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ABSTRACT In this study unrelated parallel machine scheduling problem (UPMSP) with preventive main-
tenance (PM) and sequence dependent setup times (SDST) is investigated. A novel imperialist competitive
algorithm (NICA)withmulti-elite individuals guidance is proposed tominimizemakespan and total tardiness
simultaneously. Initialization is done by two heuristics, each of which is built based on one objective. Multi-
elite individuals guidance strategy is added in assimilation that colonies can move toward other imperialists,
diversified strategies such as local search and estimation of distribution algorithm (EDA) are adopted based
on solution quality in revolution and EDA is also used in imperialist competition. Empire aggression is
added by local search of imperialist for plundering a randomly chosen colony. A number of experiments
are conducted on the impact of new strategies and the comparisons among NICA and other algorithms.
Computational results demonstrate the effectiveness and advantages of NICA in solving UPSMP with
PM and SDST.

INDEX TERMS Preventive maintenance, setup times, imperialist competitive algorithm, multi-elite
individual guidance, estimation of distribution algorithm.

I. INTRODUCTION
Parallel machine scheduling problem (PMSP) is a typical
problem in the manufacturing process [1]–[5], which needs
to optimize the target by rational allocation and scheduling of
resources. Traditional PMSP often assumes that machines are
continuously available throughout the production process, but
due to the need for preventivemaintenance (PM), themachine
cannot be processed normally during the PM. Therefore,
the assumption is not realistic in many actual production
and manufacturing. Considering that PM on a regular basis
can effectively prevent potential failures and avoid serious
accidents in production, it is necessary to consider PM in
unrelated parallel machine scheduling problems in order to
get a better scheduling scheme.

In the past few years, PMSP with PM has attracted much
attentions. In order to minimize makespan, Li et al. [6] pro-
posed two mathematical programming models and designed
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two heuristics. Yoo and Lee [7] presented a dynamic pro-
gramming approach to minimize makespan, (weighted) sum
of completion times, maximum lateness and sum of lateness,
respectively. For two-parallel-machine scheduling problem
with machine-dependent availabilities, He et al. [8] built a
mixed 0-1 programming model for small size problem and
gave nine heuristics to solve large sized instances of the
problem. Wang and Wei [9] designed a model and analyzed
the complexity for PMSP with deteriorating maintenance to
minimize the total absolute differences in completion times
and the total absolute differences in waiting times.

For UPMSP with PM, Gara-Ali et al. [10] proposed
several performance criteria and different maintenance sys-
tems and gave a new method to solve the problem with
deteriorating and maintenance. In order to minimize total
machine load, Yang et al. [11] applied the group bal-
ance principle to solve UPMSP with aging effects and PM
and proved that the problem remains polynomially solv-
able when the maintenance frequency on every machine is
given. Avalos-Rosales et al. [12] presented a mathematical
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formulation for UPMSP with PM and SDST and designed
an efficient meta-heuristic based on a multi-start strategy
to solve larger instances. Tavana et al. [13] developed a
three-stage maintenance scheduling model for UPMSP with
aging effect and multi-maintenance activities. Wang and
Liu [14] presented a multi-objective integrated optimization
method with non-dominated sorting genetic algorithm-II
(NSGA-II) to solve the multi-objective UPMSP with multi-
resources PM.

In order to simplify themodel, most studies assume that the
setup times between jobs can be neglected or included in the
processing time. But in actual production, setup times cannot
be ignored, especially when the setup times are both sequence
and machine dependent, such as chemical, printing, metal
processing and semiconductor industries [15]. UPMSP with
SDST has attracted some attention since the pioneering work
of Parker et al. [16]. Kurz and Askin [17] presented several
heuristics. Vallada andRuiz [18] designed a genetic algorithm
(GA) includes a fast local search and a local search enhanced
crossover operator. Arnaout et al. [19] introduced an ant
colony optimization (ACO) and tackled a special structure
of the problem. Wang et al. [20] developed a hybrid EDA
with iterated greedy search. Diana et al. [21] proposed an
immune-inspired algorithm to solve this problem. Ezugwu
and Akutsah [22] built an improved firefly algorithm refined
with a local search. Fanjul-Peyro et al. [23] gave new mixed
integer linear programs and a mathematical programming
based algorithm to solve this problem. Caniyilmaz et al. [24]
collected a real-life data from a factory and gave an arti-
ficial bee colony algorithm to solve UPMSP with SDST,
processing set restrictions and due date. For UPMSP with
SDST, machine eligibility restrictions and a common server,
Bektur and Sarac [25] proposed a mixed integer linear pro-
gramming model and designed a tabu search and a simulated
annealing algorithm.

