has limited accuracy. Thus, the combination
of the two approaches can yield advantages.

In the following discussion, we assume the camera and
LiDAR to be time-synchronized (e.g., by using hardware
trigger) and the intrinsic calibration parameters of the monoc-
ular camera (i.e., focal length, camera center, distortion coef-
ficients of the lens) are pre-calibrated. The LiDAR coordinate
system is originated at the LiDAR optical center with its
x-axis pointing to the forward, y-axis pointing left, and z-axis
pointing upward coinciding with the LiDAR principal axis.
The camera coordinate system is originated at the camera
optical center with its x-axis pointing to the downward, y-axis
pointing left, and z-axis pointing forward coinciding with the
camera principal axis. The world coordinate system coincides
with the camera coordinate system at the starting position.
The extrinsic parameters used in this paper are the rotations
and translations of the LiDAR coordinate frame relative to
the camera coordinate frame, which are defined in the camera
coordinate frame.

A. MOTION-BASED FIRST STAGE CALIBRATION
The first calibration stage of our approach is a motion-based
method which exploits the constraint equation AX = XB
between the ego-motions/trajectories (i.e., A,B) of individual
sensors to estimate a coarse initial guess of the extrinsic
parameters (i.e., X). We model this problem with the Guass-
Helmert least-squares formulation, which is described in this
section.

To perform the motion-based calibration, one needs to
instruct the robot to perform six-DOF motions and obtain
ego-centric trajectories of both the LiDAR and the camera.
We denote the trajectories of the two sensors as:

l i
def
=


rai
rci
tai
tci

 , i = 1, · · ·,N (1)

where rai and tai are the rotations and translations of the
LiDAR trajectories; rci and tci are the rotations and trans-
lations of the camera trajectories. The notation r represents
a angle-axis vector of a rotation matrix, and R(·) represents
the rotation matrix of the corresponding angle-axis vector.
We also denote the unknown extrinsic parameters as:

x def
=

[
η

ξ

]
(2)

where η is the angle-axis vector of the rotation parameter and
ξ is the translation parameter.
Base on the constraint equation AX = XB, we define two

error functions which relate the sensor trajectories data l i to
the unknown extrinsic parameters x:

gt (x, l i)
def
= [R(rai)− I3]ξ + tai − R(η)tci, (3)

gr (x, l i)
def
= rai − R(η)rci. (4)

In the noise-free case, a true solution x∗ will fulfill

g(x∗, l i)
def
=

[
gt (x
∗, l i)

gr (x
∗, l i)

]
= 0. ∀i. (5)

However, this is often not the case and there will be inevitable
measurement errors, we therefore denote the unknown trajec-
tory errors as εi:

εi = l i − l0i , (6)

with l0i being the raw trajectory data.
Then, our task is to estimate both the extrinsic parameters

x and the trajectory errors εi by solving

argmin
x,{εi}

N∑
i

‖εi‖
2
Wi

subject to g(x, εi + l0i ) = 0, ∀i, (7)

assuming εi follows a normal distribution and Wi
def
= Σ−1lili is

its inverse covariance matrix.
We refer to Equation (7) as a Guass-Helmert least-squares

problem and it can be solved by iterating between linearizing
the model and adjusting the parameters x and εi. To be more
specific, assume that in the k-th iteration, the corrected mea-
surements lki as well as the estimated parameters xk will be
updated by

lk+1i = ∆l i + lki and xk+1 = ∆x+ xk . (8)

We first linearize the non-linear constraint equation g(x, l) =
0 around (xk , lki ) by:

g(xk , lki )+ Jki∆x+ Lki∆l i = 0, (9)

where Jki are the Jacobians of g with respect to x and Lki are
the Jacobians of g with respect to l. Then the Equation (7)
becomes

argmin
∆x,{∆l i}

∑
i

‖∆l i + εki ‖
2
Wi

s.t. g(xk , lki )+ Jki∆x+ Lki∆l i = 0, ∀i, (10)
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in which εki
def
= lki − l0i are the corresponding k-th iteration

trajectory errors.
Equation (10) can be solved using the method of Lagrange

multipliers and its solution is:

∆x =
(∑

i

JTi ΛiJi
)−1∑

i

JTi Λici, (11a)

∆l i = Σ liliL
T
i Λi(ci − Ji∆x)− εki , (11b)

with Λi
def
= (LiΣ liliL

T
i )
−1, (11c)

and ci
def
= −g(xk , lki )+ Liεki . (11d)

Using Equation (11), we can obtain the estimate (xk+1, lk+1i )
and repeat the process until convergence.

