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ABSTRACT In this study unrelated parallel machine scheduling problem (UPMSP) with preventive main-
tenance (PM) and sequence dependent setup times (SDST) is investigated. A novel imperialist competitive
algorithm (NICA) with multi-elite individuals guidance is proposed to minimize makespan and total tardiness
simultaneously. Initialization is done by two heuristics, each of which is built based on one objective. Multi-
elite individuals guidance strategy is added in assimilation that colonies can move toward other imperialists,
diversified strategies such as local search and estimation of distribution algorithm (EDA) are adopted based
on solution quality in revolution and EDA is also used in imperialist competition. Empire aggression is
added by local search of imperialist for plundering a randomly chosen colony. A number of experiments
are conducted on the impact of new strategies and the comparisons among NICA and other algorithms.
Computational results demonstrate the effectiveness and advantages of NICA in solving UPSMP with
PM and SDST.

INDEX TERMS Preventive maintenance, setup times, imperialist competitive algorithm, multi-elite

individual guidance, estimation of distribution algorithm.

I. INTRODUCTION
Parallel machine scheduling problem (PMSP) is a typical
problem in the manufacturing process [1]-[5], which needs
to optimize the target by rational allocation and scheduling of
resources. Traditional PMSP often assumes that machines are
continuously available throughout the production process, but
due to the need for preventive maintenance (PM), the machine
cannot be processed normally during the PM. Therefore,
the assumption is not realistic in many actual production
and manufacturing. Considering that PM on a regular basis
can effectively prevent potential failures and avoid serious
accidents in production, it is necessary to consider PM in
unrelated parallel machine scheduling problems in order to
get a better scheduling scheme.

In the past few years, PMSP with PM has attracted much
attentions. In order to minimize makespan, Li et al. [6] pro-
posed two mathematical programming models and designed
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two heuristics. Yoo and Lee [7] presented a dynamic pro-
gramming approach to minimize makespan, (weighted) sum
of completion times, maximum lateness and sum of lateness,
respectively. For two-parallel-machine scheduling problem
with machine-dependent availabilities, He er al. [8] built a
mixed 0-1 programming model for small size problem and
gave nine heuristics to solve large sized instances of the
problem. Wang and Wei [9] designed a model and analyzed
the complexity for PMSP with deteriorating maintenance to
minimize the total absolute differences in completion times
and the total absolute differences in waiting times.

For UPMSP with PM, Gara-Ali et al. [10] proposed
several performance criteria and different maintenance sys-
tems and gave a new method to solve the problem with
deteriorating and maintenance. In order to minimize total
machine load, Yang et al. [11] applied the group bal-
ance principle to solve UPMSP with aging effects and PM
and proved that the problem remains polynomially solv-
able when the maintenance frequency on every machine is
given. Avalos-Rosales et al. [12] presented a mathematical
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formulation for UPMSP with PM and SDST and designed
an efficient meta-heuristic based on a multi-start strategy
to solve larger instances. Tavana et al. [13] developed a
three-stage maintenance scheduling model for UPMSP with
aging effect and multi-maintenance activities. Wang and
Liu [14] presented a multi-objective integrated optimization
method with non-dominated sorting genetic algorithm-II
(NSGA-II) to solve the multi-objective UPMSP with multi-
resources PM.

In order to simplify the model, most studies assume that the
setup times between jobs can be neglected or included in the
processing time. But in actual production, setup times cannot
be ignored, especially when the setup times are both sequence
and machine dependent, such as chemical, printing, metal
processing and semiconductor industries [15]. UPMSP with
SDST has attracted some attention since the pioneering work
of Parker et al. [16]. Kurz and Askin [17] presented several
heuristics. Vallada and Ruiz [18] designed a genetic algorithm
(GA) includes a fast local search and a local search enhanced
crossover operator. Arnaout et al. [19] introduced an ant
colony optimization (ACO) and tackled a special structure
of the problem. Wang et al. [20] developed a hybrid EDA
with iterated greedy search. Diana et al. [21] proposed an
immune-inspired algorithm to solve this problem. Ezugwu
and Akutsah [22] built an improved firefly algorithm refined
with a local search. Fanjul-Peyro ef al. [23] gave new mixed
integer linear programs and a mathematical programming
based algorithm to solve this problem. Caniyilmaz et al. [24]
collected a real-life data from a factory and gave an arti-
ficial bee colony algorithm to solve UPMSP with SDST,
processing set restrictions and due date. For UPMSP with
SDST, machine eligibility restrictions and a common server,
Bektur and Sarac [25] proposed a mixed integer linear pro-
gramming model and designed a tabu search and a simulated
annealing algorithm.

As mentioned above, many works have been finished on
UPMSP with PM and UPMSP with SDST and most of them
are just about the minimization of makespan as single objec-
tive. Few studies are about multi-objective optimization of
the above two kinds of UPMSP; on the other hand, UPMSP
with PM and UPMSP with SDST have been handled indepen-
dently; however, PM and SDST are seldom simultaneously
integrated into UPMSP [12]. PM and SDST are very common
processing constraints in the real-life production process and
the actual scheduling problem always has some conflicting
objectives, thus, it is necessary to deal with multi-objective
UPMSP with PM and SDST.

It also can be found that heuristics are the main method for
UPMSP with PM, only GA is applied to solve it and meta-
heuristics such as GA, ACO and EDA have applied to deal
with UPMSP with SDST; however, the applications of meta-
heuristics are not investigated fully and some algorithms such
as imperialist competitive algorithm(ICA) are not used to
solve UPMSP with PM or SDST.

ICA is a meta-heuristic based on the sociopolitical
imperialist competition [26], which is an effective global
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optimization method with strong neighborhood search capa-
bility and flexible structure and can be combined easily with
other algorithms [27]. In recent years, ICA has been success-
fully applied to solve many optimization problems including
PMSP [28]-[37]. Although ICA has adopted to deal with
PMSP, it is not utilized to handle UPMSP with PM or SDST.
ICA has great potential to solve UPMSP with PM and SDST
because of its notable features and the previous works on
PMSP, so it is meaningful to consider the applications of ICA
to UPMSP with PM and SDST.

In this paper, UPMSP with PM and SDST is considered and
anovel imperialist competitive algorithm (NICA) with multi-
elite individuals guidance is proposed to minimize total tar-
diness and makespan. In NICA, initialization is done by two
heuristics, each of which is built based on one of two objec-
tives. A new strategy of assimilation is given, where colonies
can learn from other imperialists. Diversified strategies such
as local search and EDA are adopted according to solution
quality in revolution, and empire aggression is added by
local search of imperialist for plundering a randomly chosen
colony. A novel imperialist competition is designed, in which
the weakest colony of the weakest empire is compared with
a new solution generated by EDA and the better one will be
allocated to the winning empire. A number of experiments
are conducted on the impact of new strategies and the com-
parisons among NICA and other algorithms. Computational
results demonstrate the effectiveness and advantages of NICA
in solving UPSMP with PM and SDST.