As mentioned above, many works have been finished on
UPMSP with PM and UPMSP with SDST and most of them
are just about the minimization of makespan as single objec-
tive. Few studies are about multi-objective optimization of
the above two kinds of UPMSP; on the other hand, UPMSP
with PM andUPMSPwith SDST have been handled indepen-
dently; however, PM and SDST are seldom simultaneously
integrated into UPMSP [12]. PM and SDST are very common
processing constraints in the real-life production process and
the actual scheduling problem always has some conflicting
objectives, thus, it is necessary to deal with multi-objective
UPMSP with PM and SDST.

It also can be found that heuristics are the main method for
UPMSP with PM, only GA is applied to solve it and meta-
heuristics such as GA, ACO and EDA have applied to deal
with UPMSP with SDST; however, the applications of meta-
heuristics are not investigated fully and some algorithms such
as imperialist competitive algorithm(ICA) are not used to
solve UPMSP with PM or SDST.

ICA is a meta-heuristic based on the sociopolitical
imperialist competition [26], which is an effective global

optimization method with strong neighborhood search capa-
bility and flexible structure and can be combined easily with
other algorithms [27]. In recent years, ICA has been success-
fully applied to solve many optimization problems including
PMSP [28]–[37]. Although ICA has adopted to deal with
PMSP, it is not utilized to handle UPMSP with PM or SDST.
ICA has great potential to solve UPMSP with PM and SDST
because of its notable features and the previous works on
PMSP, so it is meaningful to consider the applications of ICA
to UPMSP with PM and SDST.

In this paper, UPMSPwith PMand SDST is considered and
a novel imperialist competitive algorithm (NICA) with multi-
elite individuals guidance is proposed to minimize total tar-
diness and makespan. In NICA, initialization is done by two
heuristics, each of which is built based on one of two objec-
tives. A new strategy of assimilation is given, where colonies
can learn from other imperialists. Diversified strategies such
as local search and EDA are adopted according to solution
quality in revolution, and empire aggression is added by
local search of imperialist for plundering a randomly chosen
colony. A novel imperialist competition is designed, in which
the weakest colony of the weakest empire is compared with
a new solution generated by EDA and the better one will be
allocated to the winning empire. A number of experiments
are conducted on the impact of new strategies and the com-
parisons among NICA and other algorithms. Computational
results demonstrate the effectiveness and advantages of NICA
in solving UPSMP with PM and SDST.

The remainder of the paper is organized as follows.
Problem under study are described in Sections 2. NICA for
the problem is reported in Section 3. Numerical test experi-
ments on NICA are shown in Section 4 and we summarize
the conclusion and some research topics in the future in the
last section.

II. PROBLEM DESCRIPTION
UPMSP with PM and SDST can be described as follows.
Suppose n independent jobs J1, J2, · · · , Jn can be processed
onm unrelated parallel machinesM1,M2, · · · ,Mm. Each job
is available at time zero. pij is the processing time of job Jj on
machine Mi. dj indicates the due date of Jj.
Jobs can be processed in an interval between two con-

secutive maintenance activities. The interval is called the
processing one and its time length is ui. wi is the period of
each maintenance. Thus, the maintenance periodic recycle of
machineMi is Ti = wi+ui. We use J0 to denote maintenance
activities [12].

The setup time is dependent on sequence and machine.
sijk is the setup time for processing job Jk just after job Jj
on machine Mi, si0k indicates the setup time of machine Mi
to process the first job Jk after a maintenance activity, and
sij0 is the setup time of machineMi to perform a maintenance
activity just after the job Jj.

There are some constraints on jobs and machines:
1) Each job can be processed on only one machine at a

time.
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2) Operations cannot be interrupted.
3)If the processing of a job cannot be completed in a

processing interval, the job can’t be processed in the current
interval and should be moved to the next interval for process-
ing etc.

