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ABSTRACT To timely detect bearing operating condition, and accurately identify bearing fault type and
fault severity, a novel multi-stage hybrid fault diagnosis strategy for rolling bearing is proposed in this paper,
which mainly consists of three stages (i.e. fault initial detection, fault type recognition and fault severity
assessment). Firstly, the procedure of permutation entropy (PE)-based fault initial detection is performed
to estimate bearing operating condition. If the bearing fault exists, the next two stages are conducted
for fault type recognition and fault severity assessment. Specifically, in the second and third stages, for
each dataset under different fault conditions, hybrid-domain features including time-domain, frequency-
domain and time-frequency domain are firstly extracted to establish high-dimensional feature space based on
statistical analysis and variational mode decomposition (VMD). Then, locality preserving projection (LPP)
is introduced to compress high-dimensional dataset into low-dimensional feature space which can reflect
preferably intrinsic information of the raw signal and remove information redundancy embedded in hybrid-
domain features. Finally, the obtained low-dimensional dataset is imported into Fuzzy C-means (FCM)
clustering for recognizing bearing fault type and fault severity. The efficacy of the proposed approach is
verified by experimental bearing data under different working conditions. The results indicate that our
proposed method can both assess effectively bearing health status and recognize accurately bearing fault
type and fault severity. In addition, our proposed approach has higher diagnosis precision than traditional
single-stage diagnosis method mentioned in this paper.

INDEX TERMS Permutation entropy, variational mode decomposition, locality preserving projection,
rolling bearing, fault diagnosis.

I. INTRODUCTION
Research on fault detection of rolling element bearing has
drawn much attention in recent years. Rolling element bear-
ings are the major parts of rotating machinery and widely
used in many industrial fields. Tiny faults existing in rolling
element bearing easily cause the stop running of mechanical
system, bring the tremendous economic losses and even give
rise to the serious accident and personnel casualties [1]–[5].
Consequently, it is of much concern to explore a novel and
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effective fault detection approach for preventing the local
fault and reducing downtime of mechanical system [6].

Currently, many algorithms have been reported for detect-
ing bearing defects. For instance, Zhang et al. [7] presented
a mixed fault diagnosis scheme, where three techniques
(i.e. permutation entropy, ensemble empirical mode decom-
position and SVM optimized by inter-cluster distance) are
combined to identify fault type of bearing. Yan and Jia
[8] proposed an improved multiscale dispersion entropy to
obtain bearing fault feature information, and then the mRMR
method is used for feature selection and finally ELM is
adopted for intelligent fault diagnosis of rotating machinery.
Zheng et al. [9] proposed the multi-scale fuzzy entropy to
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measure the complexity of a time series, then combine Lapla-
cian score (LS) and variable predictive model-based class dis-
crimination to identify bearing fault categories. Li et al. [10]
combined the local mean decomposition and improved multi-
scale fuzzy entropy to extract fault features, and then LS is
adopted to refine fault features by sorting the scale factor.
Finally, improved support vector machine based binary tree
is applied to implement fault classification. Ali et al. [11]
combined empirical mode decomposition and energy entropy
to extract fault feature information, then the extracted features
is regarded as the input of artificial neural network to iden-
tify bearing fault status. However, the aforementioned fault
diagnosis approaches concentrated mainly on multiscale fea-
ture extraction and single-stage fault diagnosis. That is, their
diagnosis procedure is carried out directly over the trained
fault identification model. Unfortunately, when we analyze
a complex fault diagnosis problem containing multiple dif-
ferent fault conditions, the single-stage method will increase
the complexity of model training and reduce diagnostic accu-
racy and efficiency [12]. Hence, to simplify fault diagnosis
problem and improve diagnostic efficiency, research on a
new diagnosis scheme which can effectively estimate bearing
health status and accurately identify bearing fault type and
fault severity is the subject of this paper.

Apparently, most of fault diagnosis approaches mainly
include four steps (i.e. signal processing, feature extrac-
tion, feature dimension reduction and pattern recognition).
The first three steps are prepared for pattern recognition
and are directly related to the effect of pattern recogni-
tion [13]. Concretely, signal processing and feature extraction
are taken as a whole to reveal the intrinsic feature of the
original signal. Then, feature dimension reduction is per-
formed for removing information edundancy of the original
eigenspace. At present, to improve diagnostic accuracy and
efficiency, many works have launched on feature extrac-
tion and feature dimension reduction [14]–[16]. In these
studies, the frequently-used and representative feature extrac-
tion methods are time-domain and frequency-domain anal-
ysis. However, due to the various effects of non-linear
factors including load, friction and impact, raw vibration
signal measured from bearing are often characterized by
nonlinear and non-stationary behaviors, the time-domain
or frequency-domain features are extracted independently
which is inadequate for reflecting fully the inherent prop-
erties of the original signal [17]–[19]. Thus, time-frequency
analysis method is introduced to extract multiscale feature
information [20]. Nowadays, successful results have been
achieved by the application of many time-frequency analysis
techniques (e.g. Wigner-Ville distribution (WVD), wavelet
transforms (WT), empirical mode decomposition (EMD),
local mean decomposition (LMD) and intrinsic time-scale
decomposition (ITD)) in fault detection [21]. However, these
approaches involve some inherent drawbacks for multi-
scale feature extraction [22]. Such as, WVD has inevitably
cross term interference in processing multi-component sig-
nal. WT can separate a vibration signal into a set of wavelet

