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ABSTRACT Presently, lots of previous studies on biometrics employ convolutional neural networks (CNN)
which requires a large amount of labeled training data. However, biometric data are considered as important
personal information, and it is difficult to obtain large amounts of data due to individual privacy issues.
Training with a small amount of data is a major cause of overfitting and low testing accuracy. To resolve this
problem, previous studies have performed data augmentation that are based on geometric transforms and the
adjustment of image brightness. Nevertheless, the data created by these methods have high correlation with
the original data, and they cannot adequately reflect individual diversities. To resolve this problem, this study
proposes iris image augmentation based on a conditional generative adversarial network (cGAN), as well
as a method for improving recognition performance that uses this augmentation method. In our method,
normalized iris images that are generated through arbitrary changes in the iris and pupil coordinates are
used as input in the cGAN-based model to generate iris images. Due to the limitations of the cGAN model,
data augmentation, which uses the periocular region, was found to fail with regard to the improvement
of performance. Based on this information, only the iris region was used as input for the cGAN model.
The augmentation method proposed in this paper was tested using NICE.II training dataset (selected from
UBIRS.v2), MICHE database, and CASIA-Iris-Distance database. The results showed that the recognition
performance was improved compared to existing studies.

INDEX TERMS Biometric technology, iris recognition, deep learning, data augmentation, conditional
generative adversarial network.

I. INTRODUCTION
Over the last decade, deep learning technology has achieved
excellent performance in a variety of fields in computer
vision, such as image classification and object detection.
Zhang et al. proposed dual model learning combined with
multiple feature selection for accurate visual tracking by
fusing the handcrafted features with the multi-layer fea-
tures extracted from the convolutional neural network (CNN)
[69]. In other research, they proposed the method of spa-
tially attentive visual tracking using multi-model adaptive
response fusion [70]. In many cases, CNN models require a
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considerably large amount of data to be trained effectively.
Training that uses insufficient data shows high classifica-
tion performance with regards to the training dataset, but
overfitting issues do occur, and classification performance
is poor with regard to the testing dataset. To resolve the
overfitting issues, techniques such as dropout [1] and batch
normalization [2] were developed. In addition, researchers
have used methods that create additional data by applying
various geometric transformations to the existing training
data. These methods are very useful. However, applying typi-
cal geometric transform-based data augmentation methods to
small data sets, rather than larger datasets like ImageNet [4],
is not sufficient for resolving these issues, because it pro-
duces very limited diversities in the existing data [3], [5].
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Therefore, there is a need for new methods to resolve the data
scarcity problem.

Biometrics has evolved along with the development of
pattern recognition research. Moreover, studies are being
conducted that apply deep learning technology to biometrics
[6], [7]. However, deep learning technology requires a larger
dataset for training, and the datasets are very small in the
case of data containing individual iris images for biometrics.
Because of this problem, it is difficult to adequately train
deep learning models. To resolve this problem, this study
proposes iris image augmentation based on a conditional
generative adversarial network (cGAN), as well as a method
for improving recognition performance that uses this aug-
mentation method. In our method, normalized iris images
that are generated through arbitrary changes in the iris and
pupil coordinates are used as input in the cGAN-based model
to generate iris images. Due to the limitations of the cGAN
model, data augmentation, which uses the periocular region,
was found to fail with regard to the improvement of perfor-
mance. Based on this information, only the iris region was
used as input for the cGAN model.

This paper is organized as follows. Section II describes
existing iris recognition research studies, and Section III
describes the contributions of this study. Section IV describes
the cGAN-based iris data augmentation that is proposed by
this study and an iris recognitionmethod, which uses this aug-
mentation method. Section V presents experimental results
with analysis, and Section VI presents the conclusions of this
paper.

II. RELATED WORKS
A. DATA AUGMENTATION WITH VARIOUS
BIOMETRIC DATA
Data augmentation is a technique that is necessary for deep
learning technology, because overfitting occurs in training
that is based on supervised learning using an inadequate
dataset. Effective data augmentation methods reduce intra-
class distances and increase inter-class distances to help
improve performance [16]. Typical data augmentation tech-
niques that have been used in existing deep learning studies
include random translations, rotations, flips, the addition of
Gaussian noise, random cropping, horizontal/vertical shift-
ing, and zooming in/out [3], [16]. As explained in Section I,
these geometric transform-based data augmentation methods
lead to very limited diversities on existing data, and therefore
are not adequate for resolving the problem of performance
reductions that occurs due to the data scarcity problem,
which includes overfitting [3], [5]. In order to solve this
problem, studies are currently being conducted on perform-
ing data augmentation by using deep learning technology
to generate images that are similar to the training dataset.
This study was performed using the GAN [8] structure
proposed by Goodfellow et al. Radford et al. proposed archi-
tectural guidelines focused on improving the training stabil-
ity of conventional GAN with the perceptual quality of its

generated images, and they proposed deep convolutional
GAN (DCGAN) [9]. Minaee et al. proposed Finger-GAN,
which reflects total variation (TV) in gradient updates to
generate images with strengthened fingerprint connectivity
in the generator of a model based on DCGAN [15]. Wang
et al. proposed amethod that incorporates structural similarity
(SSIM) loss in order to prevent overfitting in DCGAN-based
models for palmprint data augmentation [16].