Note that motion-based algorithm will degenerate if the
trajectory measurements do not contain full 3D rotation [9].
Thus, one should ensure that the provided sensor trajectories
contain sufficient movements in all six-DOF.

When working with trajectories of a monocular camera,
their scale factors are often unknown due to the inherent
scale-ambiguity problem. We propose to determine such
scale factors (denoted as λ) by using the fact that the norm
of a translation is the same for both camera and LiDAR in
case of pure translations, i.e.

‖λtci‖ = ‖tai‖, if ||rci|| = 0. (12)

Thus, one can first instruct the robot to perform pure transla-
tion (which can be carried out easily for ground vehicles in
most cases), then use such trajectories to estimate the scale
parameter of the camera by solving

argmin
λ

M∑
i=1

(‖λtci‖ − ‖tai‖)2 , i = 1, · · · ,M , (13)

where M is the number of motion measurement segments
which contain no rotations, and ‖·‖ represents 2-norm. We
can solve λ by making the first derivative of the Equation (13)
equals to zero, i.e.

2
M∑
i=1

‖tci‖ (λ ‖tci‖ − ‖tai‖) = 0. i = 1, · · · ,M . (14)

The solution to λ reads as:

λ =

∑M
i=1 ‖tci‖ ‖tai‖∑M
i=1 ‖tci‖

2
. i = 1, · · · ,M . (15)

The scale-corrected camera trajectory is now (rci, t ′ci) with

t ′ci
def
= λtci. (16)

Note that λ needs to be calculated for each camera trajectory.

B. MUTUAL-INFORMATION-BASED SECOND
STAGE CALIBRATION
The second calibration stage of our approach is a mutual-
information-based method which further refines the extrinsic
parameters by registering the LiDAR reflectivity information

to the camera image intensity information using a metric call
mutual information.

For a scene point co-observed by the LiDAR and camera,
one can obtain three types of measurement: its range, reflec-
tivity, and image intensity. Both the range and reflectivity
information are provided by the LiDAR, and the reflectivity
measures how much percentage of the infra-red pulse is
reflected back to the LiDAR receiver by the scene point.
Such kind of reflectivity information is often similar or well-
aligned to the image intensity information in a real-world
environment, and hence can be used to calibrate the two
sensors.

To perform mutual-information-based calibration, we rely
on a set of scene points co-observed by the LiDAR and
camera. Assuming an initial extrinsic parameters (η, ξ ) for
stage one calibration are obtained, a 3D LiDAR point s can be
projected to the camera image plane at the pixel location of

c def
= π (K(R(η)s+ ξ )), (17)

where K is the camera matrix defined by camera intrinsic
parameters, and π (·) is the Euclidean normalization function
that transforms homogeneous coordinates into (inhomoge-
neous) pixel coordinates, i.e.

π (

uv
w

) def
=

[
u/w
v/w

]
. (18)

If the projected 2D point c lies inside the camera image, then
we refere to the scene point s as a co-observed point. Such a
set of co-observed points are used in our second calibration
stage. We denote their LiDAR reflectivity values as random
variable S and their image intensities as random variable C .
The mutual information between S and C is a measure of
statistical dependence (or correlation) occurring between the
two random variables, which we define as the entropy:

MI(S,C) def
= H(S)+ H(C)− H(S,C), (19)

with

H(S) def
= −

∑
Si∈S

pS (Si) log pS (Si), (20)

