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ABSTRACT Accurate recognition of coal-rock cutting state is a prerequisite for intelligent operation of
shearer, so as to achieve safe and efficient production in coal mines. This paper takes the sound signal,
Y-axis and Z-axis vibration signals as analytic objects and proposes a fusion recognition method for shearer
coal-rock cutting state via the combination of improved radical basis function neural network (RBFNN)
and Dempster-Shafer (D-S) evidence theory. First of all, on the basis of original fruit fly optimization
algorithm (FOA), the location updating mechanism of moth-flame optimization (MFO) is used to improve
the convergence performance and exploration ability of FOA. Thus, a hybrid optimization algorithm of
MFO-FOA is accordingly designed and some simulations are conducted to verify the effectiveness and
superiority. Then, the optimal network parameters of RBFNN are found out by using proposed MFO-FOA
to realize the excellent generalization ability and predictive performance. Moreover, the collected signals are
decomposed by variational mode decomposition, and the envelope entropy and kurtosis are used to extract
the features of first three intrinsic mode function components. The feature vectors obtained from three-type
sensor data are utilized to construct the RBFNN classifiers. Besides, the D-S evidence theory with evidence
correlation coefficient is introduced to fuse the preliminary identification results of three RBFNN classifiers.
Finally, a self-designed experimental platform for shearer cutting coal-rock is built and some experiments
are provided. The experimental results based on measured data demonstrate that the proposed method can
effectively identify the coal-rock cutting state with higher accuracy.

INDEX TERMS Fusion recognition, improved fruit fly optimization algorithm, RBF neural network, shearer
coal-rock cutting state.

I. INTRODUCTION
Coal is the most abundant and widely distributed fossil fuel
on the earth. In China’s proven fossil energy, coal accounts for
about 94 percent. This phenomenon leads to coal-dominated
energy structure of China will not change for a long time. But
coal production is still a high-risk industry due to the harsh
underground working environment and low reliability and
automation level of coal mining equipment [1]. In 2018, there
were 224 coal mine safety accidents in China. The mortality
rate of one million tons was 3.1 times that of the United
States and 6.6 times that of Australia. Therefore, in order
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to achieve safe and efficient production of coal mines, it is
urgent to improve the intelligent level of mining equipment.
As an important piece of coal mining equipment, shearer
is responsible for cutting coal and transporting the coal to
scraper conveyor. Accurately identifying the coal-rock cut-
ting state of shearer is a prerequisite for achieving automatic
mining and is becoming a research hotspot in the field of coal
resource [2].

In recent years, in order to improve the intelligent oper-
ation level of shearer, domestic and foreign scholars mainly
focused on two aspects of coal-rock interface recognition and
memory cutting, and put forward many effective methods.
In [3], radar technology was used to identify the coal-rock
interface, which had been industrially tested at the Quecreek
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coal mine in Pennsylvania, USA. In [4], an opt-tactile sensor
was newly developed to detect different types of material
layers where a shearer machine can operate at the longwall
face of underground coal mines. Ref. [5] proposed a low-
activity spectrometric gamma-ray logging technique as a sen-
sitive tool for the delineation of coal-rock interfaces. In [6],
Li et al. proposed a coal-rock interface recognition method
based on ultrasonic phased array by using the difference of
acoustic impedance between coal and rock and the phased
array technology. The vibration signals and infrared thermal
images of cutting picks were deeply analyzed to realize effec-
tive dynamic identification of coal and rock in shearer cutting
process [7], [8]. Moreover, many other methods based on
acoustic waves [9], ground penetrating radar [10], natural
gamma-ray [11] and Terahertz time domain spectrum [12]
had been proposed to identify the coal-rock interface and
good results were obtained in the laboratory. Through the
above researches, it can be found that only two cutting states
can be identified by the coal-rock interface recognition meth-
ods: coal or rock.When the geological condition of coal seam
changes dramatically, there are some defects such as low
identification accuracy and poor applicability. The memory
cutting is the most widely used automatic control method for
shearer. In [13], an improved approach through integration of
improved genetic algorithm and fuzzy logic control method
was proposed to reduce the enlargement of coal floor defor-
mation in shearer memory cutting process. Refs. [14], [15]
developed a hidden Markov model memory cutting method
for shearer by employing data correlation of adjacent coal
seams, and the adjustment frequency and accuracy can be
improved. Although the memory cutting method can improve
the automatic control level of shearer to a certain extent,
the application effect is not ideal when the coal seam breaks
suddenly.

Under this background, some scholars try to identify the
coal-rock cutting state of shearer to provide the basis for
its intelligent control. In [16], the study was to investigate
the effects of previously ignored rock parameters along with
engineering rock properties on specific cutting energy, and
the results can be used to preliminarily identify the working
state of shearer. In [17], the development of a new rippa-
bility classification system for coal measure rock based on
specific energy was presented. Ref. [18] structured the the-
oretical model of cutting load and current, and proposed a
novel analysis method for shearer cutting load characteristic
based on particle filter to identify the cutting state of shearer.
In [19]–[21], the vibration signals, sound signals and tem-
perature of cutting area were applied in the recognition of
shearer coal-rock cutting state by using some intelligent clas-
sifiers. Due to the complicated structure and rugged working
conditions of shearer, the single-type sensor data are not
reliable enough, and can not accurately reflect the coal-rock
cutting state of shearer. Therefore, this paper presents a multi-
sensor information fusion method for coal-rock cutting state
identification through the integrated use of vibration signals
and sound signals.