The remainder of the paper is organized as follows.
Problem under study are described in Sections 2. NICA for
the problem is reported in Section 3. Numerical test experi-
ments on NICA are shown in Section 4 and we summarize
the conclusion and some research topics in the future in the
last section.

Il. PROBLEM DESCRIPTION

UPMSP with PM and SDST can be described as follows.
Suppose n independent jobs Jy, J>, - - - , J, can be processed
on m unrelated parallel machines M|, M3, - - - , M,,. Each job
is available at time zero. p;; is the processing time of job J; on
machine M;. d; indicates the due date of J;.

Jobs can be processed in an interval between two con-
secutive maintenance activities. The interval is called the
processing one and its time length is u;. w; is the period of
each maintenance. Thus, the maintenance periodic recycle of
machine M; is T; = w; + u;. We use Jy to denote maintenance
activities [12].

The setup time is dependent on sequence and machine.
sijk 1s the setup time for processing job Ji just after job J;
on machine M;, sjor indicates the setup time of machine M;
to process the first job J; after a maintenance activity, and
s;jo is the setup time of machine M; to perform a maintenance
activity just after the job J;.

There are some constraints on jobs and machines:

1) Each job can be processed on only one machine at a
time.
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2) Operations cannot be interrupted.

3)If the processing of a job cannot be completed in a
processing interval, the job can’t be processed in the current
interval and should be moved to the next interval for process-
ing etc.

The goal of UPMSP with PM and SDST is to minimize the
following two objectives simultaneously:

min f :Cmaxzmax{Cj[j=1,2,~-~,n} (1)
minf, = Z;;l max {Cj —dj, 0} 2)

where the first objective f1 is makespan and the second objec-
tive f> is total tardiness. C; indicates the completion time of
job Jj.

We give an example with two machines and six jobs.
w1 = 37, wy = 4, u; = 70, up = 86. Due dates of six jobs
are 4, 89, 46, 35, 98, 45, respectively. pm is the processing
time matrix, S; is the setup times matrix on machine 1, and
S> indicates the setup times matrix on machine 2.

o — | 187 28 32 38 9} 3
|4 21 68 17 43 48
[0223979]
6018139

1407378

S$i=13730235 @)
43830502
8837905
| 1881220
(0373763
2051617
3607762

S$5=|4760969 )
3373017
85856009
(4741790

IIl. NICA FOR UPMSP WITH PM AND SDST

In ICA, the empire easily fall into local optimum if colonies
only move toward its imperialist and it is necessary to make
individuals learn from other imperialists in assimilation.
Revolution is often implemented in a single way and sel-
dom done using the diversified methods, it is important to
make full use of imperialist as good solution. EDA is an
emerging stochastic group evolution algorithm based on sta-
tistical learning principle [38] and has strong global explo-
ration ability. In this study, a new NICA by introducing EDA
into ICA is proposed, which is described in the following
sub-sections.

A. ENCODING AND DECODING

UPMSP with PM and SDST consists of two sub-problems:
machine assignment and scheduling. Two-string representa-
tion is often used in the previous works [39]-[42]; however,
two strings of a solution are often dependent with each other.
In this study, a novel two-string representation is proposed,
in which a solution is composed of two independent strings.
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For the problem with n jobs and m machines, each solu-
tion consists of a scheduling string[my, 72, --- , m,] and a
machine assignment string [M01 ,Mp,, - ,Mgn]. where My,
indicates the parallel machine assigned for job J;, 1 < 6; < m,
m; € {1,2,---,n}. The assigned machine and the process-
ing order for each job can be determined according to the
machine assignment string and scheduling string respectively.

Fig. 1 (a), shows the Gantt chart of a possible solution with
a machine assignment string [M1, My, My, M, M>, M>] and
a scheduling string [3, 5, 1, 2, 6, 4]. As shown in Fig.1 (a),
when the processing of job Jg is considered, it can be found
that the processing cannot finish in the first processing inter-
val, so job Jg should be processed in the next interval.

NE

-] maintenance

3 3139 6470 107 116 128

(b)

FIGURE 1. Gantt charts of the solution.

B. INITIALIZATION

In this section, initial population is first produced by two
heuristics and a random way, then initial empires are con-
structed. To hybrid EDA with ICA, probability matrices of
EDA are also initialized.

Heuristic is often used to generate initial population.
In general, a heuristic can only produce a solution. In this
study, heuristics 1 and 2 are adopted, each of which produces
N / 3 initial solutions, where N represents population size.

Heuristic 1 is shown in Algorithm 1. For the example,
astring [3, 5, 1, 2, 6, 4] is first randomly obtained. Start with
J3, we calculate 6'3,1,1 and @3,1,2 and obtain le’nj of 31.
J3 is allocated to the first position on M;. Then for Js,
Cmm, 5 is decided and equal to 49, and Js is allocated on M5.
For J;, we find that 61,1,] = 61,2,] = Cmin,l = 39,
so two positions can be selected and position 1 is chosen,
so J; is inserted on the left of J3; and the schedul-
ing string becomes [1, 3,5, 2, 6,4]. The final scheduling
string is [1, 6, 3, 2, 5, 4] and machine assignment string is
[M1, My, M1, My, M>, M1]. Cpax is 114. Fig.1(b) shows the
Gantt chart of the obtained solution.
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Algorithm 1 Heuristic 1
1: Randomly produce a scheduling string [7q, 73, - - - , 77, ]
2: for m; to m, do
3:  for each position / on each machine M;,i =1,2,--- ,

mdo B
Calculate C, ;; if inserting 7r; into position [ of M;
end for
Compute the minimum value Cy, of all possible
Ce,l,i~ -
7. Decide all machines and positions meeting Ce; =
Cmin,e~ _ _
if more than one position has C, ;; = Cyin.. then
9: Randomly choose a machine M and a position /*.
10:  else
11: Directly select the machine M;* and the position /*.
12:  end if

13:  Allocate 7; into position [* of M*.

14:  if I'* is not the last position on M;" then

15: Adjust the position of 7; on scheduling string by
inserting 7; into the position of J,, which is pro-
cessed on position /* 4 1 of M.

16:  end if

17: end for

Heuristic 2 is similar with heuristic 1 and the difference
between them is the computation of index. In heuristic 2, total
tardiness Te, 1,i of all allocated jobs is first decided and then
the minimum value Tmin,e of all ]_‘e, 1,i 1s obtained.

Unlike the exiting heuristics, heuristics 1 and 2 can produce
many solutions. In this way, initial population P is generated,
in which 2N / 3 solutions are produced by two heuristics and
the remained solutions are randomly obtained.

To construct Ny, initial empires, cost ¢, for solution k is
newly defined by

‘fk,j _fjmm

D
i = ranki x D+ ) |
5=

j=1

(6)

where rank; represents the rank value defined by
Deb et al. [43] of the solution k. D is the number of objective
functions. fi ; indicates the objective fj of solution k. f™** is
the maximum f; of all solutions in P. ];.mi“ is the minimum f;
of all solutions in P.