The goal of UPMSP with PM and SDST is to minimize the
following two objectives simultaneously:

min f1 = Cmax = max
{
Cj |j = 1, 2, · · · , n

}
(1)

min f2 =
∑n

j=1
max

{
Cj − dj, 0

}
(2)

where the first objective f1 is makespan and the second objec-
tive f2 is total tardiness. Cj indicates the completion time of
job Jj.

We give an example with two machines and six jobs.
w1 = 37, w2 = 4, u1 = 70, u2 = 86. Due dates of six jobs
are 4, 89, 46, 35, 98, 45, respectively. pm is the processing
time matrix, S1 is the setup times matrix on machine 1, and
S2 indicates the setup times matrix on machine 2.

pm =
[
1 87 28 32 38 9
4 21 68 17 43 48

]
(3)

S1 =



0 2 2 3 9 7 9
6 0 1 8 1 3 9
1 4 0 7 3 7 8
3 7 3 0 2 3 5
4 3 8 3 0 5 2
8 8 3 7 9 0 5
1 8 8 1 2 2 0


(4)

S2 =



0 3 7 3 7 6 3
2 0 5 1 6 1 7
3 6 0 7 7 6 2
4 7 6 0 9 6 9
3 3 7 3 0 1 7
8 5 8 5 6 0 9
4 7 4 1 7 9 0


(5)

III. NICA FOR UPMSP WITH PM AND SDST
In ICA, the empire easily fall into local optimum if colonies
only move toward its imperialist and it is necessary to make
individuals learn from other imperialists in assimilation.
Revolution is often implemented in a single way and sel-
dom done using the diversified methods, it is important to
make full use of imperialist as good solution. EDA is an
emerging stochastic group evolution algorithm based on sta-
tistical learning principle [38] and has strong global explo-
ration ability. In this study, a new NICA by introducing EDA
into ICA is proposed, which is described in the following
sub-sections.

A. ENCODING AND DECODING
UPMSP with PM and SDST consists of two sub-problems:
machine assignment and scheduling.Two-string representa-
tion is often used in the previous works [39]–[42]; however,
two strings of a solution are often dependent with each other.
In this study, a novel two-string representation is proposed,
in which a solution is composed of two independent strings.

For the problem with n jobs and m machines, each solu-
tion consists of a scheduling string[π1, π2, · · · , πn] and a
machine assignment string

[
Mθ1 ,Mθ2 , · · · ,Mθn

]
. where Mθj

indicates the parallel machine assigned for job Jj, 1 ≤ θj ≤ m,
πi ∈ {1, 2, · · · , n}. The assigned machine and the process-
ing order for each job can be determined according to the
machine assignment string and scheduling string respectively.

Fig. 1 (a), shows the Gantt chart of a possible solution with
a machine assignment string [M1,M2,M1,M1,M2,M2] and
a scheduling string [3, 5, 1, 2, 6, 4]. As shown in Fig.1 (a),
when the processing of job J6 is considered, it can be found
that the processing cannot finish in the first processing inter-
val, so job J6 should be processed in the next interval.

FIGURE 1. Gantt charts of the solution.

B. INITIALIZATION
In this section, initial population is first produced by two
heuristics and a random way, then initial empires are con-
structed. To hybrid EDA with ICA, probability matrices of
EDA are also initialized.

Heuristic is often used to generate initial population.
In general, a heuristic can only produce a solution. In this
study, heuristics 1 and 2 are adopted, each of which produces
N
/
3 initial solutions, where N represents population size.
Heuristic 1 is shown in Algorithm 1. For the example,

a string [3, 5, 1, 2, 6, 4] is first randomly obtained. Start with
J3, we calculate C̄3,1,1 and C̄3,1,2 and obtain C̄min,3 of 31.
J3 is allocated to the first position on M1. Then for J5,
C̄min,5 is decided and equal to 49, and J5 is allocated on M2.
For J1, we find that C̄1,1,1 = C̄1,2,1 = C̄min,1 = 39,
so two positions can be selected and position 1 is chosen,
so J1 is inserted on the left of J3 and the schedul-
ing string becomes [1, 3, 5, 2, 6, 4]. The final scheduling
string is [1, 6, 3, 2, 5, 4] and machine assignment string is
[M1,M2,M1,M2,M2,M1]. Cmax is 114. Fig.1(b) shows the
Gantt chart of the obtained solution.
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Algorithm 1 Heuristic 1
1: Randomly produce a scheduling string [π1, π2, · · · , πn]
2: for π1 to πn do
3: for each position l on each machineMi, i = 1, 2, · · · ,

m do
4: Calculate C̄e,l,i if inserting πj into position l of Mi
5: end for
6: Compute the minimum value C̄min,e of all possible