B. DATA AUGMENTATION WITH IRIS DATA
1) DATA AUGMENTATION BY NON-DEEP FEATURE-BASED
METHOD
Because the target of our study was iris recognition, this
section focuses on the existing studies concerned with
this topic. Existing iris recognition studies are generally
divided into handcrafted feature-based methods [27]–[30],
[45]–[51], [53], and deep feature-based methods [31]–[35],
[52], [54], depending on the method by which features are
extracted from iris images.

A large amount of labeled training data is needed to
train the CNN models for the deep feature-based methods.
However, the images used on biometrics contain impor-
tant personal information, and therefore it is difficult to
obtain a large amount of data due to personal privacy issues.
Training that uses a small amount of training data is a major
cause of overfitting and low testing accuracy. To resolve this,
previous studies have used methods that perform geometric
transform-based or brightness change-based data augmen-
tation to increase the number of training data. To extract
compact and discriminative features, Zhang et al. proposed
a Maxout CNNs model that uses maxout units, which are
more efficient than rectified linear units (ReLU), generally
used as an activation function. In the training process, they
performed data augmentation with a method that randomly
crops the training dataset. They also proposed a method
that performs matching by calculating the cosine distance
between the recognition images and the enrolled images
using feature vectors obtained by inputting normalized iris
and periocular images in the Maxout CNNs model [36].
Xu et al. proposed a segmentation network for accurate iris
recognition. They also proposed an iris recognition method
that performs data augmentation on the training dataset by
mirroring and adjusting the brightness of the original images
and trains a Siamese network, which is based on ResNet-18
to perform classification [37]. Zanlorensi et al. proposed a
method, which uses in-plane rotation to perform data aug-
mentation on the training dataset and then uses ResNet-50 or
a visual geometry group (VGG) model to perform recog-
nition [38]. Lee et al. proposed a method that adjusts the
center coordinates of the iris and pupil and performs data
augmentation based on imaging translation and cropping.
The method extracts features from three CNN networks and
measures their Euclidean distance, subsequently performing
a score fusion via the weighted product method [6]. Although
it is not the study on iris recognition, Zhang et al. proposed
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TABLE 1. Comparison of existing and proposed methods. (d’, EER, and GAR mean d-prime value, equal error rate, and genuine acceptance rate
(100 - false rejection rate (FRR)), respectively. A detailed explanation about this is included in Sections IV.D and V.D.) (A: Noisy iris challenge
evaluation-part II (NICE.II) training dataset / B: Institute of automation of Chinese academy of sciences (CAISA)-Iris-Ver.1.0 / C: Mobile iris
challenge evaluation (MICHE) II competition database / D: CASIA-Iris-Distance / E: Notre Dame (ND)-Iris-0405 / F: CASIA-Iris-Thousand /
G: CASIA-Iris-Mobile-Ver.1.0 / H: CASIA-Iris-Interval / I: MICHE database / J: Indian Institute of Technology (IIT) Delhi database / K: Subset
of University of Beira iris (UBIRIS).v2 database).

a fully convolutional network (FCN) based on DenseNet for
classifying remote sensing scene. In order to avoid overfitting
of their CNN, they performed data augmentation for training
data by brightness, color, contrast, sharpness, and rotation (of
random angles) transformation [68].

2) DATA AUGMENTATION BY DEEP FEATURE-BASED
METHOD
However, training data, which is created in this way, has a
high correlation with the original data, and therefore it is
unable to produce sufficient diversities on the biometric data.
To resolve this problem, deep learning-based data augmenta-
tion is currently being studied in a variety of fields such as leaf
counting, plant phenotyping, and liver lesion classification
[5], [12], [14]. Minaee et al. proposed Iris-GAN, which uses
a deep convolutional GAN (DCGAN) model to augment
iris images captured in an NIR environment [19]. However,
the DCGAN used in that study generates iris images from
D-dimensional noise vectors. Therefore, there are unrealistic
portions in the generated iris images (especially around the
iris boundary), which are different from actual iris images.
Moreover, that study only used the Frechet Inception Dis-
tance (FID) to measure the similarity between the distribu-
tion of the generated and actual iris images, and it did not
produce experimental results in which the iris recognition

performance was improved by performing actual training
with the generated iris images.

To resolve the problem of these previous studies, this paper
proposes cGAN-based iris image augmentation and a method
of improving recognition performance that uses this augmen-
tation method.

Table 1 below summarizes and compares the pros and
cons of the methods proposed in this and the previous
studies.

III. CONTRIBUTIONS
Our research is novel in the following four ways compared to
previous studies.

- There is no previous research of iris recognition which
uses training data augmented by cGAN, and most of
them augmented the data by geometric transform and
the adjustment of image brightness. Therefore, this is
the first study to improve iris recognition performance
by using cGAN to augment training data and training a
CNN with the augmented data.

- Due to the limitations of the cGAN model, data aug-
mentation, which uses the periocular region, was found
to fail with regard to the improvement of performance.
Based on this information, only the iris region was used
as input for the cGAN model.
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FIGURE 1. Overview of the proposed method.