After cost of each solution is computed, all solutions are
sorted in the ascending order of cost and the first Njy,
solutions are chosen as imperialists and other solutions are
colonies. There are Ny colonies, Neoy = N — Njyp. Then
the normalized cost ¢; and total number NC}, of colonies are
calculated [26]. Finally, NCy colonies are randomly allocated
into empire k.

The optimization of EDA starts with initial probability
matrices. m (n + 1) x n probability matrices p’ (g) are used to
describe the probability of two adjacent jobs on machine M;,
i=1,2,---, m. The probability matrix p’ (g) is described as
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follows
P01 (&) -+ Pl (&)
. 0 -0, @® _
pl(g)z . . . 5 l=1’29”"m (7)
phi(® - 0

where pj’ « (&) represents the probability that job Ji is on the
right of job J; on machine M; at the gth generation, ,0(’)’ j (2)
represents the probability that job J; is first job on machine M;
at the gth generation.

The initial probability matrices p' (0) are uniformly pro-
duced in order to ensure the uniform sampling of the solution
space.

1 1 1
n n n
1 1
0
‘ n—1 n—1
Fro=|_1 Ll i=12.m
n—1 n—1
11
0
|l n—1 n—1 |
(®)

C. ASSIMILATION
Assimilation is often implemented by moving each colony
toward its imperialist. Global search between colony and
imperialist is frequently used in assimilation. If colonies only
learn from its imperialist, the empire will easily fall into local
optimum. In this study, a new strategy based on multi-elite
individuals guidance is proposed.

Suppose that Hy, is the set of all colonies in empire k. The
detailed steps of assimilation for empire k are described in
Algorithm 2.

Algorithm 2 Assimilation
1: for each colony A € Hy do
2:  Generate a random number « in [0,1].
3:  ifa < 0.5 then
4: Colony A moves toward its imperialist k. Two global
search operations between A and its imperialist k are
executed sequentially.
else
Choose one solutions k* from the other imperialists
by tournament selection
7 Colony A learn from imperialist k*. Two global
search operations between A and imperialist k* are
executed sequentially.
8: endif
9: end for

AN

Two global search operators are used for two strings.
For the machine assignment string, a random number string
RS = {rsy, rsa, -+, rs,} with length of n is first generated,
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start with the first element of rsy, and for each element rs;,
if rs; > 0.5, then My, of colony A is replaced with that of
imperialist k.

For the scheduling string, randomly select a segment ¢
from the scheduling string of imperialist k, then we decide
the position s of the first job of the segment ¢ in colony A,
delete all jobs of ¢ from the scheduling string of colony A
and insert the segment ¢ into position s sequentially.

Unlike the existing assimilation [26]-[34], the above
assimilation make colonies guided by multi-elite individuals,
which can avoid the algorithm falling into local optimum.
Meanwhile, inspired by the above view, a new method is also
proposed by using diversified strategies such as local search
and EDA in revolution.

D. REVOLUTION

Revolution is another way to generate new solutions. In gen-
eral, revolution of colony is implemented by local search like
mutation of GA and all colonies are changed in a single way.
In this study, the diversified methods are adopted based on
solution quality.

The detailed steps of revolution in empire k are as follows.
For each colony A € Hj, generate a random number 8, if
B < pr, thenif ¢, is less than y colonies, conduct four neigh-
borhood structures on A sequentially; else EDA is executed
on A, a new solution z is obtained, if z dominates colony A,
then replace colony A with z. Where c;, is the cost of colony
A and we set y = 0.8N,,; based on experiments.

Neighborhood structures N7,M2,N3,N4 are used and
described below. Neighborhood structure A} generates new
solutions by randomly choosing a machine M; and two jobs J;
and J; on M;, and then exchange them on scheduling string.
N1 is just used to change scheduling string. Neighborhood
structure NV also acts on scheduling string. Randomly choose
a machine M; and two jobs J; and J; on M;, and then decide
all jobs between J; and J; on M; and reverse their sequence
on scheduling string. Neighborhood structure A3 is shown
below. Randomly select machines M;, and M;,, choose a job
Jjon M;, and a job J; on M;, stochastically, swap J; and J on
scheduling string and swap machines of two jobs on machine
assignment string. Neighborhood structure Ay is done in the
following way. As done in N3, machines M;, and M;,, a job
Jjon M;, and a job J; on M;, are first randomly decided, then
insert J; on the right of J; on scheduling string and assign J;
from M;, to M;,.

For a scheduling string [3,5, 1,2, 6,4] and a machine
assignment string [M1, My, M>, My, M|, M>]. When N] and
N are applied, Js and J4 are chosen on M. For A3 and Nj,
Js on M| and Jg on M are selected. Fig.2 gives the examples
of N1, No N3, N5.

EDA generates a new solution by sampling the probability
model. ® is the set of all jobs.

The detailed steps of EDA for new solution are given in
Algorithm 3.

In the above procedure, the chosen good colonies are
improved by local search and the selected poor solutions are
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FIGURE 2. Examples for four neighborhood structures.

Algorithm 3 EDA Generate a New Solution

1: Calculate workload of all machines and decide the mini-
mum workload of all machines.

2: if more than one machine has the minimum workload
then

Randomly choose a machine M;.

4: else
Directly select the machine M; with minimum work-
load.

6: end if

7: Determine the last job on machine M;, supposing the job
is J;. If there is no job, set a virtual job O.

8: Select J; by using roulette wheel based on probabilities
on Ith or Oth row of p'(g) and assign J; to M;. ©® =
o\ 4. |

9: Let the jth column of p' (g),i = 1,2, -, mto be zeros
and normalize each row of the matrix.

10: if ® is not empty then

11:  Goto Stepl.

12: else

13:  Stop the algorithm.

14: end if

made better by global search of EDA, that is, two methods are
used according to solution quality and global search ability
and local search ability can be balanced well.

E. EMPIRE AGGRESSION AND IMPERIALIST
COMPETITION

A new step named empire aggression is added into NICA by
local search of imperialist for plundering a randomly chosen
colony.

Empire aggression is as follows. For each imperialist &,
randomly select one of four neighborhood structures N7,
N2, N3, Ny and acts on the imperialist k, a new solution z is
obtained, then a colony A is randomly chosen, if z dominates
colony A, then colony A is displaced by solution z and this
colony is moved from its empire to empire k.
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After the process of empire aggression, the cost of all
countries is calculated again and imperialist of each empire
is updated if a colony dominates its imperialist.

To implement imperialist competition, total cost TCy is
first defined by

Zier Ci

TCr = cx +
k= Ck gNCk

©)
where & is a positive number. We set £ = 0.1.

Then the normalized total cost NTCy, power TP and a
probability vector V are first computed by

NTCy = 1}125( {TC;} — TCy (10)
(S

TP, = NTCy /ZZEQ NTC; (11)
V=TP—R=[TP —r,TPy—ry,-- . TPy, — N,,]
(12)
where R = [rl, D, rim,,] is a random number vector, r;
follows uniform distribution in [0,1] and Q is the set of all

imperialists.