C̄e,l,i.
7: Decide all machines and positions meeting C̄e,l,i =

C̄min,e.
8: if more than one position has C̄e,l,i = C̄min,e then
9: Randomly choose a machine M∗i and a position l∗.
10: else
11: Directly select the machine M∗i and the position l∗.
12: end if
13: Allocate πj into position l∗ of M∗i .
14: if l∗ is not the last position on M∗i then
15: Adjust the position of πj on scheduling string by

inserting πj into the position of Ju, which is pro-
cessed on position l∗ + 1 of M∗i .

16: end if
17: end for

Heuristic 2 is similar with heuristic 1 and the difference
between them is the computation of index. In heuristic 2, total
tardiness T̄e,l,i of all allocated jobs is first decided and then
the minimum value T̄min,e of all T̄e,l,i is obtained.
Unlike the exiting heuristics, heuristics 1 and 2 can produce

many solutions. In this way, initial population P is generated,
in which 2N

/
3 solutions are produced by two heuristics and

the remained solutions are randomly obtained.
To construct Nimp initial empires, cost ck for solution k is

newly defined by

ck = rankk × D+
D∑
j=1

∣∣∣fk,j − f min
j

∣∣∣
f max
j − f min

j

(6)

where rankk represents the rank value defined by
Deb et al. [43] of the solution k . D is the number of objective
functions. fk,j indicates the objective fj of solution k . f max

j is
the maximum fj of all solutions in P. f min

j is the minimum fj
of all solutions in P.
After cost of each solution is computed, all solutions are

sorted in the ascending order of cost and the first Nimp
solutions are chosen as imperialists and other solutions are
colonies. There are Ncol colonies, Ncol = N − Nimp. Then
the normalized cost c̄k and total number NCk of colonies are
calculated [26]. Finally, NCk colonies are randomly allocated
into empire k .

The optimization of EDA starts with initial probability
matrices.m (n+ 1)×n probability matrices ρi (g) are used to
describe the probability of two adjacent jobs on machineMi,
i = 1, 2, · · · ,m. The probability matrix ρi (g) is described as

follows

ρi (g) =


ρi0,1 (g) · · · ρ

i
0,n (g)

0 · · · ρi1,n (g)
...

...
...

ρin,1 (g) · · · 0

 , i = 1, 2, · · · ,m (7)

where ρij,k (g) represents the probability that job Jk is on the
right of job Jj on machine Mi at the gth generation, ρi0,j (g)
represents the probability that job Jj is first job onmachineMi
at the gth generation.
The initial probability matrices ρi (0) are uniformly pro-

duced in order to ensure the uniform sampling of the solution
space.

ρi (0) =



1
n

1
n
· · ·

1
n

0
1

n− 1
· · ·

1
n− 1

1
n− 1

0 · · ·
1

n− 1
...

...
. . .

...
1

n− 1
1

n−1
· · · 0


, i = 1, 2, · · · ,m

(8)

C. ASSIMILATION
Assimilation is often implemented by moving each colony
toward its imperialist. Global search between colony and
imperialist is frequently used in assimilation. If colonies only
learn from its imperialist, the empire will easily fall into local
optimum. In this study, a new strategy based on multi-elite
individuals guidance is proposed.

Suppose that Hk is the set of all colonies in empire k . The
detailed steps of assimilation for empire k are described in
Algorithm 2.

Algorithm 2 Assimilation
1: for each colony λ ∈ Hk do
2: Generate a random number α in [0,1].
3: if α < 0.5 then
4: Colony λmoves toward its imperialist k . Two global

search operations between λ and its imperialist k are
executed sequentially.

5: else
6: Choose one solutions k∗ from the other imperialists

by tournament selection
7: Colony λ learn from imperialist k∗. Two global

search operations between λ and imperialist k∗ are
executed sequentially.

8: end if
9: end for

Two global search operators are used for two strings.
For the machine assignment string, a random number string
RS = {rs1, rs2, · · · , rsn} with length of n is first generated,
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start with the first element of rs1, and for each element rsi,
if rsi > 0.5, then Mθi of colony λ is replaced with that of
imperialist k .