In the field of state recognition, there are many intelli-
gent recognition methods, which have been widely used in
fault diagnosis [22]–[24] and image classification [25], [26].
Among these methods, radical basis function neural network
(RBFNN), put forward by Moody and Darken in 1988, has
the advantages of simple network structure, strong approx-
imation ability, fast learning speed, being not easy to fall
into local minimum problems and good robustness [27], [28].
In order to enhance the learning performance of RBFNN,
many researchers have adopted the RBFNN structure along
with some nature-inspired meta-heuristic algorithms such as
particle swarm optimization (PSO) [29], ant colony optimiza-
tion (ACO) [30] and genetic algorithm (GA) [31], to imple-
ment the learning of the network. However, these techniques
always exist with some drawbacks. Fruit fly optimization
algorithm (FOA), as a novel swarm intelligence search algo-
rithm, has been widely used inmany fields [32], [33], because
of its simple structure, strong global optimization ability, easy
to understand and learn. Like other optimization algorithms,
FOAmay also have problems such as premature maturity and
poor exploration ability. Hybridizing is a reasonable way to
take strengths and avoid weakness. Considering that moth-
flame optimization (MFO) algorithm has a unique population
renewal mechanism [34], this study intends to design a mix
algorithm of PSO with MFO, named MFO-FOA, for training
RBFNN and finding out the optimal network parameters to
make suitable performance verification and comparison.

However, every single technique always exists with
some drawbacks. The single-type sensor data are not reli-
able enough in actual working condition, and will reduce
the recognition effect of shearer coal-rock cutting state
based on the proposed RBFNN model-based classifier. The
D–S evidence theory, proposed by Dempster and perfected
by Shafer [35], has been widely used for information fusion,
such as intelligent obstacle sensing and recognizing [40],
fault detection [41], target recognition [42] and so on. There-
fore, the D–S evidence theory is introduced to achieve the
decision-level fusion of the recognition results based on
single-type signal source. The major contributions of the
proposed recognition scheme can be summarized as follows:

(1) we propose a new optimization algorithm based on
the combination of MFO and FOA to find out the opti-
mal network parameters of RBFNN. The effectiveness and
superiority of MFO-FOA is verified through the simulation
comparison with other popular meta-heuristic algorithms.

(2) A new recognition technique based RBFNN optimized
by using MFO-FOA is presented to achieve the coal-rock
cutting state recognition based on three-type sensing data col-
lected from one sound sensor and two vibration sensors. The
D–S evidence theory is used to fuse the recognition results
of three RBFNN classifiers and the accurate identification
results can be accordingly obtained.

(3) Some experimental comparative study is performed to
prove the effectiveness and superiority of proposed method.

The remainder of this work is organized as follows.
In Section 2, the basic algorithms of RBF neural network
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FIGURE 1. Structure of RBF neural network.

and D-S evidence theory are briefly introduced. In Section 3,
the proposed hybrid optimization algorithm are proposed
and the parameters optimization procedure of RBFNN using
MFO-FOA are presented in detail. In Section 4, the proposed
fusion recognition system is constructed. In Section 5, some
experiments are conducted to verify the performance of the
proposed method and the comparisons with other methods
are performed to illustrate its excellent property in terms of
recognition accuracy. Finally, the conclusions of this work are
summarized in Section 6.

II. BASIC THEORY
A. RBF NEURAL NETWORK
RBF neural network is a three-layer feedforward neural net-
work, which is generally composed of input layer, hidden
layer and output layer, as shown in Fig. 1.

The commonly used radial basis function in RBF neural
networks is Gaussian function, which can be expressed as:

R
(
xp − ci

)
= exp

(
−

1
2σ 2

∥∥xp − ci∥∥2) (1)

where ‖xp−ci‖2 is the Euclidean norm, xp = (xp1 , x
p
2 , . . . , x

p
m)

is the p-th input sample, ci is the Gaussian function center of
the i-th node, σ is the variance, that is, the width of Gaussian
function.

The output of RBF neural network can be calculated as:

yj =
∑h

i=1
ωijR

(
xp − ci

)
+ θj (2)

where ωij is the connection weight between the hidden layer
and the output layer, h is the number of nodes in the hidden
layer, and θj is the threshold value of the j-th output node,
which is the actual output value of the j-th output node in the
output layer.

B. D-S EVIDENCE THEORY
In D-S evidence theory, if the elements of a finite complete set
2 = {θ1, θ2, · · · , θN , } are mutually exclusive, the set can be
called a discernment framework. Defining functionm: 22→
[0, 1], m (∅) = 0,

∑
A⊂2m(A) = 1, m(A) is termed as basic

probability assignment (BPA).
The belief degree of proposition A can be measured by two

concepts: Bel(A) and Pl(A). Bel(A) represents the total belief

level and can be defined as follows:

Bel(A) =
∑

B⊆A
m(B) (∀A ⊆ 2) (3)

Thus Bel(A) = m(A) and the belief function satisfies the
following conditions:

Bel (∅) = 0, Bel (2) = 1 (4)

Pl (A) represents the plausibility belief level and can be
defined as follows:

Pl(A) =
∑

A∩B6=∅
m(B) (∀A ⊆ 2,B ⊆ 2) (5)