Finally, a winning empire k& with the biggest TPy — ry is
decided, EDA is applied and a new solution z is generated,
if z dominates the weakest colony of the weakest empire, then
the weakest colony is replaced with z and moved from the
weakest empire to empire k; otherwise, the weakest colony is
directly included into empire k.

In the above procedure, EDA is used to try to avoid adding
directly the worst colony into the winning empire because
the weakest colony is a worse solution and difficult to be
improved even if it is included into a strong empire.

F. ALGORITHM DESCRIPTION

NICA is constructed by incorporating EDA into revolution
and imperialist competition, respectively; moreover, there are
different purposes. EDA is adopted in revolution to update
colony and EDA is applied to avoid the direct inclusion of
the weakest colony into the winning empire. Meanwhile,
multi-elite individual guidance strategy is added in assimila-
tion that colonies can move toward other imperialists. These
are the great differences between NICA and other ICAs
[33], [44], [45]. In fact, ICA is seldom hybridized with EDA.
This study gives an effective hybrid method.

The detailed procedure of NICA is shown in Algorithm 4.

The stopping condition is max_it, which is maximum num-
ber of objective function evaluations. Fig. 3 shows the flow
chart of NICA.

With respect to the updating probability matrices, at each
generation, we choose 0.1 x N individuals with small-
est cost from population P as elite solutions according to
Wang and Zheng [18]. Probability matrices are updated by
the usage of of these elite solutions.

, . o 0.1xN z
Pt == @+57 D te (13
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Algorithm 4 NICA
1: Produce an initial population P by heuristics and random
way, let g = 1.
Construct initial empires and probability matrices.
while The stopping criterion is not met do
Execute assimilation and revolution in each empire.
Perform empire aggression, calculate cost of all coun-
tries and exchange.
6:  Execute imperialist competition and update the prob-
ability matrices, g = g+ 1.
7: end while

where @ € (0,1) is the learning rate, and I7,, is a
0-1 variable. In the zth solution, If job Ji is right after job J;
on machine M;, Il.zj «1s one; Otherwise Il.zj « 18 equal to zero.

IV. COMPUTATIONAL EXPERIMENTS

Extensive experiments are conducted on a set of problems
to test the performance of NICA for UPMSP with PM
and SDST. All experiments are implemented by using mat-
1ab2015b and run on 16.0G RAM 2.80GHz CPU PC.

A. TEST INSTANCES, METRICS AND COMPARATIVE
ALGORITHMS

Test sets of small, medium and large scale [11,15] can
be selected to evaluate the algorithmic performance. There
exist 66 instances. For small instances, n € {10, 12} and
m € {2, 3}. For medium instances, n € {20,30} and m €
{2, 3, 4}. For large instances, n € {50, 100, 150, 200} and
m € {10, 15, 20}. p;; € [1, 99]. There are three types of setup
times, which are chosen from [1, 9], [1,99] and [1, 124].
The processing time and setup times of small and large
scales are taken from http://www.cima.uadec.mx/instancias/.
The medium scale is generated randomly according to the
literature [12]. w; € [1, 99], the length of processing interval
is decided by

uj = (1 + &) x maxy; {Sin +pij+ SijO} (14)

Duedate d; of job J; is computed by

di=(1+28)x " py/m (15)

where ¢ is a random number between 0 and 1.

Two metrics are used. Metric DI [46] is applied to mea-
sure the convergence performance by computing the distance
of the non-dominated set ; relative to a reference set Q*.

DIg () = > min {oylx € @} (16)

|Q*| yeQ*

where oy, is the distance between a solution x and a reference

solution y in the normalized objective space. The reference set

Q* is composed of the non-dominated set solutions in | J; €;.
The smaller DIg (€2;) is, the better the algorithm is.

DI (2;) = 0 means that algorithm [/ provides all members

of the set Q*.
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Initialization with
heuristics

Generate initial empires
Initialization probability matrices

Empire aggression

-
P =

ggression . Empire aggression

Empire 1 Empire 2

Empire N,,

A 4

Imperialist competition

’ Update probability matrices ‘

No

FIGURE 3. The flow chart of the NICA.

Metric p [47] indicates the ratio of number of the elements
in the set {x € Q; |x € Q*} to |Q*|.

As stated above, multi-objective UPMSP with PM and
SDST is seldom investigated and there are no exist-
ing comparative algorithms. In this study, we compare
NICA with multi-objective multi-point simulated anneal-
ing (MOMSA [48]) and multi-objective harmony search
(MOHS) algorithm [49].

MOMSA is proposed for solving multi-objective UPMSP
by simultaneously minimising makespan, total weighted
completion time and total weighted tardiness. The effective-
ness of MOMSA is verified. Meanwhile, MOMSA can be
directly applied to solve multi-objective UPMSP with PM
and SDST by considering setup times and maintenance in
decoding process.

As for MOHS, it presented to minimize the makespan,
tardiness penalties and the purchasing cost of machines
simultaneously. The effectiveness of MOHS is verified by the
comparison with multi-objective particle swarm optimiza-
tion, NSGA-II, and multi-objective ACO. MOHS can also be
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Stopping
criterion is met

TABLE 1. Parameters and their levels.

Factor level

Parameter 1 2 3

max_it 50000 100000 150000
N 60 100 140

Nimp/N 5% 10% 15%
Pr 0.3 0.4 0.5
[eY 0.05 0.1 0.15

directly used to solve multi-objective UPMSP with PM and
SDST by adding setup times and maintenance in decoding
process.

B. PARAMETER SETTINGS
NICA has five important parameters: maximum number of
objective function evaluations max_it, population scale N,
the ratio of number of imperialists to population scale
Nimp/N , revolutionary probability p, and learning rate o.

A three-level design of experiment is designed on an
instance with 20 machines and 200 jobs. Table 1 gives the
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FIGURE 4. Main effect plot of Dip.
TABLE 2. The orthogonal array Ly (3%).
Factor

test max_it N Nim /N Dr « DIr
1 1 1 1 1 1 7.1719
2 1 1 1 1 2 7.4340
3 1 1 1 1 3 5.3581
4 1 2 2 2 1 1.2813
5 1 2 2 2 2 2.7740
6 1 2 2 2 3 5.3252
7 1 3 3 3 1 6.9085
8 1 3 3 3 2 6.0239
9 1 3 3 3 3 8.1721
10 2 1 2 3 1 3.6524
11 2 1 2 3 2 4.0758
12 2 1 2 3 3 6.7036
13 2 2 3 1 1 1.3809
14 2 2 3 1 2 1.0899
15 2 2 3 1 3 4.7550
16 2 3 1 2 1 6.2098
17 2 3 1 2 2 1.5876
18 2 3 1 2 3 2.6529
19 3 1 3 2 1 3.0956
20 3 1 3 2 2 5.4946
21 3 1 3 2 3 4.2586
22 3 2 1 3 1 0.8150
23 3 2 1 3 2 4.6413
24 3 2 1 3 3 4.8614
25 3 3 2 1 1 24762
26 3 3 2 1 2 1.7654
27 3 3 2 1 3 3.6311

settings of each parameter at each level. Orthogonal arrays of
different parameter levels are given in Table 2. For each group
of parameters, NICA runs independently 20 times. DI is
used to evaluate the results of each parameter combination,
where the reference set Q2* is composed of the non-dominated
solutions from the union set of all sets €2 of NICA. The results
are shown in Table 2. Table 3 describes the average DIg
of each parameter. The main effect plot of mean is shown
in Fig. 4.
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N Nimp/N

2 3 1 2 3

—/

TABLE 3. Computational results.