details, but it does not possess self-adapted ability due to the
predefined wavelet basis. EMD have some weaknesses (e.g.
end effect, mode mixing, overshoot and undershoot). As a
perfection of EMD, LMD also suffers from the end effect and
scale-mixing issue [23]. ITD is quite appropriate for analysis
of non-stationary signals, but it is liable to result in a wave-
form burr and curve distortion since the utilization of linear
transformation. Variational mode decomposition (VMD) is
a novel time-frequency analysis algorithm [24], which can
decompose adaptively a multi-component signal into several
sub-signals termed intrinsic mode function (IMF) and has the
advantage of strong noise-robustness. Some applications of
VMD for fault detection have reported in [25]–[30]. Unfortu-
nately, capability of VMD rests heavily with its preset mode
number. The improper setting of mode number may induce
the over or under decomposition issues, which affect the pre-
cision of signal decomposition. Hence, VMD is introduced
to extract multiscale features and central frequency iteration
rule in [31] is employed to determine automatically its mode
number. Given the above, hybrid-domain features containing
time-domain, frequency-domain and time-frequency domain
are extracted and combined to construct high dimensional
feature space in this paper.

After obtaining hybrid-domain feature, to further improve
the diagnostic accuracy and efficiency, suitable dimension
reduction methods are required to remove the redundant
and negative features from high dimensional feature space.
At present, dimension reduction methods are divided into
two types (i.e. the linear and nonlinear). Representative linear
dimension reduction methods [32] mainly include principal
component analysis (PCA), local feature analysis (LFA) and
linear discriminant analysis (LDA). Although these meth-
ods are very suitable for dataset with linear structure, they
can do nothing for solving nonlinear and complex prob-
lems [33]–[35]. On this basis, some nonlinear dimension
reduction methods nicknamed manifold learning stand out
for overcoming the weakness of linear dimension reduc-
tion methods. Familiar manifold learning involves local-
ity preserving projection (LPP), isometric feature mapping
(ISOMAP), local tangent space alignment (LTSA), laplacian
eigenmap (LE), and locally linear embedding (LLE) etc.
High-dimensional eigenvector can be projected into a lower
dimensional feature space containing the inherent nature of
original high-dimensional space by using these manifold
learning methods. Currently, many achievements of mani-
fold learning have been obtained in [36]–[38]. Among these
nonlinear methods, LPP is a linear expression of LE by
replacing the nonlinear mapping relation to reach the purpose
of dimension reduction and is seen as an acceptable technique
for its well practicability and fast calculation [39]. Hence,
in this paper, LPP is introduced to remove some redundant
information hidden in high-dimensional feature space.

Main contribution and novelty of this paper are the pre-
sentation of a multi-stage hybrid fault diagnosis approach
for identifying different health conditions of rolling bearing.
Within our method, three stages are executed separately to
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improve the diagnostic accuracy and efficiency. For the first
stage, permutation entropy (PE)-based fault initial detection
is performed to determine whether there is a fault in bearing.
If bearing comes up fault, the next two stages are conducted
to identify fault type and fault severities. Specifically, in the
stage of the identification of fault type and fault severities,
hybrid-domain features containing time-domain, frequency-
domain and time-frequency domain are extracted to construct
a high-dimensional feature space. Next, LPP is introduced to
compress the obtained high-dimensional feature space into
low-dimensional feature space, which is aimed at removing
the redundant or insensitive feature information. Finally, the
obtained low-dimensional feature vector is taken as the input
of Fuzzy C-means (FCM) clustering to achieve bearing fault
classification. Of course, some other classifiers (e.g. neural
network, fuzzy support vector machine [40], [41] and hidden
markov model) can also be used to replace FCM to achieve
fault recognition. Four cases including 12 health conditions
are used respectively to estimate generalization performance
of our approach. Results show that our approach can iden-
tify effectively bearing fault type and fault severity. Besides,
extensive comparisons with traditional single-stage diagnosis
approach highlight the superiority of our method.

The rest of this paper is organized as follows. Section II
introduces the basic theory of PE and discusses the param-
eter selection of PE. Besides, in Section II, VMD method
is reviewed and decomposition superiority of VMD is ver-
ified by using a numerical signal. Section III provides the
detailed framework of the proposed approach for fault diag-
nosis of rolling element bearing under variable conditions.
In Section IV, experimental data analysis derived from rolling
bearing is used to validate the effectiveness and superiority of
the provided method. The conclusion is drawn in Section V
and some future work is provided.

II. THEORY BACKGROUND
A. PERMUTATION ENTROPY
For any given time series {X (i), i = 1, 2, · · · ,N }, the results
of phase-space reconstruction can be given by [42]

Y =


x(1) x(1+ τ ) · · · x(1+ (m− 1)τ )
x(2) x(2+ τ ) · · · x(2+ (m− 1)τ )
x(j) x(j+ τ ) · · · x(j+ (m− 1)τ )
...