H(C) def
= −

∑
Ci∈C

pC (Ci) log pC (Ci), (21)

H(S,C) def
= −

∑
Si∈S

∑
Ci∈C

pSC (Si,Ci) log pSC (Si,Ci), (22)

and

pS (S = Si)
def
=

1
n

n∑
j=1

Gω(S − Sj), (23)

pC (C = Ci)
def
=

1
n

n∑
j=1

Gω(C − Cj), (24)

pSC (S = Si,C = Ci)
def
=

1
n

n∑
j=1

G�

([
S
C

]
−

[
Sj
Cj

])
. (25)
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FIGURE 1. The mutual-information between the LiDAR reflectivity and
camera intensity as a function of one of the extrinsic parameters, pitch
angle. All the other parameters are fixed at their ground truth. The
maximum mutual-information is observed at the true pitch angle -0.11◦.

Here, H(·) represent the amount of uncertainty. Si,Ci represent
the observations of the random variables, n is the total num-
ber of co-observed scene points. p(·) represent marginal and
joint probabilities of the random variables, which are kernel
density estimates by using Gaussian kernels Gω(·) and G�(·)
with a bandwidth of ω and � respectively. � is determined
by Silverman’s rule of thumb [24]:

� = 1.06n
1
5

[
σS 0
0 σC

]
. (26)

Under the correct extrinsic parameters, the mutual-
information between the LiDAR reflectivity information
and the image intensity information should be maxi-
mized [10], i.e.

x∗ = argmax
x

MI(S,C; x). (27)

Fig. 1 depicted an experimental result to support this argu-
ment. Here, the mutual-information is calculated under dif-
ferent extrinsic parameter (i.e. pitch angle), it reaches the
maximum value at the correct pitch angle.

Although the objective function in Equation (27) is not
a direct function of the calibration parameters, it can still
be solved numerically with a gradient-descent approach the
same as in [25].

C. OCCLUSION FILTERING FOR
ACCURACY IMPROVEMENTS
Throughout this paper, we assume each triplet of range,
reflectivity, and image intensity values reported by the
camera-LiDAR system are originated from one co-observed
scene point. However, such assumption will be violated if
the scene point is occluded due to a viewpoint difference
between the LiDAR and camera, which often happens for a
point located at object borders. In that case, the reflectivity
and image intensity values are originated from different scene
points and should be removed from the estimation process.
Otherwise, the estimation accuracy will deteriorate, and the
estimation result will contain systematic errors.

FIGURE 2. The pixels order of projected 3D points will change if they are
occluded. In the camera view, we label the 3D points from left to right as
(1, 2, 3, 4, 5). In the LiDAR view, point 3 and 4 are occluded, leading to a
different pixel order, which is now (1, 3, 4, 2, 5) from left to right.
We exploit such pixel order changes to perform occlusion detection for
sparse 3D point clouds.

To overcome the occlusion problem, we propose a novel
occlusion filtering method to predict which scene point in a
sparse point cloud will be occluded due to sensor viewpoint
differences. The key observation of our approach is that
whenever parts of a point cloud are occluded in one sensor
view, the relative pixel order of the projected point cloud in
another sensor view will be different.

Fig. 2 illustrated an example. Assume in the camera view,
and there are five scene points labeled as (1, 2, 3, 4, 5)
from left to right. Point 3 and 4 are occluded in the LiDAR
view due to a translational viewpoint difference. In this case,
the projected pixel order of the same point-set becomes (1, 3,
4, 2, 5) in the LiDAR view, again from left to right. In other
words, the order of points (3, 4) and point 2 is swapped in
the two sensor views, and we could exploit such changes to
detect occlusion.

We generalized this idea and developed an algorithm for
occlusion filtering for sparse 3D point clouds. Fig. 3 shows
an example result on real-world data. The detected occluded
points are marked red in Fig. 3a. As shown, the corresponding
points in Fig. 3b are drawn incorrect color. Such points
should therefore be removed from the mutual-information-
based calibration.