- This study employs a data augmentation method that
is suitable for iris recognition. Instead of using whole
eye or iris image in Cartesian coordinate, the normal-
ized iris images of polar coordinate that are generated
through arbitrary changes in the iris and pupil coordi-
nates are used as input in the cGAN-based model to
generate iris images.

- In order to make fair comparisons to studies performed
by other researchers, we constructed our trained CNN
models and generated iris images public through [59].

IV. PROPOSED METHOD
A. OVERVIEW OF PROPOSED METHOD
Fig. 1 shows an overall flowchart of the algorithm proposed
in this study. The iris regions are detected in the input train-
ing images to generate normalized iris images (step (B) of
Fig. 1). The normalized iris images are used as input in the
cGAN-based model to train the generators and discrimina-
tors, and data augmentation is performed (step (C) of Fig. 1).
The augmented dataset and the training images are used to
train the CNN model for extracting features (step (D) of
Fig. 1). In the testing process, the iris and periocular regions
are detected in the input testing images, and normalized iris
and periocular images are generated (step (2) of Fig. 1). The
generated normalized iris and periocular images are entered
as input in the three CNNmodels that were trained in step (D)
of Fig. 1, and features are extracted. The dissimilarity (dis-
tance) between these features and the enrolled features is
calculated (step (3) of Fig. 1). A support vector machine
(SVM) is used to perform score level fusion on the three
calculated dissimilarities (distances) of the iris and periocular

regions to find a single score (step (4) of Fig. 1), and this
score is used to perform iris recognition (accept as genuine
matching or reject as imposter matching) (step (5) of Fig. 1).
More detailed information on this method is discussed in each
of the sub-sections below.

B. IMAGE PREPROCESSING
In this study, the following two circular edge detector (CED)
were used to extract the iris region [6], [50].
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where r is the radius of iris region. The coordinates (x0, y0)
denote the center position of the iris region. Fig. 2(b) shows
the result of the detected iris region.

In addition to the iris region detected in Fig. 2(b), this study
also used images that include the periocular region around
the iris region, which extends the iris radius (IRrad) detected
by Equation (1) based on the detected iris center location.
These images were used as input for the CNN to perform
recognition [6]. That is, the areas specified by w1×IRrad and
w2×IRrad, as shown in Figs. 3(b) and (c), were detected and
used as input for the CNN [6]. Then, this study performed
the size normalization process shown in Fig. 4 on the iris and
periocular images obtained from Fig. 3 [6]. In this method,
the iris images of polar coordinates are divided into 8 tracks
and 256 sectors, as shown in Fig. 4(b). In each track, the pixel
values are averaged in the vertical (ρ axis) direction by using
a one-dimensional (1-D) Gaussian kernel. Consequently, the
normalized iris and periocular images of 256 × 8 pixels are
produced.
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FIGURE 2. Examples of iris region detection. (a) Original image,
(b) Detected iris region. The 1st and 2nd row images are the examples
from NICE.II training and CASIA-Iris-Distance databases, respectively.

FIGURE 3. Examples of iris and periocular regions. (a) Iris region.
(b) Periocular region based on w1×IRrad. (c) Periocular region
based on w2×IRrad.

FIGURE 4. Example of the normalized iris image. (a) Iris region in
Cartesian coordinates. (b) Normalized iris image of (a) in polar
coordinates.

C. cGAN-BASED AUGMENTATION OF TRAINING DATA
AND CNN TRAINING
Generally, the images used for biometrics are considered
important personal information, and it is difficult to obtain
a large number of images from various people. The ideal fea-
tures for excellent iris recognition performance should main-
tain invariance between data items in the same classes, and
they should have highly distinctive characteristics between
data items in different classes. To extract these features in a
CNN model, the model must be sufficiently trained with a
large number of iris images that show the individuals’ unique
features.

Previous studies on CNN-based classification increased
the number of data in insufficient training datasets and

prevented overfitting in the training data by performing geo-
metric transform-based data augmentation, including random
translations, rotations, flips, adding Gaussian noise, random
cropping, horizontal/vertical shifting, and zooming in/out
[3], [16]. However, in the case of iris patterns, it is difficult to
use simple geometric augmentation methods, such as mirror-
ing, because the position information of pattern is important.
In addition, the data generated by such methods has a high
correlation with the original data, and therefore it cannot
produce sufficient diversities on the iris data. Furthermore,
a variety of noise such as optical blur, motion blur, off-
angle views, and specular reflections (SR) are included in the
NICE.II training dataset [13] and the MICHE database [26]
that are used in this study. Therefore, it is difficult to obtain
high recognition performance with the testing dataset. This
study considers these problems comprehensively and pro-
poses cGAN-based training data augmentation, as well as a
method for improving the performance of recognition, which
uses the augmented data.