...
...

x(n) x(n+ τ ) · · · x(n+ (m− 1)τ )

 (1)

where m is the embedding dimension, τ is the time delay,n
represents the number of the reconstructed components, x(j)
is the j-th row of the restructuring matrix Y and j = 1,
2 · · · , n. Each row of Y is a reconstructed component, which
implies the matrix Y has n = N − (m − 1)τ recon-
structed component. The j-th reconstructed component of Y
can be arranged in an ascending order as

x(i+ (j1 − 1)τ )≤x(i+ (j2 − 1)τ ) ≤ · · · ≤ x(i+ (jm−1)τ )

(2)

If there are two or more equivalent elements in recon-
structed component x(i+(j1−1)τ ) = x(i+(j2−1)τ ), accord-
ing to value of j1 and j2, the rank ordering is rewritten. In other
words, when the value of j1 is less than j2, the arrangement
can be obtained by

x(i+ (j1 − 1)τ ) ≤ x(i+ (j2 − 1)τ ) (3)

For any reconstructed component, a set of symbol
sequences are further be given by

S(l) = (j1, j2, · · · , jm) (4)

where l = 1, 2, · · · , n and n ≤ m!, there is m! symbol
sequence for m dimensional embedding space at most, S(l)
is the one of m! symbol sequence. Probability distribution
of each symbol sequence is P1,P2, · · · ,Pk and satisfies the
equality P1+P2+· · ·+Pk = 1. Hence, PE value of the time
series {X (i), i = 1, 2, · · · ,N } can be expressed as below

Hp(m) = −
m!∑
j=1

Pj lnPj (5)

where 0 ≤ Hp(m) ≤ ln(m!), when Pj = 1
/
m!, ln(m!) is the

largest value of Hp(m). PE can be further normalized as

Hp = Hp(m)
/
ln(m!) (6)

In Eq. (6), Hp can describe the complexity of the sig-
nal. The larger Hp represents the greater signal randomness.
According to the definition of PE, two parameters (i.e. time
delay τ and embedding dimension m) need to be set before
calculating PE. If embedding dimension m is set too large,
this will bring extra computation time and PE cannot reflect
a subtle change of the time series. If embedding dimension
m is set too small, the reconstructed component will contain
tiny information and PE cannot detect the dynamic mutation
of the time series. Hence, the selection principle of two key
parameters (embedding dimensionm and time delay τ ) of PE
is discussed in this part.

Firstly, for a bearing vibration signal with inner race fault
from Case Western Reserve University (CWRU), the mutual
information and false nearest neighbor (FNN) method
reported in [43] and [44] are employed to determine two
key parameters (time delay τ and embedding dimension m)
of PE, respectively. Fig. 1(a) shows the variation relationship
between mutual information and time delay τ , while the
variation relationship between FNN percent and embedding
dimension m is plotted in Fig. 1(b). As can be seen from
Fig. 1(a), the mutual information appears the local minimum
in time delay τ = 3. That is, the reconstructed time series can
be as irrelevant as possible when the time delay τ is set at 3.
Besides, considering that many studies shows that time delay
τ has little influence on the calculation results of PE. Hence,
in this study, according to [43], we empirically select time
delay τ = 3 to analyze bearing vibration signal. Likewise,
as shown in Fig. 1(b), percent of FNN maintains a steady
trend when the embedding dimension m ≥ 6. Therefore,
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FIGURE 1. Time delay τ and embedding dimension m of PE determined
by different methods for a bearing vibration signal: (a) Mutual
information method and (b) false nearest neighbor method.

in this study, according to [44], we choose embedding dimen-
sion m = 6 to calculate PE value of bearing vibration signal.
It is worth mentioning that determination of time delay τ and
embedding dimension m is a difficult problem, more specific
and effective selection criteria of PE parameters (time delay
τ and embedding dimension m) for different signals will be
the focus of our future work.

B. VMD METHOD
VMD is a recently reported time-frequency analysis method,
which is equivalent to an adaptive Wiener filter banks. Main
idea of VMD is regarded as the solving for a constrained
variational problem shown in Eq. (7).

min
{uk },{ωk }

{∑
k

∥∥∥∂t [(δ(t)+ j
π t

)
∗ uk (t)

]
e−jωk t

∥∥∥2
2

}
s.t.
∑
k

uk = f
(7)

where uk is the k-th intrinsic mode function (IMF) and ωk
is the center frequency of the k-th IMF. To address efficiently
the constrained variational issue, the penalty parameter α and
Lagrangian multiplier λ(t) are introduced. Consequently, the
variational issue are rewritten as

L({uk}, {ωk}, λ)

= α
∑
k

∥∥∥∥∂t [(δ(t)+ j
π t

)
∗ uk (t)

]
e−jωk t

∥∥∥∥2
2

+

∥∥∥∥∥f (t)−∑
k

uk (t)

∥∥∥∥∥
2

2

+

〈
λ(t), f (t)−

∑
k

uk (t)

〉
(8)

According to the alternate direction method of multipliers,
we can solve Eq. (8), and the generating IMF component and
their corresponding center-frequency ωk can be updated in
terms of the following Eq. (9).

ûn+1k (ω) =
f̂ (ω)−

∑
i6=k ûi(ω)+

λ̂(ω)
2

1+ 2α(ω − ωk )2

ωn+1k =

∫
∞

0 ω
∣∣ûk (ω)∣∣2 dω∫

∞

0

∣∣ûk (ω)∣∣2 dω
(9)

When the IMF component and its center-frequency are
changed, Lagrangian multiplier λ̂ is also changed by

λ̂n+1(ω) = λ̂n(ω)+ τ (f̂ (ω)−
∑
k

ûn+1k (ω)) (10)

The update procedure is conducted repeatedly until the
convergence conditions described in Eq. (11) is satisfied.∑

k

∥∥∥ûn+1k − ûnk
∥∥∥2
2
/
∥∥ûnk∥∥22 < ε (11)

where ε = 10−6 and all IMF components can be recovered
according to the above-mentioned step. Concrete details of
VMD algorithm can be found in the [24].