For the scheduling string, randomly select a segment φ
from the scheduling string of imperialist k , then we decide
the position s of the first job of the segment φ in colony λ,
delete all jobs of φ from the scheduling string of colony λ
and insert the segment φ into position s sequentially.
Unlike the existing assimilation [26]–[34], the above

assimilation make colonies guided by multi-elite individuals,
which can avoid the algorithm falling into local optimum.
Meanwhile, inspired by the above view, a new method is also
proposed by using diversified strategies such as local search
and EDA in revolution.

D. REVOLUTION
Revolution is another way to generate new solutions. In gen-
eral, revolution of colony is implemented by local search like
mutation of GA and all colonies are changed in a single way.
In this study, the diversified methods are adopted based on
solution quality.

The detailed steps of revolution in empire k are as follows.
For each colony λ ∈ Hk , generate a random number β, if
β < pr , then if cλ is less than γ colonies, conduct four neigh-
borhood structures on λ sequentially; else EDA is executed
on λ, a new solution z is obtained, if z dominates colony λ,
then replace colony λ with z. Where cλ is the cost of colony
λ and we set γ = 0.8Ncol based on experiments.

Neighborhood structures N1,N2,N3,N4 are used and
described below. Neighborhood structure N1 generates new
solutions by randomly choosing a machineMi and two jobs Jj
and Jk on Mi, and then exchange them on scheduling string.
N1 is just used to change scheduling string. Neighborhood
structureN2 also acts on scheduling string. Randomly choose
a machine Mi and two jobs Jj and Jk on Mi, and then decide
all jobs between Jj and Jk on Mi and reverse their sequence
on scheduling string. Neighborhood structure N3 is shown
below. Randomly select machines Mi1 and Mi2 , choose a job
Jj onMi1 and a job Jk onMi2 stochastically, swap Jj and Jk on
scheduling string and swap machines of two jobs on machine
assignment string. Neighborhood structure N4 is done in the
following way. As done in N3, machines Mi1 and Mi2 , a job
Jj onMi1 and a job Jk onMi2 are first randomly decided, then
insert Jj on the right of Jk on scheduling string and assign Jj
from Mi1 to Mi2 .

For a scheduling string [3, 5, 1, 2, 6, 4] and a machine
assignment string [M1,M1,M2,M1,M1,M2]. When N1 and
N2 are applied, J5 and J4 are chosen on M1. For N3 and N4,
J5 onM1 and J6 onM2 are selected. Fig.2 gives the examples
of N1,N2,N3,N4.
EDA generates a new solution by sampling the probability

model. 2 is the set of all jobs.
The detailed steps of EDA for new solution are given in

Algorithm 3.
In the above procedure, the chosen good colonies are

improved by local search and the selected poor solutions are

FIGURE 2. Examples for four neighborhood structures.

Algorithm 3 EDA Generate a New Solution
1: Calculate workload of all machines and decide the mini-

mum workload of all machines.
2: if more than one machine has the minimum workload

then
3: Randomly choose a machine Mi.
4: else
5: Directly select the machine Mi with minimum work-

load.
6: end if
7: Determine the last job on machineMi, supposing the job

is Jl . If there is no job, set a virtual job 0.
8: Select Jj by using roulette wheel based on probabilities

on lth or 0th row of ρi (g) and assign Jj to Mi. 2 =
2\

{
Jj
}
.

9: Let the jth column of ρi (g) , i = 1, 2, · · · ,m to be zeros
and normalize each row of the matrix.

10: if 2 is not empty then
11: Go to Step1.
12: else
13: Stop the algorithm.
14: end if

made better by global search of EDA, that is, twomethods are
used according to solution quality and global search ability
and local search ability can be balanced well.

E. EMPIRE AGGRESSION AND IMPERIALIST
COMPETITION
A new step named empire aggression is added into NICA by
local search of imperialist for plundering a randomly chosen
colony.

Empire aggression is as follows. For each imperialist k ,
randomly select one of four neighborhood structures N1,
N2,N3, N4 and acts on the imperialist k , a new solution z is
obtained, then a colony λ is randomly chosen, if z dominates
colony λ, then colony λ is displaced by solution z and this
colony is moved from its empire to empire k .
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After the process of empire aggression, the cost of all
countries is calculated again and imperialist of each empire
is updated if a colony dominates its imperialist.