In D-S evidence theory, Dempster rule is used to combine
information from multiple independent sources. Let m1 and
m2 be the BPAs, the corresponding focal elements are A1,
A2, . . . , Ak and B1, B2, . . . , Bk , m represents the new evidence
after the combination of m1 and m2. The Dempster combina-
tion rule can be described as follows:{

m (∅) = 0
m (A) = 1

1−k

∑
Ai∩Bj=A m1(Ai)m2(Bj)

(6)

where k reflects the conflict coefficient between evidences
and can be represented as follows:

k =
∑

Ai∩Bj=∅
m1(Ai)m2(Bj) (7)

C. THE EVIDENCE CORRELATION COEFFICIENT
Obviously, the combination rule of D-S evidence theory
has unavoidable disadvantages. That is, once there is a cer-
tain conflict between evidences, the fusion results would
be counter-intuitive or not consistent with some evidences.
In order to enhance the fusion effect and improve the appli-
cability, the evidence correlation coefficient is introduced
to measure the conflict coefficient between evidences and
modify or preprocess the original evidences with a weighted
mean combination model.

For two evidencesmi andmj in discernment framework2,
the correlation coefficient (denoted as rBPA) and correlation
degree (denoted as c) can be calculated by:
rBPA(mi,mj) = c(mi,mj)/

√
c(mi,mi) � c(mj,mj)

c
(
mi,mj

)
=

∑2N

ii=1

∑2N

jj=1
mi(Aii)mj(Ajj)

∣∣Aii ∩ Ajj∣∣∣∣Aii ∪ Ajj∣∣ (8)

If the correlation coefficient between a certain evidence
and other evidences is larger, the more support the evidence
can receive and the higher the credibility of the evidence is,
so the weight assigned to it should be greater. The credibility
of evidence is taken as the standard to measure the weight
assigned to each evidence, and the basic probability assign-
ments of evidence are processed by using weighted mean
method. Then, the combination rule of Dempster is used to
realize the fusion of each modified evidence.

Through the above ideas, the correlation coefficient
between mi and mj can be taken as the support degree of
evidence, namely Sup(mi, mj) = rBPA(mi, mj), which is
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abbreviated as Sij later. Thus, the support degree matrix of
evidence can be obtained.

SM =



1 S12 · · · S1j · · · S1n
...

...
...

...
...

...

Si1 Si2 · · · Sij · · · Sin
...

...
...

...
...

...

Sn1 Sn2 · · · Snj · · · 1

 (9)

Obviously, the smaller the conflict between the two evi-
dences is, the larger the correlation coefficient and mutual
support degree will be. The total support of other evidences
for evidence mi is:

Sup (mi) =
∑n

j = 1
j 6= i

Sup
(
mi,mj

)
=

∑n
j = 1
j 6= i

Sij (10)

The support degree after normalization can be used as the
credibility Crd(mi) of evidence mi, which can be calculated
as: Crd (mi) = Sup (mi)/

∑n

i=1
Sup (mi)∑n

i=1
Crd (mi) = 1

(11)

The credibility Crd(mi) can be used as the weight assigned
to this evidence and new evidences can be obtained by averag-
ing all evidences according to the weights, which can realize
the fusion of highly conflicting evidences. The specific fusion
process is shown in Fig. 2.

III. THE IMPROVED RBF NEURAL NETWORK BASED
ON A HYBRID OPTIMIZATION ALGORITHM
A. FRUIT FLY OPTIMIZATION ALGORITHM
Fruit fly optimization algorithms (FOA) was proposed by
Pan [36] in 2012. Similar to other meta-heuristic intelligent
algorithms, FOA derives from the natural fly population for-
aging process. In the process of foraging, drosophila flies
constantly exchange food information in order to obtain the
most effective path. The optimization process of FOA is
shown in Fig. 3. The detailed implementation steps can be
referred to some references [32].

B. MOTH-FLAME OPTIMIZATION ALGORITHM
The moth-flame optimization (MFO) algorithm, proposed by
Mirjalili in 2015 [34], is a novel swarm intelligence opti-
mization algorithm. The main inspiration of this algorithm
is the navigation method of moths in nature called transverse
orientation. In the d-dimensional search space, there exists a
populationM consisting of n moths. Each moth has a unique
flame corresponding to it. The matrix F consisting of all
flames has the same dimension as the moth population M .
The moth is the actual search subject moving in the search
space, and the flame is the best location for the moth to search
so far. Therefore, if a better solution is found, each moth will
search nearby and update it. Through this mechanism, the
moth will never miss its optimal solution.

FIGURE 2. Fusion process of correlation coefficient-based D-S evidence
theory.

FIGURE 3. Schematic diagram of FOA optimization process.

According to the helical flight path of moths, the location
updating mechanism of each moth relative to the flame can
be expressed as

Mi = Di � ebt � cos (2π t)+ Fj (12)

where Di denotes the distance between the i-th moth and
the j-th flame, Di = |Fj − Mi|. b is the shape constant of
logarithmic helix. t is the path coefficient and can be set as
a random number in [r , 1], where r decreases linearly in the
interval [−2, −1] with the increase of iteration times. ‘This
can enable the moth to approach the corresponding flame
more accurately with the iteration process.