To show the effectiveness of VMD algorithm, here a
numerical signal x(t) is considered as follows

x(t) = x1(t)+ x2(t)+ x3(t)t ∈ (0, 0.5)
x1(t) = (1+ 0.5 cos(18π t)) cos(100π t + 40π t2)
x2(t) = cos(240π t)
x3(t) = cos(360π t)

(12)

In Eq. (12), numerical signal x(t) consists of an amplitude
modulation frequency modulation signal x1(t) and two cosine
signals (x2(t) and x3(t)). Main frequency of three compo-
nents (x1(t), x2(t) and x3(t)) are 50 Hz, 120 Hz and 180 Hz,
respectively. The sampling frequency and sampling number
are set at 2048 Hz and 1024, respectively. Numerical signal
analysis is conducted on an Intel Pentium G3420 3.20GHz
CPU with 4.00 GB RAM, and MATLAB (2010a) platform is
employed to implement the simulation. Fig. 2 describes time
domain waveform of the simulation signal x(t) and its three
components (x1(t), x2(t) and x3(t)).

VMD is employed to analyze the simulation signal x(t).
Firstly, central frequency iteration rule in [31] is adopted to
determine the decomposition numberK of VMD. Table 1 lists
the central frequency value of each sub-signals obtained
by VMD when the preset mode number K = 2 ∼6.
From the Table 1, it is clear that the over decomposi-
tion phenomenon occurs in decomposition results when the
mode number K = 4 ∼6. Thus, mode number K of
VMD is set as 3 in processing the simulation signal x(t).
Fig. 3(a) plots time-frequency representation generated by
VMD. As shown in Fig. 3(a), IMF component obtained by
VMD is very close to the real ingredient (50 Hz, 120 Hz and
180 Hz), which implies that VMD is effective in analyzing
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FIGURE 2. Simulation signal x(t) and its three components.

TABLE 1. The central frequency of each sub-signals obtained by VMD
under different mode number.

multi-component signal. Besides, three traditional methods
(i.e. EMD, WT and WVD) are applied to analyze the
same simulation signal x(t) and the obtained time-frequency
representation is displayed in Figs. 3(b)-(d), respectively.
It becomes apparent in Fig. 3(b) that EMD-based time-
frequency representation appears serious mode mixing prob-
lem. Fig. 3(c) shows that time-frequency representation
obtained by WT can reveal three components of x(t), but it
suffers from lower resolution. Besides, there is cross-term
interference of 150 Hz and 90 Hz in the time-frequency repre-
sentation generated by WVD (see the red arrow in Fig. 3(d)).
Hence, VMDmethod is adopted to decompose bearing vibra-
tion signal and extract multiscale features in this paper.

C. HYBRID-DOMAIN FEATURE EXTRACTION
1) STATISTICAL FEATURE EXTRACTION
Time-domain and frequency-domain features used in this
paper are listed in Table 2, where x(n), n = 1, 2, · · · ,N is
a given discrete time series, N is the number of data points
of x(n), y(k), k = 1, 2, · · · ,K is FFT spectrum of x(n), K
is the number of spectrum line in FFT spectrum, fk is the
frequency value of the k-th spectrum line, I1 ∼ I16 represents
16 time-domain statistical features (i.e. mean value, stan-
dard deviation, square root amplitude, absolute mean value,
skewness, kurtosis, variance, maximum, minimum, peak-to-
peak value, waveform index, peak index, pulse index, margin
index, skewness index, kurtosis index), I17 ∼ I29 represents
13 frequency-domain statistical features, where I17 denotes

FIGURE 3. Time-frequency representation obtained by different methods:
(a) VMD, (b) EMD, (c) WT and (d) WVD for simulation signal.

frequency domain energy of the signal x(n),I18 ∼ I20, I22
and I26 ∼ I29 respectively denotes the concentration and
dispersion of frequency spectrum of the signal x(n), and I21
and I23 ∼ I25 denotes position variance of main frequency
band of the signal x(n).

2) MULTISCALE FEATURE EXTRACTION
As is well-known, the real bearing vibration signal is charac-
terized by nonlinear and non-stationary, which means that it
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TABLE 2. Expression of statistical features.

is difficult to reveal fully the inherent properties only using
time-domain or frequency-domain features. Multiscale fea-
tures obtained by time-frequency analysis method have been

proved to be effective in fault recognition [45]. Hence, VMD
is employed to decompose bearing vibration signal into sev-
eral sub-signals. Afterwards, multiscale features are obtained
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through calculating amplitude energy value and instanta-
neous energy distribution-permutation entropy of each sub-
signal. Detailed process is described below:

Step 1: For the given signal x(n), using VMD to divide
x(n) into several sub-signals uj(n), j = 1, 2, · · · ,K , where
K is the decomposition mode number and determined by the
central frequency iteration rule in [31].

Step 2: Calculate the amplitude energy value of each sub-
signals and denoted by I j30.