To implement imperialist competition, total cost TCk is
first defined by

TCk = ck + ξ

∑
i∈Hk ci
NCk

(9)

where ξ is a positive number. We set ξ = 0.1.
Then the normalized total cost NTCk , power TPk and a

probability vector V are first computed by

NTCk = max
l∈Q
{TCl} − TCk (10)

TPk = NTCk/
∑

l∈Q
NTCl (11)

V = TP− R =
[
TP1 − r1,TP2 − r2, · · · ,TPNimp − rNimp

]
(12)

where R =
[
r1, r2, · · · , rimp

]
is a random number vector, ri

follows uniform distribution in [0,1] and Q is the set of all
imperialists.

Finally, a winning empire k with the biggest TPk − rk is
decided, EDA is applied and a new solution z is generated,
if z dominates the weakest colony of the weakest empire, then
the weakest colony is replaced with z and moved from the
weakest empire to empire k; otherwise, the weakest colony is
directly included into empire k .
In the above procedure, EDA is used to try to avoid adding

directly the worst colony into the winning empire because
the weakest colony is a worse solution and difficult to be
improved even if it is included into a strong empire.

F. ALGORITHM DESCRIPTION
NICA is constructed by incorporating EDA into revolution
and imperialist competition, respectively; moreover, there are
different purposes. EDA is adopted in revolution to update
colony and EDA is applied to avoid the direct inclusion of
the weakest colony into the winning empire. Meanwhile,
multi-elite individual guidance strategy is added in assimila-
tion that colonies can move toward other imperialists. These
are the great differences between NICA and other ICAs
[33], [44], [45]. In fact, ICA is seldom hybridized with EDA.
This study gives an effective hybrid method.

The detailed procedure of NICA is shown in Algorithm 4.
The stopping condition ismax_it , which ismaximumnum-

ber of objective function evaluations. Fig. 3 shows the flow
chart of NICA.

With respect to the updating probability matrices, at each
generation, we choose 0.1 × N individuals with small-
est cost from population P as elite solutions according to
Wang and Zheng [18]. Probability matrices are updated by
the usage of of these elite solutions.

ρij,k(g+1) =(1−α) ρ
i
j,k(g)+

α

0.1×N

∑0.1×N

z=1
I zi,j,k (13)

Algorithm 4 NICA
1: Produce an initial population P by heuristics and random

way, let g = 1.
2: Construct initial empires and probability matrices.
3: while The stopping criterion is not met do
4: Execute assimilation and revolution in each empire.
5: Perform empire aggression, calculate cost of all coun-

tries and exchange.
6: Execute imperialist competition and update the prob-

ability matrices, g = g+ 1.
7: end while

where α ∈ (0, 1) is the learning rate, and I zi,j,k is a
0-1 variable. In the zth solution, If job Jk is right after job Jj
on machine Mi, I

z
i,j,k is one; Otherwise I

z
i,j,k is equal to zero.

IV. COMPUTATIONAL EXPERIMENTS
Extensive experiments are conducted on a set of problems
to test the performance of NICA for UPMSP with PM
and SDST. All experiments are implemented by using mat-
lab2015b and run on 16.0G RAM 2.80GHz CPU PC.

A. TEST INSTANCES, METRICS AND COMPARATIVE
ALGORITHMS
Test sets of small, medium and large scale [11,15] can
be selected to evaluate the algorithmic performance. There
exist 66 instances. For small instances, n ∈ {10, 12} and
m ∈ {2, 3}. For medium instances, n ∈ {20, 30} and m ∈
{2, 3, 4}. For large instances, n ∈ {50, 100, 150, 200} and
m ∈ {10, 15, 20}. pij ∈ [1, 99]. There are three types of setup
times, which are chosen from [1, 9], [1, 99] and [1, 124].
The processing time and setup times of small and large
scales are taken from http://www.cima.uadec.mx/instancias/.
The medium scale is generated randomly according to the
literature [12]. wi ∈ [1, 99], the length of processing interval
is decided by

ui = (1+ δ)×max∀j
{
si0j + pij + sij0

}
(14)

Duedate dj of job Jj is computed by

dj = (1+ 2δ)×
∑m

i=1
pij/m (15)

where δ is a random number between 0 and 1.
Two metrics are used. Metric DIR [46] is applied to mea-

sure the convergence performance by computing the distance
of the non-dominated set �l relative to a reference set �∗.