LGANs (G,D) = Ey[logD(y)]+ Ez[log(1− D (G(z))] (2)

GAN is a deep learning architecture for generating images,
and it is composed of the generator and discriminator, which
were proposed by Goodfellow et al. [8]. The generator of
GAN generates fake images ((G(z) in Fig. 5) from the input
noise z. The fake images created by the generator are given
to the discriminator, which attempts to perform a binary clas-
sification to discern whether the images received as input are
genuine images or fake images created by the generator. The
discriminator is trained to maximize the probability where
it correctly discerns the real images and the fake images
created by the generator. At the same time, the generator is
trained to minimize log (1− D (G (z))) in Equation (2) [8].
Through this competitive and repetitive training, the gen-
erator is able to generate fake images that are similar to
real images. However, because it generates images based on
input noise z, it is difficult to control the images created by
the generator, and it experiences difficulties when generating
high-resolution images. Because of this problem, Mirza et al.
proposed cGAN [24], which uses both the input noise z and
the extra information x to generate data as shown in Fig. 6.

FIGURE 5. Structural concept of GAN.

FIGURE 6. Structural concept of conditional GAN.
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FIGURE 7. Generator of pix2pix GAN model.

In other words, cGAN adds extra information to the generator
to control data generation.

LcGAN (G,D)=Ex,y[logD(x, y)]+Ex,z[log(1−D(x,G(x, z))]
(3)

Equation (3) is the objective function of cGAN. The gen-
erator and discriminator of cGAN are conditioned on some
extra information x. x can be any kind of auxiliary infor-
mation, such as class labels or data from other modali-
ties [24]. The pix2pix GAN model proposed in the study
by Cheng et al. [10] was used as the cGAN structure of
the method in this study. The pix2pix GAN model has been
widely used in various studies in the field of image-to-image
translation. U-Net [11] was used as the generator in this
model, and a skip-connection was added between layer i and
layer n-i when the total number of layers in the encoder-
decoder structure was n, to avoid losing low-level infor-
mation that is reduced by progressive down-sampling. This
method is effective in preserving the low-level information
of the input in the output of generator [11]. Furthermore,
when the generator is trained, the L1 distance (Equation (4))
between the ground truth data and the data created by the
generator is reflected in the objective function, as shown in
Equation (5). Thereby, low-level information is strengthened
so that images can be generated that are clearer than con-
ventional cGAN [10]. Moreover, to prevent blurring in the
images created by the generator, the PatchGAN concept was
applied. This is a method that attempt to classify the input
images of discriminator in N× area patches [10].

LL1 (G) = Ex,y,z
[
‖y− G (x, z)‖1

]
(4)

G∗ = argmin
G

max
D

LcGAN + λLL1 (G) (5)

Fig. 7 and Table 2 show the structure of the generator of the
pix2pix GAN model used for augmentation in this study.

The generator of the pix2pix GAN model receives images
of the size 256 × 256 × 3 (height × width × channel) as
input, and the feature maps are calculated with a 5 × 5 fil-
ter in the 1st - 8th convolutional layers of encoder. This
was designed so that a separate pooling layer, such as max
pooling, is not used, and the padding and stride are cal-
culated as 2 × 2 to reduce the size of the feature map.
The feature map, which is reduced to 1 × 1 × 512 by the
8th convolutional layer, is up-sampled through the 1st–8th

transposed convolutional layers of decoder. To avoid losing
low-level information, this process adds a skip-connection
between layer i and layer n-iwhen the total number of lay-
ers in the generator model is n (concatenated explained in
Table 2).

Table 3 shows the structure of the discriminator model,
which is used to discern whether the images created by our
generator are genuine or fake. The input for the discriminator
is a pair of images consisting of an image created by the
generator and an image that uses extra information (fake
image), or a pair of images consisting of a geometric center
image and an image that uses extra information (real image),
as shown in Equation (3). The input image is reduced to a
32× 32× 512 size by the 4 convolutional layers. The reduced
feature map is produced as the final value regarding whether
the image is real or fake via the linear regression and sigmoid
function of fully connected layer.

To augment the iris images with the pix2pix GAN model,
this study performed the task of creating a training dataset
with a method of image translation and cropping by adjusting
the coordinates of the iris and pupil centers. That is, the train-
ing dataset was created by selecting the geometric center
image of each class and then artificially moving the x and
y positions of the center by±4 positions horizontally and±4
positions vertically, based on the iris center and pupil center.
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TABLE 2. Generator model used in our research.
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TABLE 3. Discriminator model used in our research.

Subsequently, the image is cropped to increase the existing
original dataset by a factor of 81 (9 × 9). The generated
training data was entered as extra information in pix2pix
GAN, as shown in Fig. 7. The geometric center image of
each class was provided as a ground truth image to train the
model. In this study, the image with the lowest average of
the CNN feature-based distances to the images in a class was
selected as the geometric center image of the class. If the
training dataset used in training is input to the completely
trained generator of test dataset model, new training images
are obtained, which are created to be close to the ground truth.
This study combined the data that was generated in this way
and the original training data to train the three CNN models
for iris recognition, which are shown in Fig. 8. These three
CNN models for iris recognition were used with reference
to a previous study [6]. As described in Section III, the data

FIGURE 8. Iris recognition using three CNNs.

created by pix2pix GAN and the original 81 times augmented
training data was used only in the training of the 1st CNN
in Fig. 8. In the training of the 2nd and 3rd CNN, only the
original 81 times augmented training data was used. This is
because in the case of the iris region used in the 1st CNN,
the iris data was successfully generated by pix2pix GAN,
such that it was close to the real data. However, in the case
of the periocular region used in the 2nd and 3rd CNN, more
high frequency components such as eyelash, eyelid, or double
eyelid areas were included than in the iris pattern, as shown
in Fig. 3. Due to the characteristics of pix2pix GAN, these
high frequency components were not generated to be close to
the real data.