I j30 =
N∑
n=1

[FFT (uj(n))]2, j = 1, 2, · · · ,K (13)

where FFT (uj(n)) represents fast Fourier transform of each
sub-signals and N is the sampling number.
Step 3: According to [46], calculate the instantaneous

energy distribution-permutation entropy I j31 of each sub-
signals. Instantaneous energy distribution of each sub-signal
uj(n) is expressed as follows

ej(n) =
1
2

∣∣aj(n)∣∣2 , j = 1, 2, · · · ,K (14)

where aj(n) is the instantaneous amplitude function of sub-
signal uj(n). Note that ej(n) is regarded as the input of
PE to calculate the corresponding instantaneous energy
distribution-permutation entropy and denoted by I j31.

Finally, high-dimensional feature space for training set can
be constructed according to hybrid-domain features, of which
each features is an element of it, as shown in Eq. (15).

Htrain =



I1×16 I ′1×13 I ′′1×K I ′′′1×K
...

...
...

...

Ip×16 I ′p×13 I ′′p×K I ′′′p×K
...

...
...

...

Iq×16 I ′q×13 I ′′q×K I ′′′q×K


q×(16+13+2×K )

(15)

where q denotes the total number of data sample, the feature
dimension ofHtrain is 16+13+2×K , Ip×16 indicates the 16
dimensional time-domain feature vector of the p-th sample,
I ′p×13 denotes the 13 dimensional frequency-domain feature
vector of the p-th sample, I ′′p×K indicates the K dimensional
amplitude energy feature vector of the p-th sample, I ′′′p×K
implies the K dimensional instantaneous energy distribution-
permutation entropy feature vector the p-th sample. The
dimension of high-dimensional feature space Htest for the
testing set is the same as that of the training set.

D. LOCALITY PRESERVING PROJECTION
Locality preserving projection (LPP) is regarded as a linear
approximation procedure of Laplacian eigenmaps. It avoided
problems that cannot effectively handle testing samples and
improved generalization ability of the algorithm. Assuming
X = (x1, x2, · · · , xn) is the original high-dimensional space
dataset and its dimension is m, Y = (y1, y2, · · · , yn) is the
dataset after dimension reduction and its dimension is d ,
the implementation procedure of LPP is outlined below

Step 1: Calculate the neighbor points. According to
Eq. (16), calculate Euclidean distance between each sample
point xi(i, j = 1, 2, · · · , n) and the remainder sample points,
find out its nearest k points and construct a neighbor map.

d(xi, xj) =
∥∥xi − xj∥∥ (16)

Step 2: Select the weighting value. If xi and xj is neigh-

boring, the weighting value Wij = exp(−
∥∥xi − xj∥∥2/t),

otherwise the weight valueWij = 0, where t is the heat kernel
parameter,

Step 3: Compute the eigenvector a and eigenvalue λ from
the formula XLXT a = λXDXT a, where D is the diagonal
matrix and meets Dii =

∑
jWji, L is Laplacian matrix and

meets L = D−W ,W is the weight matrix and its elements is
Wij, symbol a = a1, · · · , ad is the corresponding eigenvector
of eigenvalue λ1 < · · · < λd . Hence, low-dimensional
space sample yi = AT xi, where A = (a1, · · · , ad ) is the
transfer matrix. Firstly, transfer matrix A of high-dimensional
space mapped to low-dimensional space for the training
sample is obtained, and then low-dimensional space for the
testing samples can be obtained just by the transfer matrix A.

III. THE PROPOSED DIAGNOSIS SCHEME
To improve the diagnostic accuracy of rolling bearing and
computational efficiency, a neoteric multi-stage hybrid fault
diagnosis scheme is proposed in this paper. Fig. 4 shows the
whole process of the proposed approach for bearing fault
detection, which is mainly divided into three stages (i.e.
PE-based fault initial detection, fault type recognition and
fault severity assessment).

A. PE-BASED FAULT INITIAL DETECTION
As reported in [42], PE has been proved to be effective
in identifying bearing health status, so PE is used for fault
initial detection in the first stage of our method. However,
when we apply PE to monitor bearing health status, a key
problem is to determine the suitable threshold. According
to chebyshev’s theorem, for any dataset, it will meet the
inequality shown in Eq. (17).

P(µ− kσ < X < µ+ kσ ) ≥ 1−
1
k2

(17)

where X denotes the given dataset, µ and σ indicates the
mean value and standard deviation of X , and k is a constant.
When k = 5, at least data of 24/25 (i.e. 96%) is located
in the scope of plus and minus five standard deviations of
mean. That is, the probability of PE value of data sample
lies within the interval [µ− 5σ,µ+ 5σ ] is 96%. Besides,
prior studies have shown that PE value of the data sample
under normal state is lesser than those of the data sample
under fault state. Thereby, in this study, data sample under
normal state is adopted to calculate the PE threshold, and the
upper value µ + 5σ can be deemed as the PE threshold for
achieving fault initial detection accuracy of 96%.
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FIGURE 4. Flowchart of the proposed diagnosis scheme.

B. FAULT TYPE RECOGNITION
After fault initial detection, if a fault occurs, we will conduct
fault type recognition. Based on statistical method and VMD,
hybrid-domain features containing time-domain, frequency-
domain and time-frequency domain are firstly extracted to
obtain a high-dimensional feature space equipped with more
comprehensive and richer fault feature signatures. Next, high-
dimensional feature space is normalized to unify the sta-
tistical distribution of samples. Meanwhile, for purpose of
reducing the information redundancy of high-dimensional
feature space, the dimension reduction algorithm called LLP
is adopted to obtain the low-dimensional feature space which
has higher discrimination ability for different bearing fault
types. Finally, the low-dimensional feature space is input to
the trained FCM classifier to identify automatically bearing
fault type and output the diagnostic results.