Level max_it N Nimp/N Dr o
1 5.605 5.249 4.526 3.896  3.666
2 3.568 2.992 3.521 3.631 3.876
3 3.449 4.381 4.575 5.095 5.080
Delta 2.157 2.258 1.055 1464 1414
Rank 2 1 5 3 4

From Table 3, we can see that N has the greatest influence
on the result of the algorithm. Meanwhile, when max_it
increases from 5 x 10* to 10° , the results of NICA improve
a lot. However, when max_it is greater than 105, NICA
improves little. Therefore, in order to balance the per-
formance and time consumption of the algorithm, we set
max_it = 10° . The other parameters are as follows:
N =100, Nj,/N = 0.1, p, = 0.4, ¢ = 0.05.

C. STRATEGY EFFECTIVENESS ANALYSIS

NICA is built by the combination of EDA and ICA, inclu-
sion of empire aggression and the usage of two heuristics in
initialization.

Three variants of NICA are constructed. NICA1 is sim-
ilar with NICA except that initial population is generated
randomly. The difference between NICA and NICA2 lies
in the elimination of EDA from NICA. In NICA3, colonies
only can move toward its imperialist in assimilation. The
parameter settings are as same as NICA. Each algorithm runs
independently 20 times. Tables 4 and 5 show the computa-
tional results of NICA and its three variants and Fig. 5 and 6
describes the boxplot of four NICAs of the computational
results. Table 9 shows the statistic results. We set confidence
level as 95%. When p_value < 0.05, the difference between
algorithms is significant.
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TABLE 4. Computational results of four NICAs on metric DIp.

Instance NICA NICAl NICA2 NICA3 Instance NICA NICA1 NICA2 NICA3
10x2(1_9) 0.0000 0.3825  0.1460  0.0000 50x15(1_9) 0.2043  10.0000  0.0000  0.2590
10x2(1_99) 0.0000  0.0000  0.4800  0.0000 50%x15(1_99) 0.7840  8.0536 0.2562 3.3930

10x2(1_124) 0.0000  0.0000  0.0000  0.0000 50%x15(1_124) 1.7976  9.0410 0.2830 2.5694
10x3(1_9) 0.0000  0.0000  0.0000  3.3152 50%20(1_9) 0.0477  11.8955  5.0031 0.4497
10x3(1_99) 0.0000  0.0000  0.0000  0.0000 50x20(1_99) 0.0000  8.7074 2.0417 2.3822
10x3(1_124)  0.0000 0.0000  0.0000 0.0000 50x20(1_124) 0.3301 8.8831 1.5311 2.1880
12%x2(1_9) 0.0000  0.0000  0.0000  0.0039 100x 10(1_9) 0.0000  6.3490 2.2251 7.9039
12%x2(1_99) 0.0000  0.0000  0.1968  0.0000 100x10(1_99) 0.2322  5.2647 0.3458 6.0342
12x2(1_124) 0.0000  0.0000  0.0000 0.0000 100x10(1_124) 0.2806  9.4852 0.9484 9.1783
12x3(1_9) 0.0000  0.0000  0.0000  0.0000 100x15(1_9) 0.6405 9.5939 0.0000 2.4701
12x3(1_99) 0.0000  0.0000  0.0000  0.0000 100x 15(1_99) 0.0000 12.5962  1.1528 5.2234
12x3(1_124) 0.0000  0.0000  0.0000 0.0000 100x15(1_124) 03237 12.4443  0.4740 5.5834
20%2(1_9) 0.0000 0.3795  0.6592 1.6707 100x20(1_9) 0.0000  8.2289 0.6493 1.2719
20%2(1_99) 1.0110 22082  0.1437  3.1516 100x20(1_99) 0.1206 12.4146  0.0539 3.8011
20x2(1_124) 4.6431 2.8205 3.5728 5.9318 100x20(1_124) 0.0530 13.0413  0.4685 4.0801
20x3(1_9) 1.6904  0.7165 1.4484 1.7683 150x10(1_9) 0.0000 1.8022 1.2948  10.4275
20%3(1_99) 0.0000  2.7823 1.7507  4.4656 150x10(1_99) 0.3788 8.4613 1.0355 8.8508
20x3(1_124) 1.8117  2.1596  0.0782  4.3984 150x10(1_124) 04544  6.6253 0.0000  10.0427
20%x4(1_9) 3.1032  0.0000  0.6002  0.8600 150x15(1_9) 0.2046  8.7413 0.8010 6.5614
20x4(1_99) 0.4522 1.2779  0.9523  3.1438 150x15(1_99) 0.4652  8.9968 04576  10.4382
20x4(1_124) 37423 23807  3.1629  0.8483  150x15(1_124) 0.4052  8.7039 0.2385 6.9621
30x2(1_9) 0.1077  0.0802  0.2131 3.5726 150x20(1_9) 0.0371 3.0067 0.2810 4.1015
30%2(1_99) 24269 13504 47049  7.4319 150x20(1_99) 0.3803 9.7331 0.3291 4.0516
30x2(1_124) 0.4598  1.3767 1.1579  8.2878  150%x20(1_124) 0.0000 11.5918  1.4708 5.5979
30%x3(1_9) 0.1591 03036  0.3679  2.6852 200%x10(1_9) 0.0727  2.1183  0.3581 6.6099
30%x3(1_99) 0.0000  2.9710 1.1159  8.2740 200x10(1_99) 0.0000  9.1799 0.3609 9.8850
30x3(1_124) 0.9373  2.0141 0.5731 6.9018 200x10(1_124) 0.0000 10.1328 1.5130 11.0151
30x4(1_9) 0.4278  1.0437 1.1178  2.7501 200x15(1_9) 0.2619  7.6809 0.4539 8.8713
30%x4(1_99) 0.3297  2.8043 1.3630  7.1927 200x15(1_99) 0.3958 11.3594  0.3608 5.8255
30x4(1_124)  0.0000 2.5666 14828 8.0796 200x15(1_124) 02921 123418 0.1180  6.7241
50x10(1_9) 0.0000  4.9155 1.3527  3.0004 200%20(1_9) 0.7737  11.0259  0.9844 4.9045
50x10(1_99) 0.0000 5.5101 2.6848  6.5826 200x20(1_99) 0.3396  12.1416  0.8722 3.1242
50x10(1_124) 1.7367 4.7583  0.1669 63164 200%x20(1_124) 0.0000 11.5774 1.0819 4.8273
TABLE 5. Computational results of four NICAs on metric p.