DIR (�l) =
1
|�∗|

∑
y∈�∗

min
{
σxy|x ∈ �l

}
(16)

where σxy is the distance between a solution x and a reference
solution y in the normalized objective space. The reference set
�∗ is composed of the non-dominated set solutions in

⋃
l �l .

The smaller DIR (�l) is, the better the algorithm is.
DIR (�l) = 0 means that algorithm l provides all members
of the set �∗.

121228 VOLUME 7, 2019



M. Wang, G. Pan: NICA With Multi-Elite Individuals Guidance for Multi-Object UPMSP

FIGURE 3. The flow chart of the NICA.

Metric ρ [47] indicates the ratio of number of the elements
in the set {x ∈ �l |x ∈ �∗ } to |�∗|.

As stated above, multi-objective UPMSP with PM and
SDST is seldom investigated and there are no exist-
ing comparative algorithms. In this study, we compare
NICA with multi-objective multi-point simulated anneal-
ing (MOMSA [48]) and multi-objective harmony search
(MOHS) algorithm [49].

MOMSA is proposed for solving multi-objective UPMSP
by simultaneously minimising makespan, total weighted
completion time and total weighted tardiness. The effective-
ness of MOMSA is verified. Meanwhile, MOMSA can be
directly applied to solve multi-objective UPMSP with PM
and SDST by considering setup times and maintenance in
decoding process.

As for MOHS, it presented to minimize the makespan,
tardiness penalties and the purchasing cost of machines
simultaneously. The effectiveness of MOHS is verified by the
comparison with multi-objective particle swarm optimiza-
tion, NSGA-II, and multi-objective ACO. MOHS can also be

TABLE 1. Parameters and their levels.

directly used to solve multi-objective UPMSP with PM and
SDST by adding setup times and maintenance in decoding
process.

B. PARAMETER SETTINGS
NICA has five important parameters: maximum number of
objective function evaluations max_it , population scale N ,
the ratio of number of imperialists to population scale
Nimp/N , revolutionary probability pr and learning rate α.
A three-level design of experiment is designed on an

instance with 20 machines and 200 jobs. Table 1 gives the

VOLUME 7, 2019 121229



M. Wang, G. Pan: NICA With Multi-Elite Individuals Guidance for Multi-Object UPMSP

FIGURE 4. Main effect plot of DIR .

TABLE 2. The orthogonal array L27(35).

settings of each parameter at each level. Orthogonal arrays of
different parameter levels are given in Table 2. For each group
of parameters, NICA runs independently 20 times. DIR is
used to evaluate the results of each parameter combination,
where the reference set�∗ is composed of the non-dominated
solutions from the union set of all sets� of NICA. The results
are shown in Table 2. Table 3 describes the average DIR
of each parameter. The main effect plot of mean is shown
in Fig. 4.

TABLE 3. Computational results.

From Table 3, we can see that N has the greatest influence
on the result of the algorithm. Meanwhile, when max_it
increases from 5 × 104 to 105, the results of NICA improve
a lot. However, when max_it is greater than 105, NICA
improves little. Therefore, in order to balance the per-
formance and time consumption of the algorithm, we set
max_it = 105 . The other parameters are as follows:
N = 100, Nim/N = 0.1, pr = 0.4, α = 0.05.

C. STRATEGY EFFECTIVENESS ANALYSIS
NICA is built by the combination of EDA and ICA, inclu-
sion of empire aggression and the usage of two heuristics in
initialization.

Three variants of NICA are constructed. NICA1 is sim-
ilar with NICA except that initial population is generated
randomly. The difference between NICA and NICA2 lies
in the elimination of EDA from NICA. In NICA3, colonies
only can move toward its imperialist in assimilation. The
parameter settings are as same as NICA. Each algorithm runs
independently 20 times. Tables 4 and 5 show the computa-
tional results of NICA and its three variants and Fig. 5 and 6
describes the boxplot of four NICAs of the computational
results. Table 9 shows the statistic results. We set confidence
level as 95%. When p_value < 0.05, the difference between
algorithms is significant.
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TABLE 4. Computational results of four NICAs on metric DIR .

TABLE 5. Computational results of four NICAs on metric ρ.