C. FAULT SEVERITY ASSESSMENT
According to the result of fault type recognition, fault sever-
ity assessment is performed for each type of fault which
is correctly classified. Firstly, for the training and testing
set, high-dimensional feature space established in fault type

recognition is divided into several sub-spaces according to
fault types. Each sub-space of the training and testing set
is projected to low-dimensional feature space by using LPP.
Afterwards, low-dimensional feature space of the training set
is regarded as the input of FCMclassifier to train fault severity
assessment model. Finally, low-dimensional feature space
of the testing set is imported into the trained fault severity
assessment model to carry out fault severity assessment of
each type of fault and output the results of fault severity
assessment.

IV. EXPERIMENTAL STUDY
A. DATA DESCRIPTION
Motor bearing fault data derived from Case Western Reserve
University (CWRU) is devoted to prove the validity of the
proposed method. Experimental device is depicted in Fig. 5,
which is mainly composed of an induction motor, a torque
transducer and a dynamometer. Three kinds of single-point
defects (i.e. inner race (IR), outer race (OR) and ball (B))
are generated respectively on normal bearing by using spark
machining, where IR and B have four fault severities (0.007,
0.014, 0.021 and 0.028 inches), while OR only contains three

VOLUME 7, 2019 138433



X. Yan et al.: Multi-Stage Hybrid Fault Diagnosis Approach For Rolling Element Bearing

FIGURE 5. Bearing fault simulation test-bed.

FIGURE 6. Detailed description of the considered health condition in the
four cases (0-3hp).

fault severities (0.007, 0.014 and 0.021 inches) of 6 o’clock
positions. Dataset under four states (i.e. normal, IR defect,
OR defect and ball defect) were collected by using an
accelerometer installed on motor drive end of the laboratory
bench. Also, bearing vibration data was acquired under four
different motor loads (0, 1, 2 and 3hp), where four constant
motor loads (0, 1, 2 and 3hp) respectively correspond to four
constant motor speeds (1797, 1772, 1750 and 1730 rpm).

To illustrate the applicability of the proposed method, four
cases (the dataset of 0-3hp) are considered in this study. The
investigative health conditions for each case are described
in Fig. 6. For each case (i.e. each motor load or speed), the
dataset under 12 health status (i.e. Norm, IR7, IR14, IR21,
IR28, OR7, OR14, OR21, B7, B14, B21, B28) is established,
where ‘‘Norm’’ is the abbreviation of normal state and ‘‘IR7’’
is the abbreviation of inner race fault with 0.007 inches.
Sampling frequency during the experiment was set at 12 kHz.
The first 12,000 points under each health status are divided
averagely into 40 data samples (i.e. each data sample con-
tains 3000 points), where 20 data samples under each health
status are randomly selected for training and the remainder
20 samples is taken as testing. Thus, 240 training samples and
240 test samples can be acquired. Essentially it is a twelve-
class classification issue need to be solved. Fig. 7 shows the
raw bearing vibration signal of different health status in case 1
(0hp). As shown in Fig. 7, it is difficult to detect different fault
types directly by observing time domain waveform. Hence,
to improve the diagnostic accuracy and computing efficiency,
we first need to determine whether faults or not (i.e. fault
initial detection). If the bearing appears fault, the second stage
(i.e. fault type recognition) is performed and then conducts
the third stage (i.e. fault severity assessment). Concretely,
the proposed method is implemented in accordance with the
following three stages.

B. PE-BASED FAULT INITIAL DETECTION
According to the first stage of the proposedmethod, PE-based
fault initial detection is conducted to estimate whether bear-
ing fault occurs. For four cases under 0-3hp, PE value of
each data samples in the training and testing set is calculated

FIGURE 7. Time domain waveform of the original bearing vibration signal
under different health conditions in case 1 (0hp).

according to Fig. 4, and the computed results for the training
and testing set are plotted in Figs. 8 and 9, respectively. One
can see clearly from Figs. 8 and 9 that PE of the data sample
under fault state is considerably greater than those of the data
sample under normal state. For the sake of intuition, a key
point in this stage is the setting up of threshold for assessing
rapidly and accurately health state of rolling bearing. Here,
based on chebyshev’s theorem, the red dotted line value
in Figs. 8 and 9 is regarded as the PE threshold for obtaining
detection accuracy of 96%. If PE value of one data sample
is greater than the PE threshold, it indicates the fault state,
otherwise denotes the normal state.

As shown in Figs. 8 and 9, PE value of the data sample
under fault state for four cases is greater than the PE thresh-
old, whereas PE value of the data sample under normal state
is smaller than the PE threshold. This indicates that bearing
health status can be evaluated effectively by the application
of PE. In other words, fault preliminary detection is executed
successfully in four cases under 0-3hp. It is noteworthy that
some overlapping phenomenon occurs in the data sample
under fault states, which mean that the final diagnostic target
cannot be achieved just by calculating PE value. The follow-
ing two stages are required to implement.