D. FEATURE EXTRACTION USING THREE CNN MODELS
AND IRIS MATCHING
In this study, three CNN models were used to perform fea-
ture extraction for iris recognition [6], as shown in Fig. 8.
4096-dimensional features were extracted in each 1st fully
connected layer of the three CNNs. Then the Euclidean dis-
tances between the three pairs of 4096-dimensional features
between enrolled and recognized imageswere found to obtain
the 3 distances [6].

Different from previous research using weighted SUM and
weighted PRODUCT rules for score level fusion [6], in this
study, the score level fusion was performed by using an SVM
on the three distances. An SVM is an efficient classification
method, based on the use of support vectors [20]–[22], [60].
This method maximizes the distance (or margin) between
the classes and creates an optimized hyper-plane. In the
case of complex problems, such as non-linear environments
rather than simple classification problems, a kernel function
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is used to transform low dimension space data into higher
dimension space data to make it easier for the hyper-plane
to perform classification. SVM constructs a hyper-plane by
selecting several support vectors, as shown in Equation (6).
In this equation, xi and yi are the selected support vectors
and their corresponding labels (–1 or 1). ai and b are the
parameters of the SVMmodel, andK (·) is the kernel function.
In our experiments, we experimentally selected a radial basis
function (RBF) of Equation (7) as optimal one.

f (x) = sgn(
∑k

i=1
aiyiK (x, xi)+ b) (6)

K
(
xi, xj

)
= e−γ‖xi−xj‖

2
(γ> 0) (7)

If the score (distance) produced by the SVM is greater than
the threshold, the case is considered as imposter matching.
If it is less than the threshold, authentic (genuine) matching
is considered to have occurred. There is generally a trade-
off relationship between the two errors, which occurs in this
situation, i.e., the false acceptance rate (FAR) (the error of
accepting imposter matching as authentic matching) and the
false rejection rate (FRR) (the error of rejecting authentic
matching as imposter matching). The error rate at the thresh-
old where FAR and FRR are the same is known as the EER.

V. EXPERIMENTAL RESULTS
A. EXPERIMENTAL DATASETS
To evaluate the performance of the method proposed in
this study, experiments were performed using three open
databases. The first databasewas theNICE.II training dataset,
which is a part of the UBIRIS.v2 database that was selected
to evaluate iris recognition performance in an unconstrained
environment under very noisy visible light. This dataset was
used to evaluate performance in the NICE.II contest [13].
The NICE.II training dataset includes 1000 eye images
in 171 classes. The image resolution is 400× 300 pixels, and
a high-resolution visible light camera was used with visible
light illumination. The iris images were captured from people
walking at a distance of 4–8 m from the camera [25]. This
images of dataset include many performance-reducing fac-
tors such as in-plane rotation, low-illumination, blurring, and
off-angle views.

The second database, MICHE [26], was created for studies
on iris recognition in a mobile device environment. These
sub-datasets are organized by the type of mobile device used
to capture the image such as Galaxy S4, Galaxy Tab2, and
iPhone5. The images were captured by the front or rear
cameras of smart devices in indoor and outdoor visible light
environments. They include performance-reducing factors,
such as optical and motion blur, off-angle views, and specular
reflections.

To evaluate the applicability of the method proposed in
this study in NIR camera and illuminator environments rather
than just visible light camera environments like the first
and second databases, the CASIA-Iris-Distance database [39]
was used as the third database. This database is divided into

the left and right eyes of 142 people for a total of 284 classes.
In this study, 2068 images of the left and right eyes were
used in the experiments, for a total of 4136 images and
284 classes. This database includes iris images captured by
the self-developed long-range multi-modal biometric image
acquisition and recognition system (LMBS). Detailed speci-
fications and explanations of the physical system with mag-
nification factor and focal length of the camera lens are not
unveiled. In addition, in order to consider the various captur-
ing environments along the long Z-distance (from a distance
of 2.4 m to 3 m), various noise factors such as severe off-
angle, specular reflection on glasses, low illumination, and
hair occlusion were included. Therefore, the accuracy of iris
recognition with CASIA-Iris-Distance is usually lower than
the accuracies obtained with other NIR iris databases [31].
In this study, the number of classes in each database was
divided in half to create A and B sub-datasets, and training
and testing were performed based on a two-fold cross valida-
tion method. Hence, training was performed with one dataset,
and subsequently testing was performed with the other sub-
dataset (1st fold cross validation).
These two sub-datasets were switched, and training and

testing were performed once more (2nd fold cross vali-
dation), upon which the average accuracy was measured.
Table 4 shows the detailed description of 3 open databases,
the training data, and the generated training data by GAN.
Fig. 9 shows example images from the three datasets used in
the experiments.