Fig. 4 illustrates the location updating model of a math
around its corresponding flame. The smaller the path coef-
ficient t is, the closer the moth is to the flame and the faster
it updates around the flame. It can be seen from the spiral
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FIGURE 4. Location updating model of MFO.

equation that the moth can not only fly in the space between
moth and flame, but also search around the flame, so that the
global search ability and the local development ability of the
algorithm are comprehensively considered.

In order to ensure that the local development ability of
MFO does not decrease with the iteration, (13) is used to
reduce the number of flames adaptively.

flame.no = round(N − l ×
N − 1
T

) (13)

where l is the current number of iterations,N is the maximum
number of flames, T is the maximum number of iterations.
In the initial step of iteration, there are N frames. At the end
of the iteration, the moths use only the best flames to update
their positions.

C. A HYBRID OPTIMIZATION ALGORITHM BASED ON
MFO AND FOA
In FOA, the location updating of each individual fruit fly only
depends on the location of the current fruit fly population,
which makes the algorithm have better global search ability,
but weakens the local search ability and easily falls into the
local optimum. MFO algorithm has a special location updat-
ing mechanism, so that the search space is not limited to the
space between the moth and the flame, but the whole space
around the flame, expanding the search space of the algo-
rithm. Based on the merits and demerits of FOA and MFO,
this paper improves the FOA by using the location updating
mechanism of MFO, and forms a new swarm intelligence
optimization algorithm, termed as MFO-FOA. The specific
improvement ideas can be described as follows. In the process
of updating the location of flies, the random flight style of
flies is changed into a spiral flight path. The center of the
spiral flight path is the current location of the fly population,
which increases the flight distance of flies and expands the
search space, making the algorithm not easy to fall into
local optimum. At the same time, the shape constant of the

spiral equation can be reduced gradually with the increase
of iteration times, thus reducing the search space of the fly
population and ensuring the fast convergence of the algorithm
in the later iteration.

The new location updating formula of fruit fly is as follows:{
dis_Xi =

∣∣Xi_last − X_axis∣∣
dis_Yi =

∣∣Yi_last − Y_axis∣∣ (14){
Xi = dis_Xi � ebt � cos (2π t)+ X_axis
Yi = dis_Yi � ebt � cos (2π t)+ Y_axis

(15)

where dis_Xi and dis_Yi are the distances between the indi-
vidual location (Xi_last and Yi_last ) of the last generation and
the current swarm location (X_axis and Y_axis), respectively.
b = 1− n/(T + 1), t = (−2− n/T )× rand+ 1.
The specific implementation steps of MFO-FOA are as

follows:
Step 1: Set the population size N , the maximum iteration

number T , the location range of fly population LR and the
random flight distance range FR. The initial fruit fly swarm
location (X_axis, Y_axis) is randomly generated by using (16)
The location of the first generation of individual fly is updated
by using (17). {

X_axis = rand (LR)
Y_axis = rand(LR)

(16){
Xi = X_axis+ rand (FR)
Yi = Y_axis+ rand(LR)

(17)

Step 2: The distance between the current location and
the original point is calculated, and the smell concentration
judgment value (Si) can be obtained.{

Disti =
√
X2
i + Y

2
i

Si = 1/Disti
(18)

Step 3: Then, the smell concentration (Smelli) of the indi-
vidual fruit fly location is calculated by inputting the smell
concentration judgment value (Si) into the Smelli judgment
function (also called the fitness function). The best smell
concentration can be obtained by ranking all Smelli, and the
corresponding individual location bestIndex is determined
and found out.{

Smelli = fit (Si)

[bestSmell bestIndex] = best(Smelli)
(19)

Step 4: The current bestSmell is compared with the global
optimal concentration Smellbest. If bestSmell is better than
Smellbest, then the global optimal concentration and the cor-
responding position should be updated.

Smellbest = bestSmell
X_axis = X (bestIndex)
Y_axis = Y (bestIndex)

(20)

Step 5: n = n + 1. The individual position of fruit fly is
updated by using (14) and (15).
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TABLE 1. Seven used functions for comparison.

Step 6: If the termination condition is satisfied, the itera-
tion is stopped. Otherwise, steps 2∼5 are repeated until the
maximum iteration number T is reached.

In order to verify the effectiveness and superiority of
MFO-FOA algorithm, seven widely used testing functions
are used in this paper and their curve graphs usually have
some peaks, valleys and channels. Therefore, the optimiza-
tion performance of proposed algorithm and the ability to
avoid falling into local optimum can be undoubtedly proved.
The function expressions and theoretical optimum solutions
are listed in Table 1.

In this simulation, other four popular intelligent algo-
rithms, including FOA, MFO, bat algorithm (BA) and PSO,
are compared with proposed algorithm to display the dis-
tinctiveness and superiority. To verify the performance of the
improvement measures for FOA, an improved FOA (IFOA)
presented in [37] is also used in the simulation. The main
parameters are set as follows: population size N = 30,
the maximum iteration number T = 200. Other parameters
are set as default values. To ensure the accuracy, each algo-
rithm is performed on the individual function for 20 times.
The optimal value obtained after 20 times of simulation and

the mean optimal value over the 20 replications are used to
measure the performance of six algorithms. The optimization
results over seven functions are shown in Table 2 and the
mean optimal fitness curves are illustrated in Fig. 5.