C. FAULT TYPE RECOGNITION
Similarly, as shown in Fig. 4, the second stage is fault
type recognition. Firstly, hybrid domain features containing
time-domain, frequency-domain and time-frequency domain
are extracted to construct a high-dimensional feature space.
Specifically, for each sample, 16 time-domain features and
13 frequency-domain features in Table 2 are calculated.
Meanwhile, VMD is used to extract 8 multiscale features.
In VMD, the balancing parameter a is set at 2000, and mode
number K of VMD is determined by the central frequency
iteration rule in [31]. For one data sample with inner race
fault, Table 3 shows the central frequency of each sub-
components obtained by VMD under different mode number
K . As is clear in Table 3, similar central frequency will
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FIGURE 8. Scatter plots of PE value of the training set in four cases:
(a) case 1: 0hp, (b) case 2: 1hp, (c) case 3: 2hp and (d) case 4: 3hp.

occur in VMD results when decomposition mode number K
is set at 5 to 10. This indicates that the over decomposition
phenomenon occurs. Hence, decomposition mode number K
of VMD is set at 4 in this study.

Figs. 10(a) and (b) show each sub-components obtained by
VMD and their corresponding FFT spectrum, respectively.
Besides, four sub-components obtained by EMD and their
corresponding FFT spectrum is shown in Figs. 11(a) and (b),

FIGURE 9. Scatter plots of PE value of the testing set in four cases:
(a) case 1: 0hp, (b) case 2: 1hp, (c) case 3: 2hp and (d) case 4: 3hp.

respectively. As can be seen from Figs. 10 and 11, com-
pared with EMD, each sub-component obtained by VMD has
better narrow-band property, which implies VMD is more
suitable for signal decomposition. Hence, for each sample,
four amplitude energy features and four instantaneous energy
distribution-permutation entropy features will be obtained in
multiscale feature extraction. That is, for the training and
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TABLE 3. Central frequency of each sub-signal obtained by VMD with different decomposition mode number.

FIGURE 10. Decomposition results obtained by VMD for one sample with
IR fault: (a) sub-signal and (b) the corresponding FFT spectrum.

FIGURE 11. Decomposition results obtained by EMD for one sample with
IR fault: (a) sub-signal and (b) the corresponding FFT spectrum.

testing sets, the high-dimensional feature dataset with dimen-
sion size of 220× 37 are constructed in this stage.

Secondly, to remove the information redundancy of high-
dimensional feature space, LPP is employed to reduce the
dimension of high-dimensional feature space to 3 dimensions
(3D). Take the testing set of case1 (0hp) as an example,

Fig. 12(a) shows scatter plots of 3D feature space obtained
by LPP for the testing set. As shown in Fig. 12(a), three types
of fault (i.e. IR, OR and ball fault) are fully differentiated.

For a comparison, five dimension reduction methods
(i.e. PCA, LLE, ISOMAP, LTSA and LS) are adopted to pro-
cess the same high-dimensional feature space. Figs. 12(b)-(f)
are scatter plots of 3D feature space obtained by PCA, LLE,
ISOMAP, LTSA and LS, respectively. As can be seen from
Figs. 12(b)-(f), there are overlapping regions among data
samples with different faults, which mean the identifica-
tion of bearing fault type is impeded. Namely, the result of
dimension reduction of LPP outperforms other five methods
(i.e. PCA, LLE, ISOMAP, LTSA and LS) in this case.

To further evaluate the clustering performance of different
dimension reduction methods, 3D feature space obtained by
different dimension reduction methods is regarded as the
input of FCM clustering classifier to calculate the corre-
sponding classification coefficient and average fuzzy entropy.
According to [31], the bigger the classification coefficient is,
the better the clustering performance is. That is, the larger
classification coefficient indicates the greater discriminat-
ing degree and the higher identification precision. Besides,
due to average fuzzy entropy is expected to be close to
zero, so the smaller average fuzzy entropy shows the better
clustering results. Note that, to compare the computational
efficiency of different methods, CPU time of each dimension
reduction method is calculated on MATLAB 2010a platform.
Table 4 lists the comparison result of different dimension
reduction methods.

It can be seen clearly from Table 4 that LPP has highest
identification rate of 100% compared with other approaches.
Specifically, the classification coefficient obtained using LPP
is higher than that of other five methods (i.e. PCA, LLE,
ISOMAP, LTSA and LS). Moreover, average fuzzy entropy
obtained using LPP is lesser than that of other five methods
(i.e. PCA, LLE, ISOMAP, LTSA and LS), and computation
time of LPP is the smallest among six methods. This means
that LPP is more effective in feature dimension reduction and
more suitable for online monitoring diagnosis.

To investigate the influence of feature dimension on
the diagnosis results, we calculate the diagnostic accuracy
obtained by different dimension reduction methods under
different feature dimension. The detailed diagnosis result
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FIGURE 12. Scatter plots of 3D feature space obtained by different dimensionality reduction methods for testing set under
0hp: (a) LPP, (b) PCA, (c) LLE, (d) ISOMAP, (e) LTSA and (f) LS.

FIGURE 13. Diagnosis results obtained by different dimensionality
reduction methods under different dimension sizes in case 1.

of different methods is shown in Fig. 13. It can be seen
clearly from Fig. 13 that diagnosis accuracy obtained by
different methods is inclined to smooth and steady increasing

with dimension size. However, when the dimension size is
between 1 and 3, diagnosis accuracy of LPP is obviously
superior to that of other dimension reduction methods, which
implies that the low-dimensional feature space obtained using
LPP can better remove the redundant and unnecessary fea-
tures, preserve the intrinsic property of the raw signal and has
preferable discrimination.