Note that the number of occluded points is likely to
increase when the observed object gets closer, thus the
occlusion filtering becomes more necessary in an indoor
environment.

IV. HYBRID-RESIDUAL-BASED ODOMETRY FOR
CAMERA-LiDAR SYSTEM
After the calibration, we propose a hybrid-residual-based
camera-LiDAR odometry method for accurate real-time
motion estimation.

The motion estimation problem of the camera-LiDAR sys-
tem is equivalent to the problem of estimating the camera
motion using both the image and point cloud data. Our
approach relies on two types of the landmark: the photometric
landmarks and the reprojection landmarks. Both types of
the landmark are a set of pixels extracted from the camera
image base on certain criterions (Sec. IV-A). We assign each
of the landmarks with a depth value either directly from
a LiDAR range readings or through a depth interpolation
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FIGURE 3. An occlusion detection result on real-world data, image
(a) shows a result that after projecting an image onto point cloud. Image
(b) shows the occlusion detection result, and red points indicate the
occlude points which are detected by our method. These points are
clearly drawn incorrect color information, as shown in the image (a). The
bottom-right of each image shows the image being projected.

algorithm (Sec. IV-B). Each landmark introduces a photomet-
ric or a reprojection residual term in our motion estimation
model (Sec. IV-C).

A. LANDMARK EXTRACTION
For photometric landmarks, we choose pixels which have the
highest gradient magnitude values because they are consid-
ered to be more salient and robust to illumination changes.
To extract these photometric landmarks, we first compute
the gradient of each pixel by applying the Sobel filter to the
grayscale camera image. We then construct a histogram of all
gradient values to determine a threshold, and any pixel with
a gradient value exceeds the threshold are selected. Fig. 4a
illustrated an example of extracted photometric landmarks
(marked green) on top of a gradient magnitude image.

For reprojection landmarks, we use the Oriented FAST and
rotated BRIEF (ORB) feature detector and descriptor [26]
to perform keypoint extraction and matching. During the

FIGURE 4. An example of photometric and reprojection landmarks.

keypoint extraction, the image is divided into grids, and the
ORB feature detector is applied to each grid. In this way,
keypoint is extracted homogeneously in the image, and the
number of features in each grid is similar. Fig. 4b illustrated
an example of extracted reprojection landmarks (green mark)
on top of a color image.

B. DEPTH INTERPOLATION
After a pixel or keypoint is selected as a landmark, it has
to be assigned with a depth value in order to be useful for
the camera motion estimation. This can be done easily if the
pixel/keypoint correspond to a LiDAR point, as the depth
value will be directly available from the LiDAR range reading
after the coordinate transformation. However, because the
range measurements from LiDAR are much sparser than the
image pixels, most of the landmarks will not correspond to
a LiDAR point and hence has to be discarded if no special
treatment is applied, rendering the camera motion estima-
tion process unable to proceed. To address this problem,
we propose to approximate the missing depth values with
interpolated ones, using a method described in this section.

First, let us denote a depthless pixel or keypoint as

ci = (ri, gi, bi, ui, vi), (28)

where ri, gi, bi are the three RGB values of the pixel and ui,
vi are the pixel coordinates. Then, we denote a LiDAR-point-
projected pixel as

cj = (rj, gj, bj, uj, vj, dj), (29)

where dj is the known depth of the LiDAR point. Our task
is to estimate the depth value d of a pixel ci given a set of
pixels cj.

One can use the nearest-neighbor interpolation method to
select a cj closest to the ci in terms of coordinate distances.
However, a more reasonable method should also consider the
color similarity, as the approximation of depth is related to
not only pixel distance but also color. Therefore, we formulate
this as aMaximum Likelihood Estimate (MLE) problemwith
the likelihood function defined as

p(cj, ci) = e
−

(ui−uj)
2
+(vi−vj)

2

σ2P
−

(ri−rj)
2
+(gi−gj)

2
+(bi−bj)

2

σ2C (30)

where σ 2
C is the variance for color differences, σ 2

P is the
variance of coordinate differences which is calculated from
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FIGURE 5. An example depth image before and after the interpolation.
The pixel is drawn as a gray value according to its depth value. The
bottom-right of each image shows the corresponding color image.

a distance matrix. Each pixel can generate its distance matrix
which has a size the same as the image. Each item in the
matrix refers to the distance between that pixel and all other
pixels. The mean square deviation of the distance matrix is
used as the variance of the pixel point. Pixel color can be
regarded as three-DOF coordinates, hence the variances of
pixel color are calculated using a similar process.