As can be seen from Table 2, the optimal value pre-
cision grade of MFO-FOA is obviously higher than other
five algorithms. For example, for Schwefel’s 2.22 function,
the precision grade of MFO-FOA can reach to E-38 and the
approximate precision grade is E-26 of MFO. The precision
grade of other four algorithms is only E-3. The comparison
results indicate that the proposed algorithm has better search
performance and exploration ability in the later iteration
period.

The mean optimal fitness curves illustrated in Fig. 5 also
show the rapid convergence and superior ability to over-
step the local extremum for most functions. Especially
for CrownedCross function, the optimal values based on
MFO-FOA and MFO can reach to 1.0000E-04 and
1.0036E-04, which are basically equal to the theoretical
optimal solution. Fig. 5(f ) also indicates MFO-FOA has
faster convergence speed than MFO algorithm. In addition,
the location of the optimal solution of other algorithms is
obviously far from the theoretical optimal point. All results
prove the faster search speed and better convergence accu-
racy of MFO-FOA. It adopts new location updating strategy
to make fruit fly well-distributed and benefit the global
optimization, which can overcome effectively the premature
problem of FOA, BA and PSO algorithms.

D. PARAMETER OPTIMIZATION OF RBF NEURAL
NETWORK BASED MFO-FOA
In theory, the parameters of RBF neural network such as
the center and width of the basis function, the connection
weights between hidden layer and output layer, and the
threshold values of the output nodes need to be optimized by
MFO-FOA algorithm. However, too many parameters will
lead to too high dimension of the algorithm and reduce the
speed and accuracy of optimization. The MATLAB toolbox
provides the creation function newrb of RBF neural network
model, as shown in (21). The newrb function can automati-
cally increase the number of hidden layer neurons until the
network meets the target mean square error or the number of
neurons reaches the maximum.

[net, tr]=newrb(Pnet ,Tnet , goal, spread,MN ,DF) (21)

where Pnet is the input vector; Tnet is the output vector;
goal is the target mean square error; spread is the expansion
coefficient of radial basis function, i.e. the width of the basis
function; MN is the maximum number of neurons; DF is the
interval of increasing the number of neurons.

It can be seen that using newrb function to create
RBF neural network only needs to select the appropriate
width of basis function, so that RBF neurons can respond
in the interval covered by the input vector. The larger the
width of basis function is, the smoother the fitting process
of Gaussian function will be. However, a large number of
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FIGURE 5. The mean optimal fitness curves of seven functions based on different optimization algorithms.
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TABLE 2. The simulation results of different algorithms. neurons are needed to adapt to the rapid change of the func-
tion, and the sharpness of theGaussian functionwill decrease,
and the approximation error will increase. On the contrary,
the smaller the width of basis function is, the smaller the
approximation error is. However, the fitting process is not
smooth and the performance of the network becomes worse,
leading to the phenomenon of over-adaptation.

Therefore, MFO-FOA is used to optimize the basis func-
tion width of RBF neural network. The mean square error
(MSE) between the expected output and actual output of the
neural network is taken as the fitness function, so that the opti-
mized RBF neural network achieves the best performance.
The flowchart can be shown in Fig. 6.

IV. THE PROPOSED FUSION RECOGNITION SYSTEM
FOR SHEARER CUTTING STATE
In this paper, based on the multi-sensor information fusion
technology, three sensing signals are synthetically used to
identify the coal-rock cutting state of shearer, including the
cutting sound signal, Y-axis and Z-axis vibration signals of
rocker arm. Firstly, the three sensing signals are preprocessed
by variational mode decomposition (VMD) and the feature
vectors are reasonably extracted. Then, the improved RBF
neural network is used to identify the coal-rock cutting state
and three independent recognition results can be obtained.
Finally, the recognition results are fused by using D-S evi-
dence theory to achieve the fusion recognition of coal-rock
cutting state. The specific fusion recognition model is shown
in Fig. 7.

A. SIGNAL PREPROCESSING
In the process of shearer cutting coal-rock, the components of
sound signals and vibration signals are very complex, which
have strong non-linearity, instability and impact. Traditional
signal processing methods cannot deal with them effectively.
In order to accurately extract the characteristic information
contained in the signals, variational mode decomposition
(VMD) is introduced to preprocess the three kinds of signals
in this paper. Compared with empirical mode decomposi-
tion (EMD) and ensemble empirical mode decomposition
(EEMD), VMD has better performance in noise-resistance,
suppression of modal aliasing and endpoint effects. However,
in the process of VMD, for the number of modes K , the man-
ual trial method is generally applied, which has greater sub-
jective influence on the decomposition effect. In view of this,
EEMD is firstly used to decompose the signals and then the
decomposition orders of VMD can be reasonably determined
according to the result of EEMD.

B. FEATURE EXTRACTION
After VMD decomposition, a series of intrinsic mode func-
tion (IMF) components can be obtained. If the features of all
components are extracted to establish the training samples
for RBFNN, it will inevitably cause dimensional disaster
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FIGURE 6. Flowchart of parameters optimization of RBFNN by using
MFO-FOA.

and decrease the network performance. In addition, many
studies have shown that the first several IMF components
have already contained most information of the original
signal [38], [39]. Therefore, this paper selects the first three
IMF components to extract the key feature information.
Through many comparative analyses, it is found that the
envelope entropy and kurtosis of each IMF component are
obviously discrepant in different coal-rock cutting states,
which can be used as the features to characterize the cutting
states.