FIGURE 9. Example images from the datasets used in the experiments.
(a) NICE.II training dataset. (b) MICHE database. (c) CASIA-Iris-Distance
database.

B. TRAINING OF pix2pix GAN MODEL FOR DATA
AUGMENTATION AND THREE CNN MODELS
FOR RECOGNITION
The pix2pix GAN was implemented using the TensorFlow
framework (version 1.12.0) [40]. For training, this study
used an Adam optimizer, which is the method for first-
order gradient-based optimization of stochastic objective
functions by adaptive estimates of lower-order moments [42].
The initial parameters for this optimizer are a learning rate
of 0.002, momentum of 0.5, momentum2 of 0.999, and
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TABLE 4. Detailed descriptions of original and augmented datasets.

epsilon of 1e–08. In the training process, the batch size
was 16, and training was performed for 200 epochs.

Further, the three CNN models in Fig. 8 were imple-
mented using the Caffe framework (version 1) [43], and the
Adam optimizer was used. The initial parameters for this
optimizer are a learning rate of 0.001, momentum of 0.9,
momentum2 of 0.999, and epsilon of 1e–08. The detailed
explanations of these parameters are provided in the study
by Kingma et al. [42]. The convolution filter was initialized
in a method suggested by He et al. [44], and the biases were
initialized to zero. A batch size of 128 was used, and learning
was conducted in 50 epochs. Fig. 10 shows the training loss
and accuracy when the three CNN networks were trained
by the A sub-dataset and the B sub-dataset of the NICE.II
training dataset in Table 4. In the training results, all training
losses converge close to 0, and the training accuracies con-
verge close to 100%. Thereby, it can be assumed that the three
CNN models used in this study were sufficiently trained.

To enable a fair comparison with other existing methods,
this study used the augmented data generated by the proposed
method only in the training process. In the testing process,
the non-augmented original data was used. The experiments
were performed using an Intel R© CoreTM i7-7700 CPU @
3.6 GHz (4 cores) with 32 GB of main memory, and a
NVIDIA GeForce GTX 1080 (2560 compute unified device
architecture (CUDA) cores) [41] with a graphics memory
of 8 GB (NVIDIA, Santa Clara, CA, USA).

C. IMAGE GENERATION BY pix2pix GAN MODEL
Fig. 11 shows examples of normalized iris and periocular
images generated by the pix2pix GANmodel that was used in

this study, as depicted in Fig. 4(b). The generator was trained
to receive the images in Fig. 11(b) as input and generate
the images in Fig. 11(a). Fig. 11(c) shows the ultimately
generated images of the fully trained generator. As shown in
the images of the 1st and 2nd rows of Fig. 11, the generator
refers to the input iris images (Fig. 11(b)) and generates iris
images that have a color and texture that is similar to the input
geometric center image of the iris (Fig. 11(a)), as shown in
Fig. 11(c). However, in the images shown in the 3rd and 4th

rows of Fig. 11, the generated periocular images have rela-
tively lower similarity to the geometric center images than the
cases of the 1st and 2nd rows. That is because in the case of
the periocular region, more high frequency components such
as eyelash, eyelid, or double eyelid areas are included than in
the iris pattern, as shown in Fig. 3. Due to the characteristics
of pix2pix GAN, these high frequency components are not
generated to be close to the real data.

D. TESTING OF IRIS RECOGNITION WITH NICE.II
TRAINING DATASET
In this study, the EER, receiver operating characteristic
(ROC) curve, and decidability value (d-prime value) were
used to evaluate the iris recognition performance. The
d-prime value was used for objective iris recognition perfor-
mance evaluations in the NICE.II contest [13], and it is calcu-
lated by Equation (8). The d-prime value is calculated using
the mean (µA and µI ) and standard deviations (σA and σI ) of
the authentic and imposter matching distributions. In biomet-
rics, false acceptance cases and false rejection cases mainly
occur due to overlap between the authentic and imposter
matching distributions. Therefore, as these two distributions

VOLUME 7, 2019 122143



M. B. Lee et al.: cGAN-Based Data Augmentation for Enhancement of Iris Recognition Accuracy

FIGURE 10. Loss and accuracy curves of CNN training. Training of (a) the 1st CNN of Fig. 8 with A sub-dataset of Table 4,
(b) the 2nd CNN of Fig. 8 with A sub-dataset of Table 4, (c) the 3rd CNN of Fig. 8 with A sub-dataset of Table 4, (d) 1st CNN of Fig. 8 with
B sub-dataset of Table 4, (e) 2nd CNN of Fig. 8 with B sub-dataset of Table 4, (f) 3rd CNN of Fig. 8 with B sub-dataset of Table 4.

become farther apart so that they do not overlap, the FAR,
FRR, and EER generally become smaller. The d-prime value
of Equation (8) becomes larger as the two distributions grow
farther apart, and it becomes smaller as the two distributions
come closer, with a high degree of overlap. Therefore, as the
d-prime value becomes larger, the performance of biometric
system is judged to be better.

d
′

=
|µA − µI |√

σ 2A+σ
2
I

2

(8)