Fig. 5 shows an example depth image before and after
the interpolation. Please note that the depth interpolation is
only performed for the pixels which are within a 5 pixel
distance of those pixels with depth measurements. Cause the
depth interpolation is meaningless when two pixels are too far
apart. Compared to other method such as [27], our approach
does not require solving high-dimensional linear equations,
making the interpolation process less time-consuming and
can be run in real-time.

C. OPTIMIZATION MODEL
Once the photometric and reprojection landmarks are
extracted and assigned with depth values, they are used to
estimate the camera motion.

We model such problem as a MLE problem:

argmax
φ

2∏
n=1

p((aon, awn)|φ), (31)

where φ is the six-DOF motion parameters of the cam-
era frame with respect to the world coordinate system,
p((aon, awn)) is themaximum likelihood probability, aon is the
landmark in the world coordinate, awn is the corresponding
landmark in the camera coordinate.

Under the Gaussian noise assumption, the MLE problem
in Equation (31) is equivalent to a weighted nonlinear least
squares problem which contains both reprojection residuals
and photometric residuals:

argmin
φ

Nrep∑
i=1

e2rep,i
σ 2
rep,i

+

Npho∑
j=1

e2pho,j
σ 2
pho,j

 , (32)

where erep,i is the reprojection residual, epho,j is the photomet-
ric residual, σ 2

rep,i and σ
2
pho,j are the observation noise covari-

ance, which are estimated online based on the distribution of
observations.

The reprojection residual erep,i is defined as the coordinate
difference between a detected reprojection landmark and its
corresponding reprojected point in the image

erep,i
def
=

∥∥∥[uoi, voi]T − [uwi, vwi]T
∥∥∥ , i = 1, · · · ,Nrep,

(33)

where [uoi, voi]T are the pixel coordinates of observed
keypoint, and [uwi, vwi]T are the pixel coordinates of
corresponding reprojected point which is determined by key-
point extraction and matching.

The photometric residuals epho,j is defined as the pixel
intensity distance of a photometric landmark and its repro-
jected pixel in the current image

epho,j
def
= I([uoj, voj]T)− I(awj), j = 1, · · · ,Npho, (34)

where I(awj) is the intensity value of the photometric land-
mark when it is first extracted, and I([uoj, voj]T) is the inten-
sity value of corresponding pixel in the image.

The nonlinear optimization problem in Equation (32) is
solved with a similar approach as in [11]. To increase the
robustness with respect to outliers, residuals larger than a
certain threshold is considered as an outlier and removed from
the optimization.

V. EXPERIMENTS AND RESULTS
In this paper, we propose a two-stage extrinsic calibra-
tion method as well as a hybrid-residual-based odometry
approach for camera-LiDAR systems. We conduct experi-
ments to show that (i) our two-stage calibration approach
can provide accurate extrinsic parameter estimates, with-
out requiring an initial guess, (ii) our occlusion detec-
tion approach can improve the overall calibration accuracy,
(iii) our hybrid-residual-based odometry can achieve compet-
itive localization accuracy even with fast motion.

The experiments consist of two parts. In the first part,
we perform extrinsic calibration using real-world data, and
in the second part, we evaluate the proposed camera-LiDAR
odometry approach and make comparisons to other state-of-
the-art algorithms.

The main robotic platform used in the experiments is a
self-developed tracked robot equipped with a camera-LiDAR
system, as shown in Fig. 6. All our methods are implemented
in C++ and run on this platform with a 2.2 GHz eight-core
CPU processor.