FIGURE 7. Recognition model of coal-rock cutting state based on
multi-sensor information fusion.

Envelope entropy can effectively reflect the sparse char-
acteristics of the signal. If the IMF component possesses
abundant feature information, its sparsity is strong and the
corresponding envelope entropy is small. For a zero-mean
signal x with length N , the envelope entropy Ep can be
calculated as follows:{

Ep = −
∑N

i=1 pilgpi
pi = a(i)/

∑N
i=1 a(i)

(22)

where a is the envelope of demodulation signal obtained by
Hilbert transform of signal x.
The higher-order moments of signals can better reflect

the weak changes. Kurtosis, belonging to the fourth-order
moment of signal, is a dimensionless numerical statistic that
can reflect the distribution characteristics of signal and the
steepness of signal probability density function. It is very
sensitive to the instantaneous characteristics of signal. the
kurtosis Ku can be calculated as follows:

Ku =
E(x − u)4

σ 4 (23)

where µ and σ are the mean and standard deviation of
signal x, respectively.

Through the above method, six eigenvalues with sensitive
information are extracted and used to describe each sensing
signal.

C. COAL-ROCK CUTTING STATE RECOGNITION BASED ON
SINGLE-TYPE SIGNAL SOURCE AND ITS FUSION PROCESS
The improved RBF neural network is trained and tested
by using the extracted samples and three network models
can be constructed, marked as RBFNN_1, RBFNN_2 and
RBFNN_3. The coal-rock cutting state recognition results
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based on one sound sensor and two vibration sensors can
be obtained. In D-S evidence theory, the three recognition
results can be converted into the BPAsm1,m2 andm3 of three
evidences. The output vectors of RBF neural network are the
judgment values of different coal-rock cutting states. In this
paper, five cutting states are set up, including no-load, cutting
the coal seam of hardness f = 2, cutting the coal seam of
hardness f = 3, cutting coal seam with gangue and cutting
rock, which can bemarked as F1, F2, F3, F4, and F5. Then the
discernment framework 2 = {F1,F2,F3,F4,F5}. The basic
probability assignmentmi(Fj) of the i-th RBF neural network
regarding the j-th coal-rock cutting state can be calculated as
follows:

mi(Fj)
=
∣∣yij∣∣× Ri/∑5

j=1

∣∣yij∣∣
mi (2)
= 1− Ri

i = 1, 2, 3; j = 1, 2, · · · , 5

(24)

where yij is the actual output value of the j-th output layer
neuron node of the i-th RBF neural network, Ri is the recog-
nition accuracy of the i-th RBF neural network. mi(2) is the
uncertainty of the i-th RBF neural network.
Then, the correlation coefficients between each evidence

are calculated by using (8), and the support matrix can be
obtained. The credibility Crd(mi) is calculated according
to (11). According to the credibility, the correspondingweight
is allocated to each evidence, and the BPA of each evidence is
processed by weighted mean method, which integrates mul-
tiple evidences into a new evidence body. The new evidence
is fused by using Dempster combination rule, and the final
recognition result of coal-rock cutting state can be accurately
judged according to the fusion results.

V. EXPERIMENTAL VALIDATION
A. EXPERIMENTAL PLATFORM CONSTRUCTION AND
SIGNAL ACQUISITION
In order to acquire more real sample data, a self-designed
experimental platform for shearer cutting coal-rock is built
as Fig. 8. The platform can be divided into two parts: one
is the coal-rick cutting system, including shearer, scraper
conveyor, hydraulic support, coal-rock specimen and fixed
rack, and another part is the signal processing system, includ-
ing one sound sensor, two vibration sensors (Y-axis and
Z-axis), signal conditioner, data acquisition card and indus-
trial computer. In fact, a vibration signal generally contains
three directions. In the experiment, a coordinate system is
established, in which the direction parallel to the hauling
direction of shearer is X-axis, the direction parallel to the
drum axis is Y-axis, and the direction perpendicular to the
drum axis and hauling direction is Z-axis. In the process
of shearer cutting coal-rock, the X-axis vibration signal is
greatly affected by the hauling speed. The information con-
tained in this vibration signal is more complex and cannot
accurately characterize the coal-rock cutting state. Therefore,

FIGURE 8. Experimental platform of shearer cutting coal-rock.

FIGURE 9. Four typical coal-rock specimens.

two vibration signals, Y-axis and Z-axis, are selected in this
paper. In order to protect the sensor from being damaged
during the experiment, three sensors are installed on the
inside of the rocker arm (side of the hydraulic support).

Due to poor conditions of coal mining working face, it is
difficult to directly acquire and transport the natural coal-rock
with large-scale structure and regular form. Therefore, using
different mixing ratios of pulverized coal, cement and sand,
this paper developed four typical coal-rock specimens with
different properties, including coal seamwith hardness f = 2,
coal seam with hardness f = 3, coal seam with gangue, and
rock, as shown in Fig. 9. Thus, totally five coal-rock cutting
states can be obtained, namely F1, F2, F3, F4, and F5. The
corresponding class labels are listed in Table 3.
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TABLE 3. The coal-rock cutting states of shearer.

During the experiment, the hauling speed of shearer was
set to 2 m/min, the acquisition frequency of sound signal
was 44.1 kHz, and the acquisition frequency of vibration
signal was 10 KHz. The data length of each sample was 0.5 s,
and the time-domain waveforms under different cutting states
collected by three sensors are shown in Fig. 10.