D. FAULT SEVERITY ASSESSMENT
After finishing fault type recognition, the next stage is
the fault severity assessment. That is, the identification of
fault severity of three conditions (IR, OR and B) is con-
ducted respectively. Similarly, take case 1 as an example,
after establishing high-dimensional feature space, LPP is
utilized to remove the redundancy and reduce the dimension.
Figs. 14(a)-(c) shows representation of 3D feature obtained
by LPP for the testing set of three conditions (IR, OR and B),
respectively. It is very obvious in Fig. 14 that fault
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TABLE 4. Diagnostic capability of different dimension reduction methods for the testing set in four cases (0-3hp).

TABLE 5. Diagnostic capability of the proposed method for the testing set at stage of fault severity assessment.

TABLE 6. Comparison results among different methods.

severity of three conditions (IR, OR and B) has good dis-
crimination. Concretely, intra-class of the sample of the same
class has good aggregation, whereas inter-class distance of
the sample of different class is very large. Finally, FCM
classifier is employed to evaluate the results of fault severity
identification.

To avoid the contingency of diagnostic results, here five
calculation trials are conducted in this stage. Take 0hp as an
example, for fault severity identification of IR, the recogni-
tion rate obtained in five trials is 100%, 98.75%, 97.50%,
98.75% and 98.75%, respectively. For fault severity identi-
fication of OR, the recognition rate obtained in five trials
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FIGURE 14. 3D feature distribution of the testing set in case 1 (0hp):
(a) Inner race fault, (b) outer race fault, (c) ball fault.

is 100%, 98.33%, 98.33%, 98.33% and 100%, respectively.
For fault severity identification of ball, the recognition rate
obtained in five trials is 100%, 98.75%, 98.75%, 100% and
98.75%, respectively. Note that the average accuracy of five
diagnosis results is taken as the final identification result. The
detailed analysis results are displayed in Table 5. As shown
in Table 5, the proposed approach can achieve average recog-
nition accuracy of more than 98% under different loads.
Moreover, the obtained classification coefficient is greater
than 0.9, and average fuzzy entropy is less than 0.1. This
indicates that the proposed approach has an excellent fault
recognition performance and further verifies the effectiveness
of the proposed method.

E. COMPARISON BETWEEN THE PROPOSED METHOD
AND TRADITIONAL SINGALE-STEP APPROACH
In order to further validate the effectiveness of the proposed
method, more comparisons with traditional single-stage

approach are performed in this section. Within traditional
single-stage approach with dimension reduction, hybrid-
domain features of each sample are first extracted, and then
LPP is utilized to obtain the meaningful low-dimensional
sensitive features from hybrid-domain features. Finally, low-
dimensional feature dataset is fed into to FCM classifier for
fault recognition. It is worthy of note that dimension size of
fault feature of single-stage approach is the same as that of
the proposed method in this paper. The comparative aspect
includes the CPU computation time and average diagnostic
accuracy. Besides, the overall accuracy of recognition rate of
the proposed approach is calculated according to the follow-
ing weighted formula:

P = 1−
αe1 + βe2 + γ e3

N
(18)

where e1,e2 and e3 are identification error of the three stages,
respectively. α,β and γ respectively are the number of testing
sample of the three stages, andN is the total number of testing
sample in this paper.

The comparison results of different methods are listed
in Table 6. As is clear in Table 6, the proposed method
(multi-stage diagnosis approach) can obtain recognition rate
of 99% above for different load conditions, whereas diag-
nostic accuracy obtained by single-stage approaches with or
without LPP is kept below 96%, which indicates that the
presented multi-stage fault diagnosis approach can achieve
higher identification accuracy than traditional single-stage
approach mentioned in this paper. That is to say, the pro-
posed multi-stage diagnosis approach is promising for fault
identification of rolling bearing under various loads condi-
tions. Note that this experimental study was carried out at a
constant speed. However, the effectiveness and applicability
of the proposed method at variable speed are unknown for
us. Therefore, in the future work, it is valuable to introduce
the proposed method into the bearing fault diagnosis under
variable rotation speed in practical engineering, which is
regarded as the focus of our future research.

V. CONCLUSION
In this paper, a neoteric multi-stage hybrid fault diagnosis
scheme is proposed for identifying different health conditions
of rolling bearing, which is divided into three stages (i.e.
fault initial detection, fault type recognition and fault severity
assessment). Initially, PE-based statistical analysis is used to
achieve fault initial detection. Then, hybrid-domain features
are constructed and combined with LPP for reflecting more
completely intrinsic property of raw vibration signal and
removing redundant information. Finally, the obtained low-
dimensional dataset are fed into FCM classifier for identi-
fying bearing fault type and fault severity. Contribution and
novelty of this paper are summarized as follows:

(1) Hybrid-domain features are extracted to reveal intrinsic
characteristics of bearing fault signal more comprehensively.

(2) A multi-stage diagnosis strategy for rolling bearing is
proposed for health status identification.
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(3) The performance of the presented approach is validated
on experimental data under various load conditions.

It turned out that our approach is suitable and efficient in
estimating bearing operating condition and identifying multi-
class fault of bearing. Besides, our approach outperforms
traditional single-stage diagnosis technique. However, ability
of the proposed approach is unknown for health condition
recognition of bearing under variable speed. For the future
work, we intend to apply this method to solve multi-class
fault identification issue under variable speed, including our
own experimental data.
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