A. EXTRINSIC CALIBRATION ON REAL ROBOT
To validate our calibration method, we perform extrinsic
calibration on our own robotic platform.

We first acquired a set of sensor trajectories to estimate an
initial guess for the extrinsic parameters, using our stage-one
calibration algorithm. We instructed the robot to perform a
set of movements, and at the same time, estimate the ego-
motion of both the LiDAR and the camera using a LiDAR
odometry algorithm named LOAM [28] and visual odometry
named ORB-SLAM [1].
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FIGURE 6. Our experimental robot platform which is equipped with a
camera-LiDAR system.

TABLE 1. Extrinsic calibration results on real robot.

The performed robot movements contain both pure trans-
lations and full six-DOF motions. The pure translations are
used for recovering the scale factor of the estimated camera
trajectories, using the method described in Sec. III-A. The
six-DOF motions ensure the motion-based calibration algo-
rithm does not degenerate during the estimation, allowing all
six extrinsic parameters to be recovered.

In the first-stage motion-based calibration, we used a total
of 31 pairs of motion data to obtain the initial guess. In the
second-stage mutual-information-based calibration, we used
20 pairs of selected distinctive sensor data to refine the esti-
mate. Both the intermediate and final extrinsic parameters are
shown in TABLE 1. The rotational parameters are represented
as Euler angles, i.e., the roll, pitch and yaw angles.

As this is a real-world experiment, the ground truth of
extrinsic parameters is unfortunately not available. In order
to perform a quantitative evaluation, we obtained a ref-
erence value by manually adjusting the six-DOF extrinsic
parameters until the point cloud projections onto the camera
images are visually plausible as much as possible (as depicted
in Fig. 7). The resulting reference values are also listed in
TABLE 1 and serve as the ground-truth for the following
evaluations.

Compared to the reference values, the first-stage calibra-
tion result has a translation difference about 2 cm and a

FIGURE 7. Point cloud projections onto the camera images using
manually adjusted extrinsic parameters.

FIGURE 8. Ford Campus dataset example (a) outdoor scene (b) indoor
scene.

rotation difference about 0.3◦. Such differences are further
reduced by our second-stage calibration algorithm and lead to
a final difference of 0.2 cm in translation and 0.06◦ in rotation.
Thus, we conclude our two-staged calibration algorithm can
perform accurate calibration on real robots.

Furthermore, the computation time of thewhole calibration
pipeline is around 90 second, including the scale estimation
and the two-stage calibration, which is acceptable for practi-
cal in-field operations of robots.

B. EXTRINSIC CALIBRATION WITH FORD
CAMPUS DATASET
To further validate our calibration algorithm, we also apply
our algorithm/pipeline to the Ford Campus dataset [29],
which is a dataset collected using a ground vehicle equipped
with a Point Grey Ladybug3 omnidirectional camera system
and a Velodyne 3D LiDAR (examples shown in Fig. 8).
We estimate the extrinsic parameters between the LiDAR and
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FIGURE 9. The maps generated by registering the point clouds based on our odometry in (a)-(b) a courtyard, (c)-(d) an office. The
camera-LiDAR system is placed on NuBot platform.

TABLE 2. Calibration results on Ford Campus dataset.

the forward-looking camera, then compare the result to the
provided parameters.

The calibration result is shown in TABLE 2. Compared
to the ground-truth, our estimated parameters have a trans-
lational error of 0.95 cm and a rotational error of 0.0495◦.

To study the influence of our occlusion filtering algorithm,
we also evaluated the calibration results estimated with the
occlusion filtering disabled. As can be seen in TABLE 2,
the calibration accuracy deteriorates when the filtering is
disabled, especially for the rotation estimation. Such a result
suggests that our occlusion detection approach can improve
the overall calibration accuracy.

C. ODOMETRY WITH OWN DATASET
In this experiment, we evaluate our odometry approach using
datasets collected with our robotic platform.