In the first experiment, a recognition performance compar-
ison was made between the case in which training data for
the periocular regions, used as input in the 2nd CNN, was
generated by the pix2pix GAN model used in this study (the
case in Table 4 where A+A’ was used) and the case in which
this did not occur (the case in Table 4 where only A was
used). As shown in Table 5, the recognition error (16.23%)
of periocular region in case of using the augmented data by
cGAN for training is higher than that (10.37%) in case of not
using the augmented data by cGAN. Inclusion of the perioc-
ular region can obtain important elements for distinguishing
people using the skin color, wrinkles and eyelids, however

TABLE 5. Comparison of recognition accuracy when using training data
generated by the pix2pix GAN model vs. not using this data.

this is strongly influenced by illumination. Dark skin can
be captured as light in bright illumination and light skin can
appear dark in the opposite case. Moreover, there are many
elements that influence the expression of accurate colors,
such as thick makeup. The generator of pix2pix GAN could
not determine the pixel values to the extent to accurately
distinguish people.

Based on these results, this study used the data generated
by pix2pix GAN and the original 81× augmented training
data only when training the 1st CNN in Fig. 8. To train the
2nd and 3rd CNNs, only the original 81× augmented training
data was used.

122144 VOLUME 7, 2019



M. B. Lee et al.: cGAN-Based Data Augmentation for Enhancement of Iris Recognition Accuracy

FIGURE 11. Examples of generated images by pix2pix GAN model with
NICE.II training dataset. (a) Geometric center image, (b) input image,
(c) generated output image by pix2pix GAN model. In (a) – (c), the images
of the 1st and 2nd rows are the iris region of Fig. 3 (a), whereas those of
the 3rd and 4th rows show the periocular regions based on w1×IRrad of
Fig. 3, respectively.

In the subsequent experiment, a recognition accuracy
comparison was made between the pix2pix GAN-based
data augmentation proposed in this study and the geometric
transform-based data augmentation used in previous stud-
ies [6], as shown in Table 6. The accuracy of the 1st CNN
using iris region in Figure 8 was evaluated by two-fold
cross validation, and the results showed that the recognition
EER and d-prime value of the proposed method were better.
Moreover, the score level fusion was performed by an SVM
on the three Euclidean distances measured by the 4096-
dimension features extracted from the three CNN models
in Figure 8, and the results were an improvement over
each CNN recognition result, as shown in Table 7. In addi-
tion, we compared the recognition errors by two methods.

TABLE 6. Comparison of recognition accuracies based on the proposed
and previous methods.

TABLE 7. Comparison of recognition accuracies based on the single CNN
and three CNNs.

Method 1 is our method using iris region in polar coordinate
generated by cGAN with the periocular region in polar
coordinate generated by geometric transform. Method 2 uses
whole eye or iris image in Cartesian coordinate generated by
cGAN for training. For fair comparison, same SVM-based
fusion was used in method 2, also. As shown in Table 7,
our method based on polar coordinate shows lower error than
that based on Cartesian coordinate. That is because the whole
eye or iris region includes the various factors of skin, eyelid,
and eyelashes, which hinder the correct generation by cGAN.
However, iris region in polar coordinate does not include
these factors and it is less affected by the arbitrary changes
in the iris and pupil coordinates, which helps the correct
generation by cGAN as shown in Figure 11.

Figure 12 shows the ROC curves of the recognition
accuracy. In Figure 12, the genuine acceptance rate (GAR)
is 100 – FRR (%), and we can confirm that proposed method
outperforms other methods. In Table 8, the recognition accu-
racy of the method proposed in this study is compared to
that of the methods proposed in previous studies. As deduced
from Table 8, the recognition accuracy of the method pro-
posed in this study is better than that of the methods pro-
posed in previous studies due to the training of CNN with
the augmented data by cGAN. In the research [6], they also
performed the training of CNN with the augmented data.
However, the data were augmented by geometric transform,
and these data have a high correlation with the original data.
Therefore, they are unable to produce sufficient diversities.

E. TESTING OF IRIS RECOGNITION WITH MICHE
DATABASE
Next, experiments were performed using the MICHE
database. As described in Section V.A and Table 4, we per-
formed a two-fold cross validation on each sub-dataset of the
MICHE database. Table 9 compares the recognition accuracy
of the pix2pix GAN-based data augmentation proposed in
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FIGURE 12. ROC curves of recognition by proposed and other methods.
(a) 1st fold cross validation. (b) 2nd fold cross validation.

this study and the geometric transform-based data augmen-
tation used in previous studies [6]. The accuracy of the
1st CNN in Fig. 8 was evaluated using the two-fold cross
validation, and the results showed that the recognition EER
and d-prime value of the method proposed in this study were
better. Table 10 and Fig. 13 show the experimental results
for the recognition method, which uses SVM-based score

TABLE 8. Comparison of recognition accuracies by proposed and
previous methods (N.R means, ‘‘not reported’’).

TABLE 9. Comparison of recognition accuracies based on the proposed
and previous methods of data augmentation.