Instance NICA NICA1 NICA2 NICA3 Instance NICA NICA1 NICA2 NICA3
10x2(1_9) 1.0000  0.5000  0.6667 1.0000 50x15(1_9) 0.0000  0.0000  1.0000  0.0000
10x2(1_99) 1.0000  1.0000  0.6667 1.0000 50x15(1_99) 0.4000  0.0000  0.6000  0.0000
10x2(1_124) 1.0000  1.0000  1.0000  1.0000  50x15(1_124) 0.3333 0.0000 0.3333  0.3333

10x3(1_9) 1.0000  1.0000 1.0000  0.6667 50%x20(1_9) 0.5000  0.0000  0.5000  0.0000
10x3(1_99) 1.0000  1.0000 1.0000 1.0000 50%20(1_99) 1.0000  0.0000  0.0000  0.0000
10x3(1_124) 1.0000  1.0000 1.0000 1.0000 50%x20(1_124) 0.7500  0.0000  0.2500  0.0000
12%x2(1_9) 1.0000  1.0000 1.0000  0.8750 100x10(1_9) 1.0000  0.0000  0.0000  0.0000
12x2(1_99) 1.0000  1.0000  0.8000  1.0000 100x10(1_99)  0.6667  0.0000  0.3333  0.0000
12x2(1_124) 1.0000  1.0000 1.0000 1.0000  100x10(1_124) 0.7500  0.0000  0.2500  0.0000
12x3(1_9) 1.0000  1.0000 1.0000 1.0000 100x15(1_9) 0.0000  0.0000  1.0000  0.0000
12x3(1_99) 1.0000  1.0000 1.0000 1.0000 100X 15(1_99) 1.0000  0.0000  0.0000  0.0000
12x3(1_124) 1.0000  1.0000 1.0000 1.0000 100x15(1_124) 0.4000 0.0000  0.6000  0.0000
20x2(1_9) 1.0000  0.5000  0.5000  0.0000 100%x20(1_9) 1.0000  0.0000  0.0000  0.0000
20%2(1_99) 0.2000  0.2000  0.7000  0.0000 100x20(1_99) 0.3333  0.0000  0.6667  0.0000
20x2(1_124) 0.5000  0.0000 0.5000  0.0000 100x20(1_124) 0.7500  0.0000  0.2500  0.0000
20%3(1_9) 0.0000  0.8571 0.4286  0.1429 150x10(1_9) 1.0000  0.0000  0.0000  0.0000
20%3(1_99) 1.0000  0.3333  0.0000  0.0000 150x10(1_99) 0.8750  0.0000  0.1250  0.0000
20%x3(1_124) 0.3333  0.0000 0.8333  0.0000 150x10(1_124) 0.0000  0.0000 1.0000  0.0000
20x4(1_9) 0.5000  1.0000  0.7500  0.0000 150x15(1_9) 0.6250  0.0000  0.3750  0.0000
20x4(1_99) 0.8000  0.0000  0.6000  0.0000 150x15(1_99) 0.5000  0.0000  0.5000  0.0000
20x4(1_124) 0.0000  0.0000 0.6667 0.3333  150x15(1_124) 0.5000 0.0000  0.5000  0.0000
30%x2(1_9) 0.7500  0.2500  0.0000  0.0000 150x20(1_9) 0.6667  0.0000  0.3333  0.0000
30%x2(1_99) 0.0000  0.8333  0.0000  0.1667 150%x20(1_99) 0.6000  0.0000  0.4000  0.0000
30x2(1_124) 0.6000  0.4000  0.0000  0.0000 150x20(1_124) 1.0000 0.0000  0.0000  0.0000
30x3(1_9) 0.3529  0.2941 0.4706  0.0000 200x10(1_9) 0.8571  0.0000  0.1429  0.0000
30%3(1_99) 1.0000  0.0000  0.2000  0.0000 200x10(1_99) 1.0000  0.0000  0.0000  0.0000
30x3(1_124) 0.3750 0.1250  0.5000  0.0000 200x10(1_124) 1.0000  0.0000  0.0000  0.0000
30%x4(1_9) 0.4000  0.3000  0.3000  0.0000 200%x15(1_9) 0.6000  0.0000  0.4000  0.0000
30x4(1_99) 0.6667  0.0000  0.3333  0.0000 200x15(1_99) 0.5000  0.0000  0.5000  0.0000
30x4(1_124) 1.0000  0.0000  0.0000  0.0000 200x15(1_124) 0.5000 0.0000 0.5000  0.0000
50x10(1_9) 1.0000  0.0000  0.0000  0.0000 200x20(1_9) 0.4545  0.0000 0.4545  0.0909
50%x10(1_99) 1.0000  0.0000  0.0000  0.0000 200%20(1_99)  0.5000  0.0000  0.5000  0.0000
50x10(1_124) 0.4000 0.0000  0.6000 0.0000 200x20(1_124) 1.0000 0.0000  0.0000  0.0000

It can be found that NICA has smaller DIr than
NICAL1 on 49, and is only worse than NICA1 on 6 instances.
As for metric p, NICAL is better than or equal to NICA1 on

63 instances. The inclusion of two heuristics really improves
the performance of NICA. With respect to NICA2, it is
inferior to NICA on two metrics, DIg of NICA2 is worse
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TABLE 6. Computational results of three algorithms on metric Di.