B. COAL-ROCK CUTTING STATE RECOGNITION BASED
ON IMPROVED RBF NEURAL NETWORK WITH
SINGLE SIGNAL SOURCE
In the experiment, 60 sets of sample data are selected from
three sensors for each cutting state, and 300 sets of data
samples for cutting sound signal, Y-axis and Z-axis vibration
signals are obtained respectively. After feature extraction,
three feature matrices of 300×6 can be acquired. 200 groups
of eigenvectors (40 groups for each cutting state) are ran-
domly selected from the three matrices as training samples
and the remaining 100 vectors are used as testing samples as
testing samples.

To verify the effectiveness of FOA-FOA and the pro-
posed recognition method (marked as MFO-FOA-RBFNN),
the effects of FOA, MFO and MFO-FOA optimizing the
network parameters of RBFNN are compared. The relevant
parameters are set as follows: the size of the fruit fly popula-
tion and the moth population is 30, the maximum number of
iterations is 100, the number of input layer neurons is 6, and
the number of output layer neurons is 5. The expected outputs
corresponding to five cutting state are [1 0 0 0 0], [0 1 0 0 0],
[0 0 1 0 0], [0 0 0 1 0], and [0 0 0 0 1], respectively.
RBF neural network is created by using newrb function, and
the basic function width is optimized by FOA, MFO and
MFO-FOA respectively. The iterative curves of the optimal
fitness values with the cutting sound signal as the training
sample are shown in Fig. 11.

It can be observed from Fig. 11 that MFO-FOA algorithm
has the best effect on the optimization of basis function width, FIGURE 10. Time domain waveforms collected through three sensors.
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FIGURE 11. The iterative curves of the optimal fitness values with the
cutting sound signal as the training sample.

TABLE 4. Optimization results of different algorithms.

FIGURE 12. Error rates between the expected output and the actual
output of three networks.

and can converge to the optimal value faster than FOA and
MFO, with higher convergence accuracy. The specific opti-
mization results are listed in Table 4. The number of hidden
layer neurons in the optimized RBF neural network is 50, 52
and 52, respectively.

Then, the 100 testing samples of cutting sound signal are
used to verify the recognition effect of three RBF neural
networks. The error rates between the expected output value
and the actual output value are plotted as Fig. 12, and the
cutting state recognition results are shown in Fig. 13.

By observing Fig. 12, the error curve of MFO-
FOA-RBFNN manifests smaller fluctuations than that of
FOA-RBFNN and MFO-RBFNN. The mean error of pro-
posed method is only 4.22%, which is obviously lower than
FOA-RBFNN (7.34%) and MFO-RBFNN (10.21%). The
results demonstrate that the hybrid algorithm of MFO-FOA

FIGURE 13. Coal-rock cutting state recognition results based on cutting
sound signal.

performs better search ability and optimization performance
than MFO and FOA. In addition, seen from Fig. 13, eight
samples are misclassified by using proposed method and
the recognition accuracy in the testing phase can reach to
92 percent, which is higher than FOA-RBFNN (90%) and
MFO-RBFNN (88%). It can also be found from Fig. 13 that
the misclassified samples mostly occur among the states of
cutting coal-rock specimens with f = 2 and f = 3. By using
the proposed MOF-FOA algorithm, a better basis function
width can be acquired, so that the RBFNN can still main-
tain better recognition performance when distinguishing two
kinds of coal-rock with similar properties. The comparison
results indicate the proposed recognition method possesses
good practicality and effectiveness.

For other two vibration signals of Y-axis and Z-axis, the
simulation parameters are the same as the sound signal.
Thus, the iterative curves of the optimal fitness values by
using three signals can be illustrated as Fig. 14. The cutting
state recognition results of MFO-FOA-RBFNN based on two
vibration signals are shown in Fig. 15 and Fig. 16. It can be
observed from Fig. 14 that three curves all tend to converge
at about 20 iterations, proving fast search speed and supe-
rior convergence performance of proposedMFO-FOA.When
using Y-axis and Z-axis vibration signals to identify the coal-
rock cutting state, ten and eight samples are misclassified,
and the recognition accuracies are 90% and 92% respectively.
Obviously, the recognition accuracy of coal-rock cutting state
based on single signal source is still a little low, which cannot
meet the actual requirements.

Finally, the comparative analysis of RBFNN with other
popular kernel functions, such as Rational Quadratic kernel
and Multiquadric kernel, is provided. The simulation results
are listed in Table 5. Seen fromTable 5, the recognition results
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FIGURE 14. The iterative curves of the optimal fitness values based on
proposed method.

FIGURE 15. Coal-rock cutting state recognition results based on Y-axis
vibration signal.

FIGURE 16. Coal-rock cutting state recognition results based on Z-axis
vibration signal.

of RBFNN with other kernel functions are basically consis-
tent with Gaussian kernel function, which can be concluded
that three kernels have similar mapping performance and can

TABLE 5. Recognition accuracy of RBFNN with different kernel functions.

TABLE 6. RBFNN output results based on single signal source.

TABLE 7. The BPA of each evidence.

be used as an alternative when using the Gaussian becomes
too computationally intensive.