The dataset contains both indoor and outdoor environ-
ments, as shown in Fig. 9a and Fig. 9c. During the experiment,
we instruct the robot to strictly follow a set of prede-
fined trajectories, whose geometry are known and manually
measured. All the trajectories are loop-closed, and the robot
always returns to the starting point, therefore we can easily
calculate the accumulated drift of the odometry.

We carried out three trials for each scene, and the transla-
tional drifts/errors of each trial are listed in TABLE 3. The

TABLE 3. Translational drifts of each estimated trajectory.

TABLE 4. Comparison on translational drifts of three methods.

average error of the indoor trials is 2.52%, and the average
error of the outdoor trials is 2.56%, as shown in the rightmost
column of TABLE 4.

TABLE 4 also shows the average translational errors
of i) the LiDAR-based approach LOAM [28] and ii) the
camera-based approach ORB-SLAM [1] on this dataset for
comparison. As can be seen in the TABLE 4, our method
outperforms the other two methods which rely on a single
sensor modality.

The resulting 3D maps generated by our approach are
shown in Fig. 9b and Fig. 9d. In the experiment, all computa-
tion is performed in real-time, and the camera-LiDAR extrin-
sic parameters are determined by our two-stage calibration
method as mentioned in the previous section.

It is worth mentioning that our odometry approach is
able to handle (relatively) fast motion. During the experi-
ment, our algorithm remains accurate even when the robot
moves with relatively high speed (around 0.8 m/s) and mak-
ing large turns. Take the corner shown in Fig. 10 as an
example. The map generated by LOAM (i.e. Fig. 10a) is
significantly misaligned during a 90◦ rotation whereas the
result of our approach (i.e. Fig. 10b) is not affected by such
motion.
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FIGURE 10. (a) The LOAM failed when passing the corner (the point cloud
is colored). (b) Our approach has almost no drift in the same corner, which
proves that fusing image information improves the odometry robustness.

TABLE 5. Comparison on averaging translational error of the KITTI
odometry dataset.

D. ODOMETRY WITH THE KITTI DATASET
In this experiment, we make further comparisons between
our odometry approach and three state-of-the-art approaches
using theKITTI odometry dataset [30]. The threemethods are
i) LiDAR-only odometry LOAM, ii) camera-only odometry
ORB-SLAM and iii) a state-of-the-art camera-LiDAR odom-
etry named DEMO [8].

We chose the sequence 01, 03 and 10 for a fair compar-
ison, as these sequences do not contain loops in their path
and hence once can ignore the effect of loop-closing. The
respective translational error of each odometry method is
depicted in TABLE 5. Judging from the result, our approach
again outperforms the single modality methods (i.e., LOAM
and ORB-SLAM), and can achieve competitive estimation
accuracy with respect to the state-of-the-art camera-LiDAR
odometry DEMO.

Notice that the ORB-SLAM lost track in the sequence 01,
which is not unexpected since sequence 01 is a challenging
highway sequence which lacks both structural and textual
features. Our approach, on the other hand, is not affected.

VI. CONCLUSION
In this paper, we focus on camera-LiDAR systems and
propose a two-stage extrinsic calibration method as well
as a hybrid-residual-based odometry approach. To better
register the image and the point cloud data, our calibra-
tion approach combines a motion-based approach and a
mutual-information-based approach, where the motion-based
approach (i.e., the first stage) estimates an initial guess of
the extrinsic parameters, and the mutual-information-based
approach (i.e., the second stage) refines the result to a
high accuracy. We also presented a novel occlusion filtering
algorithm to remove occluded data points, which is useful
for improving calibration accuracy and robustness. We also

proposed real-time hybrid-residual-based odometry which
exploits both photometric and reprojection image features.
The point cloud sparsity problem is resolved with our color-
related depth-interpolation. We evaluated our calibration and
odometry approach on both our own robotic platform as well
as the real-world public dataset. The experimental results
suggest that our calibration method can provide accurate
extrinsic parameters estimation, and our odometry approach
can achieve competitive estimation accuracy and robustness.
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