Instance NICA MOMSA MOHS Instance NICA MOMSA  MOHS
10x2(1_9) 0.0000 2.6912 1.6351 50x15(1_9) 0.3933 10.0000 0.0000
10x2(1_99) 0.0212 3.3447 1.0609 50%15(1_99) 0.2890 10.1319 1.6053
10x2(1_124) 0.0000 0.0000 0.0000 50x15(1_124) 0.1089 9.0468 0.6931
10x3(1_9) 0.2072 8.4859 0.0000 50%x20(1_9) 0.5590 10.0000 0.0000
10x3(1_99) 0.0000 5.6463 2.1024 50x20(1_99) 1.0110 11.0446 0.5909
10x3(1_124) 0.0000 0.0000 0.0000 50%20(1_124) 0.2761 8.4349 1.2385
12%x2(1_9) 0.0000 1.4324 2.1581 100x10(1_9) 0.0000 1.7919 8.7100
12%x2(1_99) 0.4475 3.8867 0.0000 100x 10(1_99) 0.0000 2.8958 10.3288
12x2(1_124) 0.0000 1.3341 0.0000 100x10(1_124)  0.0000 3.7777 11.1843
12%x3(1_9) 0.0000 11.5818 0.0000 100x15(1_9) 0.0000 4.2518 4.2268
12%x3(1_99) 0.1040 11.2290 0.1040 100x 15(1_99) 0.0000 3.3999 7.2465
12x3(1_124) 0.0000 10.4323 04152 100x15(1_124)  0.0000 3.7997 6.2226
20%x2(1_9) 2.2574 6.0520 0.1333 100x20(1_9) 0.0000 4.2071 3.3536
20%2(1_99) 0.0850 4.0544 1.1221 100x20(1_99) 3.2661 10.5749 3.2661
20x2(1_124) 0.0000 11.3641 7.9837 100x20(1_124)  0.0000 10.1383 8.5274
20%3(1_9) 0.5733 7.2591 0.0986 150x10(1_9) 0.0000 5.9242 10.3052
20%3(1_99) 0.5922 8.6500 1.5853 150x10(1_99) 0.6868 3.1913 8.5808
20x3(1_124) 1.4804 5.1416 1.7202 150 10(1_124)  0.0000 3.5127 11.7134
20x4(1_9) 3.3244 6.5003 0.1601 150x15(1_9) 0.0000 3.8193 9.5188
20%x4(1_99) 0.0000 4.4580 3.7910 150x 15(1_99) 0.0000 9.8245 9.0907
20x4(1_124) 1.6373 4.9586 2.1883  150x15(1_124) 1.5014 2.1535 9.2158
30%x2(1.9) 0.1121 1.0350 2.5899 150x20(1_9) 0.0000 3.2177 9.1028
30%x2(1_99) 0.6167 2.4422 2.5550 150x20(1_99) 0.0000 4.4694 7.4879
30x2(1_124) 0.0000 9.7382 29347  150%x20(1_124)  0.0000 9.3124 10.0068
30x3(1_9) 0.7801 24328 0.8346 200x10(1_9) 0.0000 1.0405 7.2231
30%3(1_99) 0.0000 3.7650 4.6557 200x 10(1_99) 0.0000 1.7449 8.3192
30x3(1_124) 0.0000 9.0756 6.4662 200x10(1_124)  0.0000 2.8798 8.5723
30%x4(1_9) 1.4599 5.8679 0.2006 200x15(1_9) 0.0000 6.1653 10.2354
30%x4(1_99) 0.0000 8.1080 2.3859 200x 15(1_99) 0.0000 4.3656 12.4223
30x4(1_124) 0.0000 6.7953 5.0432  200x15(1_124) 0.0000 7.8485 10.8799
50x10(1_9) 0.0000 8.0455 1.9108 200%20(1_9) 0.0790 1.8284 6.5147
50x10(1_99) 0.0000 11.9349 6.5149 200%20(1_99) 0.0000 6.0408 8.6687
50x10(1_124)  0.0000 9.2539 2.6606 200x20(1_124)  0.7999 2.1502 12.5339
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FIGURE 5. Boxplot of four NICAs on metric Dip.

than or equal to that of NICA2 on 47 instances and p
of NICALI is bigger than or equal to that of NICA2 on
52 instances, that is, the hybridization of ICA with EDA
are effective and efficient. As stated in Tables 4 and 5,
NICA performs better than NICA3. NICA produces smaller
DIy than or identical DI with NICA3 on 64 instances and
obtains bigger p than NICA3 on 63 instances. The multi-
elite individuals guidance strategy is really necessary. The
same conclusions also can be drawn by the statistical results
in Table 9 and Fig. 5 and 6, thus, three new strategies of NICA
have positive impacts on its performances.

121232

FIGURE 6. Boxplot of four NICAs on metric p.

D. COMPARATIVE ANALYSIS WITH OTHER ALGORITHMS
To analyze the superiority of NICA in solving UPMSP with
PM and SDST, we compare NICA with MOMSA and MOHS.
The parameters of MOMSA and MOHS are directly adopted
from Lin and Ying [48] and Shahidi-Zadeh et al. [49] expect
the termination condition. Three algorithms have the same
termination condition: max_it = 10°. Each algorithm runs
independently 20 times. Tables 6, 7 and 8 list the results
and computational time of NICA and two comparative algo-
rithms. Fig. 7 and 8 shows the boxplot of the computational
results.

VOLUME 7, 2019



M. Wang, G. Pan: NICA With Multi-Elite Individuals Guidance for Multi-Object UPMSP

IEEE Access

TABLE 7. Computational results of three algorithms on metric p.

Instance NICA MOMSA MOHS Instance NICA MOMSA MOHS

10x2(1_9) 1.0000 0.3333 0.3333 50x15(1_9) 0.0000 0.0000 1.0000
10%x2(1_99) 0.8000 0.4000 0.6000 50x15(1_99) 0.6667 0.0000 0.3333
10x2(1_124) 1.0000 1.0000 1.0000  50x15(1_124) 0.6000 0.0000 0.4000

10x3(1_9) 0.6667 0.0000 1.0000 50%20(1_9) 0.0000 0.0000 1.0000
10x3(1_99) 1.0000 0.2500 0.2500 50%20(1_99) 0.6000 0.0000 0.4000
10x3(1_124) 1.0000 1.0000 1.0000 50%x20(1_124) 0.6000 0.0000 0.4000

12%x2(1_9) 1.0000 0.3750 0.3750 100x10(1_9) 1.0000 0.0000 0.0000
12%x2(1_99) 0.8333 0.3333 1.0000 100x10(1_99) 1.0000 0.0000 0.0000
12x2(1_124) 1.0000 0.6667 1.0000  100x10(1_124) 1.0000 0.0000 0.0000

12x3(1_9) 1.0000 0.0000 1.0000 100x15(1_9) 1.0000 0.0000 0.0000
12%x3(1_99) 0.8000 0.0000 0.8000 100x 15(1_99) 1.0000 0.0000 0.0000
12x3(1_124) 1.0000 0.0000 0.0000 100x15(1_124)  1.0000 0.0000 0.0000

20x2(1_9) 0.2727 0.1818 0.9091 100x20(1_9) 1.0000 0.0000 0.0000
20x2(1_99) 0.8000 0.0000 0.2000 100x20(1_99)  0.5000 0.0000 0.5000
20x2(1_124) 1.0000 0.0000 0.0000 100x20(1_124)  1.0000 0.0000 0.0000

20x3(1_9) 0.4000 0.0000 0.6000 150x10(1_9) 1.0000 0.0000 0.0000
20%3(1_99) 0.8750 0.0000 0.1250 150x10(1_99) 0.7778 0.2222 0.0000
20x3(1_124) 0.5000 0.0000 0.5000 150x10(1_124)  1.0000 0.0000 0.0000

20x4(1_9) 0.6667 0.0000 0.6667 150x15(1_9) 1.0000 0.0000 0.0000
20%x4(1_99) 1.0000 0.0000 0.0000 150 15(1_99) 1.0000 0.0000 0.0000
20x4(1_124) 0.5714 0.0000 04286  150x15(1_124) 0.6667 0.3333 0.0000

30x2(1_9) 0.8571 0.1429 0.0000 150x20(1_9) 1.0000 0.0000 0.0000
30x2(1_99) 0.5714 0.1429 0.2857 150x20(1_99) 1.0000 0.0000 0.0000
30x2(1_124) 1.0000 0.0000 0.0000  150x20(1_124)  1.0000 0.0000 0.0000

30x3(1_9) 0.6250 0.0000 0.3750 200x10(1_9) 1.0000 0.0000 0.0000
30x3(1_99) 1.0000 0.0000 0.0000 200x10(1_99) 1.0000 0.0000 0.0000
30x3(1_124) 1.0000 0.0000 0.0000  200x10(1_124)  1.0000 0.0000 0.0000

30x4(1_9) 0.4000 0.0000 0.7000 200x15(1_9) 1.0000 0.0000 0.0000
30%x4(1_99) 1.0000 0.0000 0.0000 200x 15(1_99) 1.0000 0.0000 0.0000
30x4(1_124) 1.0000 0.0000 0.0000 200x15(1_124)  1.0000 0.0000 0.0000
50%x10(1_9) 1.0000 0.0000 0.0000 200x20(1_9) 0.9167 0.0833 0.0000
50x10(1_99) 1.0000 0.0000 0.0000 200x20(1_99) 1.0000 0.0000 0.0000

50x10(1_124)  1.0000 0.0000 0.0000 200x20(1_124) 0.6667 0.3333 0.0000
TABLE 8. Computational time (seconds) of three algorithms.