C. FUSION RECOGNITION
In order to improve the recognition accuracy, the D-S evi-
dence theory is used to fuse the independent identification
results based on three signal sources. To describe the fusion
process in detail, a group of data sample with conflict-
ing recognition results is selected as an example, shown
in Table 6. Obviously, the network recognition result based
on Y-axis vibration signal is inconsistent with the recognition
results of other two networks based on Z-axis vibration signal
and sound signal, and the results are conflicting. By using the
D-S evidence theory with evidence correlation coefficient,
the decision-level fusion process of the output results is as
follows.

(1) Calculate the BPA of each evidence. The output results
of RBFNNs are taken as three evidences respectively, and the
BPA of each evidence is calculated by using (24), as shown
in Table 7.
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TABLE 8. The credibility of each evidence.

TABLE 9. The BPAs of new evidence and fused results.

(2) Calculate the credibility of each evidence. Firstly, the
correlation coefficient between each evidence should be com-
puted to create the support degree matrix.

S12 = S21 = rBPA (m1,m2) = 0.1435,

S13 = S31 = rBPA (m1,m3) = 0.9932,

S23 = S32 = rBPA (m2,m3) = 0.1070,

SM =

 1.0000 0.1435 0.9932
0.1435 1.0000 0.1070
0.9932 0.1070 1.0000

 .
Then the credibility can be obtained by using (11) and the

results are listed in Table 8.
(3) According to the credibility of each evidence, the cor-

responding weight is assigned to each evidence, and the
BPAs are processed by using the weighted mean method.
Then, three evidences are merged into a new evidence and
the obtained new evidence is fused according to Dempster’s
combination rule. The results are shown in Table 9.

From Table 8, the fused BPA value of m(F2) can reach
to 0.9485, indicating that the current coal-rock cutting state
belongs to the F2 category, that is, shearer is cutting the coal-
rock specimen with hardness f = 2, which is consistent with
the actual working condition.

Together with the fusion results, the final recognition
results of 100 testing samples can be determined correctly,
which can be shown as Fig. 17. From this figure, it can be
observed that only two samples are misclassified and the
recognition accuracy can increase to 98%, which is signif-
icantly higher than the one with respect to the single-type
signal features. These encouraging results clearly indicate
that the well-designed multi-sensor information fusion iden-
tification method can significantly improve the prediction
accuracy of the shearer cutting coal-rock system.

D. COMPARISON WITH OTHER METHODS
In order to analyze the difference in terms of recogni-
tion accuracy between the proposed method and other
methods in our research team, it is compared with the

FIGURE 17. The fusion recognition results of shearer coal-rock cutting
state based on three-type sensor data.

TABLE 10. Performance comparisons with other methods.

methods in [19]–[21]. In [19], the vibration signals are
taken as analytic objects and are decomposed by local mean
decomposition. The time-frequency features are extracted
and the shearer cutting states are classified by the fuzzy
C-means clustering algorithm. In [20], the cutting sound sig-
nals are taken as analytic objects and are decomposed by the
improved EEMD. The probabilistic neural network is used as
the classifier after obtaining the features. In [21], the tem-
perature of cutting area is used as the analytic object and
the cutting state is identified by using SVM. Experimental
scheme is the same as above simulations. The examined
results of four methods are summarized in Table 10.

It can be observed from Table 10 that the shearer
coal-rock cutting state recognition accuracy of proposed
method is obviously higher than that of other three methods
in [19]–[21]. Although superior signal processing and feature
extraction algorithms are used in both [19] and [20], there
is also a certain amount of misjudgment, mainly due to not
enough characteristic information in single-type sensor data.
In addition, because of the hysteresis of temperature transfer,
the temperature in cutting area may not reflect different coal-
rock cutting states in time. This phenomenon makes ref. [21]
perform the worst recognition effect.
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In summary, the fusion recognition method based on
RBFNN and D-S evidence theory can achieve better classi-
fication results and outperforms the competing approaches.
For conflicting information or error information caused by
sensor failure, the proposed fusion system can solve the fault
tolerance and respond appropriately.

VI. CONCLUSION
In this study, the sound signals and vibration signals both
are taken as analytic objects, and a novel method for coal-
rock cutting state recognition of shearer based on improved
RBFNN and D-S evidence theory is proposed. From theoreti-
cal analyses and experimental results, the major contributions
of this study are summarized as follows:

(i) Based on the merits and demerits of FOA and MFO,
FOA is improved by using the location updating mechanism
of MFO and a hybrid swarm intelligence optimization algo-
rithm of MFO-FOA is proposed in this study. The simulation
results verify the effectiveness and superiority of MFO-FOA
algorithm.

(ii) The sound signals and vibration signals are decom-
posed by VMD, and the envelope entropy and kurtosis are
used to achieve feature extraction. The optimal network
parameters of RBFNN are found out by using proposed
MFO-FOA and the coal-rock cutting state is accordingly
recognized based on the feature information of single-type
signal source.

(iii) Based on the idea of integrated decision-making,
a fusion model is constructed based on D-S evidence theory
to compensate for the inconsistency of single recognition
results. The corresponding experiments show that the recog-
nition accuracy with respect to the fusion model can reach to
98%, which is significantly higher than the one with respect
to the single-type signal features.

Under the same experimental samples, the performance
of the proposed method is compared with other methods
in [19]–[21]. It can conclude that the proposed method has
certain improvements in terms of the pattern recognition and
the higher recognition accuracy verifies the excellent perfor-
mance of the proposed method.
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