It can be found that NICA has smaller DIR than
NICA1 on 49, and is only worse than NICA1 on 6 instances.
As for metric ρ, NICA1 is better than or equal to NICA1 on

63 instances. The inclusion of two heuristics really improves
the performance of NICA. With respect to NICA2, it is
inferior to NICA on two metrics, DIR of NICA2 is worse
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TABLE 6. Computational results of three algorithms on metric DIR .

FIGURE 5. Boxplot of four NICAs on metric DIR .

than or equal to that of NICA2 on 47 instances and ρ

of NICA1 is bigger than or equal to that of NICA2 on
52 instances, that is, the hybridization of ICA with EDA
are effective and efficient. As stated in Tables 4 and 5,
NICA performs better than NICA3. NICA produces smaller
DIR than or identical DIR with NICA3 on 64 instances and
obtains bigger ρ than NICA3 on 63 instances. The multi-
elite individuals guidance strategy is really necessary. The
same conclusions also can be drawn by the statistical results
in Table 9 and Fig. 5 and 6, thus, three new strategies of NICA
have positive impacts on its performances.

FIGURE 6. Boxplot of four NICAs on metric ρ.

D. COMPARATIVE ANALYSIS WITH OTHER ALGORITHMS
To analyze the superiority of NICA in solving UPMSP with
PMand SDST,we compareNICAwithMOMSAandMOHS.
The parameters of MOMSA and MOHS are directly adopted
from Lin and Ying [48] and Shahidi-Zadeh et al. [49] expect
the termination condition. Three algorithms have the same
termination condition: max_it = 105. Each algorithm runs
independently 20 times. Tables 6, 7 and 8 list the results
and computational time of NICA and two comparative algo-
rithms. Fig. 7 and 8 shows the boxplot of the computational
results.
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TABLE 7. Computational results of three algorithms on metric ρ.

TABLE 8. Computational time (seconds) of three algorithms.

As stated in Tables 6 and 7, MOMSA obtains better DIR
than NICA on only 2 instance and MOMSA is inferior to
NICA on ρ on 62 instances. With respect to MOHS, NICA

gets smaller results of DIR than MOHS on 51 instances and
has greater ρ than MOHS on 51 instances. Moreover, DIR of
NICA is 0 on 40 instances and NICA provides all members
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FIGURE 7. Boxplot of three algorithms on metric DIR .

FIGURE 8. Boxplot of three algorithms on metric ρ.

of the set �∗ on 40 instances. We also can find from the
Fig. 7 and 8 that NICA has better performance than other
algorithms. The statistical results in Table 9 are in agreement
with this conclusion. Thus, NICA can get better results than
other two algorithms on most of instances in similar compu-
tation times and has promising advantages in solving UPMSP
with PM and SDST.

TABLE 9. Results of paired sample t-test

Colonies moving toward other imperialists can avoid the
algorithm falling into local optimum. Meanwhile, different
strategies in revolution are beneficial to make good balance
between global search and local search. New added step and
imperialist competition can make full use of good solutions.
Besides, initialization can guarantee that the search of NICA
starts with good initial population. Based on the above anal-
ysis, it can be concluded that NICA can effectively solve the
UPMSP with PM and SDST.

V. CONCLUSION
UPMSP with PM and UPMSP with SDST are often studied;
however, UPMSP with PM and SDST is seldom considered.
In this paper, a new novel algorithm called NICA is proposed
to solve UPMSP with PM, SDST and the minimization of
makespan and total tardiness. Two heuristics are designed to
initialize population. Multi-elite individuals guidance strat-
egy is designed in assimilation that colonies can move toward
other imperialists. EDA is adopted in revolution and imperi-
alist competition for different purposes. A novel step named
empire aggression is introduced by local search of imperialist
for plundering a randomly chosen colony. Extensive experi-
ments are conducted and the computational results show that
NICA provides promising results for the considered UPMSP.

UPMSP with practical processing constraints such as
SDST is an important one and extensively exists in the
actual manufacturing systems. In the near future, we will
continue to focus on this kind of problem and apply some
meta-heuristics such as shuffled frog-leaping algorithm and
teaching-learning-based optimization to solve it. Energy-
efficient distributed scheduling in multiple factories is also
our future topics. We will investigate distributed scheduling
problems in unrelated parallel machines environment.
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