Instance NICA MOMSA MOHS Instance NICA MOMSA MOHS
10x2(1_9) 8.39 4.19 12.08 50x15(1_9) 22.81 26.85 25.23
10x2(1_99) 7.57 4.74 10.29 50x15(1_99) 21.03 23.88 31.12
10x2(1_124) 7.74 4.11 12.09 50%x15(1_124) 19.76 28.3 25.97
10%x3(1_9) 8.47 4.84 12.16 50%20(1_9) 25.61 29.35 36
10%x3(1_99) 8.41 6.03 10.90 50x20(1_99) 22.66 23.68 32.51
10x3(1_124) 651 4.63 720 50x20(1_124) 2301 2272 29.71
12%x2(1_9) 8.16 6.14 12.20 100x10(1_9) 28.91 24.72 38.42
12x2(1_99) 7.94 3.63 8.60 100 10(1_99) 28.07 24.04 38.17
12x2(1_124) 6.92 3.40 8.96 100x10(1_124)  28.22 23.98 38.57
12x3(1_9) 8.13 4.70 12.08 100x15(1_9) 35.99 30.4 40.19
12x3(1.99)  7.44 4.49 9.41 100x15(1_99) 3494 2551 37.83
12x3(1_124) 7.45 4.02 10.32 100x15(1_124)  34.36 26.18 39.83
20x2(1_9) 12.65 11.05 20.77 100x20(1_9) 41.18 46.82 40.3
20%2(1_99) 12.11 10.98 18.46 100x20(1_99) 38.45 26.47 39.94

20x2(1_124) 12.47 7.17 16.95 100x20(1_124)  39.11 26.55 38.04

20x3(1_9) 14.05 8.38 20.12 150x10(1_9) 41.14 30.35 45.23
20x3(1_99) 11.93 8.18 20.10 150x10(1_99) 41.45 43.69 46.08

20x3(1_124) 11.81 7.87 19.78 150x10(1_124) 41.23 40.21 44.66

20x4(1_9) 11.70 8.87 20.12 150x15(1_9) 38.92 44.19 44.75

20%x4(1_99) 12.60 8.69 19.38 150x15(1_99) 37.98 47.55 44.49
20x4(1_124) 12.71 14.92 13.38 150x15(1_124)  41.05 42.57 45.88

30%x2(1_9) 12.73 8.21 19.72 150x20(1_9) 43.68 49.95 45.44

30x2(1_.99) 12.30 7.78 15.93 150x20(1_99) 43.70 44.07 44.09
30x2(1_124) 13.23 9.72 15.44 150x20(1_124) 44.15 42.27 45.02

30x3(1_9) 12.83 8.45 20.25 200x10(1_9) 48.08 55.43 57.68

30x3(1.99) 1246 8.15 19.99  200x10(1_99) 4694  53.16 56.12
30%x3(1_124) 13.28 8.98 21.32 200x10(1_124) 47.31 54.53 56.75

30x4(1_9) 13.51 9.14 20.28 200x15(1_9) 57.07 56.7 62.66

30x4(1_99) 12.83 12.37 20.65 200x15(1_99) 58.07 60.59 60.17
30x4(1_124) 12.42 8.86 19.58 200x15(1_124)  60.82 52.03 64

50x10(1_9) 18.64 2342 31.82 200%x20(1_9) 61.10 61.13 62.18
50x10(1_99) 18.44 22.63 32.39 200x20(1_99) 59.34 53.49 61.65
50x10(1_124) 22.81 16.61 31.83 200x20(1_124)  61.55 53.01 63.67

As stated in Tables 6 and 7, MOMSA obtains better DIg
than NICA on only 2 instance and MOMSA is inferior to
NICA on p on 62 instances. With respect to MOHS, NICA
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gets smaller results of DIz than MOHS on 51 instances and
has greater p than MOHS on 51 instances. Moreover, DIg of
NICA is 0 on 40 instances and NICA provides all members
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of the set 2* on 40 instances. We also can find from the
Fig. 7 and 8 that NICA has better performance than other
algorithms. The statistical results in Table 9 are in agreement
with this conclusion. Thus, NICA can get better results than
other two algorithms on most of instances in similar compu-
tation times and has promising advantages in solving UPMSP
with PM and SDST.

TABLE 9. Results of paired sample t-test

t-test p-value (DIR) p-value (p)
t-test (NICA, NICA1) 0.000 0.000
t-test (NICA, NICA2) 0.007 0.001
t-test (NICA, NICA3) 0.000 0.000
t-test (NICA, MOMSA) 0.000 0.000
t-test (NICA, MOHS) 0.000 0.000

Colonies moving toward other imperialists can avoid the
algorithm falling into local optimum. Meanwhile, different
strategies in revolution are beneficial to make good balance
between global search and local search. New added step and
imperialist competition can make full use of good solutions.
Besides, initialization can guarantee that the search of NICA
starts with good initial population. Based on the above anal-
ysis, it can be concluded that NICA can effectively solve the
UPMSP with PM and SDST.

121234

V. CONCLUSION
UPMSP with PM and UPMSP with SDST are often studied;
however, UPMSP with PM and SDST is seldom considered.
In this paper, a new novel algorithm called NICA is proposed
to solve UPMSP with PM, SDST and the minimization of
makespan and total tardiness. Two heuristics are designed to
initialize population. Multi-elite individuals guidance strat-
egy is designed in assimilation that colonies can move toward
other imperialists. EDA is adopted in revolution and imperi-
alist competition for different purposes. A novel step named
empire aggression is introduced by local search of imperialist
for plundering a randomly chosen colony. Extensive experi-
ments are conducted and the computational results show that
NICA provides promising results for the considered UPMSP.
UPMSP with practical processing constraints such as
SDST is an important one and extensively exists in the
actual manufacturing systems. In the near future, we will
continue to focus on this kind of problem and apply some
meta-heuristics such as shuffled frog-leaping algorithm and
teaching-learning-based optimization to solve it. Energy-
efficient distributed scheduling in multiple factories is also
our future topics. We will investigate distributed scheduling
problems in unrelated parallel machines environment.
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