TABLE 10. Recognition accuracies by the proposed method.

level fusion that was proposed in this paper. Subsequently,
in Table 11, the recognition performance of our method
and existing methods are compared. As seen in Table 11,
the recognition performance of the method proposed in this
study was better than that of the existing methods due to the
training of CNN with the augmented data by cGAN. In the
research [6], they also performed the training of CNN with
the augmented data. However, the data were augmented by
geometric transform, and these data have a high correlation
with the original data. Therefore, they are unable to produce
sufficient diversities.

F. TESTING OF IRIS RECOGNITION WITH
CASIA-IRIS-DISTANCE DATABASE
To examine the possibility of applying the proposed method
to a NIR camera and illumination images, the following
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TABLE 11. Comparison of recognition accuracies by proposed and
previous methods (N.R. means ‘‘not reported’’).

TABLE 12. Recognition accuracies by the proposed method.

TABLE 13. Comparison of recognition accuracies by proposed and
previous methods.

experiments were performed using the CASIA-Iris-Distance
database. As described in Section V.A and Table 4, we per-
formed a two-fold cross validation on each sub-dataset of
CASIA-Iris-Distance database. Table 12 and Fig. 14 show the
recognition accuracies by proposed method. Subsequently,
the recognition performance of our method and existing
methods are compared in Table 13. As seen in this table,
the recognition performance of the method proposed in this
study was better than that of the existing methods due to the
training of CNN with the augmented data by cGAN. In the
research [6], they also performed the training of CNN with
the augmented data. However, the data were augmented by
geometric transform, and these data have a high correlation
with the original data. Therefore, they are unable to produce
sufficient diversities.

FIGURE 13. ROC curves of recognition by proposed method. (a) 1st fold
cross validation. (b) 2nd fold cross validation.

FIGURE 14. ROC curves of recognition by proposed method.

G. ANALYSIS OF EXPERIMENTAL RESULTS
Fig. 15 shows examples of genuine recognition successes
using the proposed method. As shown in Figs. 15(a) and (b),
the recognition was successful even though the two irides, for
which recognition was being attempted, had different sizes
and were at an off-angle. In Fig. 15(c), genuine recognition
was successful there were extreme changes in the visible light
illumination brightness. In Fig. 15(d), genuine recognition
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FIGURE 15. Recognition success cases (correct recognition cases of
genuine matching). (a) Example of robustness with regard to change in
iris size (NICE.II training database). (b) Example of robustness with regard
to change in iris size and off-angle view (NICE.II training database).
(c) Example of robustness with regard to severe illumination change
(MICHE database). (d) Example of robustness with regard to severe
reflected light in the iris (MICHE database). (e) Example of robustness
with regard to occlusion by eyelashes and eyelid (CASIA-Iris-Distance
database). (f) Example of robustness with regard to motion blurring
(CASIA-Iris-Distance database).

FIGURE 16. Recognition failure cases. (a) – (f) depicts false acceptance
cases, whereas false rejection cases are shown in (g) – (h). (a) Error case
due to unclear iris pattern, similar color, and wrinkle characteristics
(NICE.II training database). (b) Error case due to noise resulting from an
off-angle and reflected light, including great similarity in the wrinkles and
skin color (NICE.II training database). (c) Error case due to similarity of
the iris shape and periocular skin color (MICHE database). (d) Error case
due to blurry iris and dark illumination (MICHE database). (e) Error case
due to motion blurring and occlusion by eyelashes (CASIA-Iris-Distance
database). (f) Error case due to change in iris size (CASIA-Iris-Distance
database). (g) and (h) Examples of false rejection occurring due to off
angle.
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was successful even in the presence of severe reflected light
in the iris, while the skin color and wrinkles appeared dif-
ferent due to changes in illumination. In Fig. 15(e), genuine
recognition was successful even in the presence of severe
occlusion by eyelashes and eyelid. In Fig. 15(f), the recog-
nition was successful even though motion blurring occurred.
Fig. 16 shows examples of recognition failure (false accep-
tance and rejection cases). Figs. 16(a) and (b) depict irides
in different classes. However, because the irides, skin color,
and wrinkles are very similar, and at an off-angle, they were
recognized as the same person even though they are different
people (false acceptance cases). Figs. 16(c) and (d) are dif-
ferent classes that were improperly recognized as the same
person. This occurred because the shapes of the periocular
areas, including wrinkles, etc. were very similar, while the iris
patterns were not clear. Figs. 16(e) and (f) show the cases of
false acceptance which occurs due to motion blurring, occlu-
sion by eyelashes, or different iris size. The false rejection
cases in Figs. 16(g) and (h) occurred due to off-angle. Overall,
the method proposed in this study has strong advantages with
regards to noise that commonly occurs in an unconstrained
environment, such as changes in iris size, changes in visible
light illumination, and off-angles. However, the method has a
disadvantage, as it becomes highly dependent on the periocu-
lar regionwhen the iris pattern is not clear, and the recognition
rate drops in this case.

FIGURE 17. Jetson TX2 embedded system.

TABLE 14. Average processing time of proposed method (unit: ms).

H. PROCESSING TIME OF PROPOSED METHOD
In Table 14, the average processing time per image was mea-
sured in the desktop environment described in Section 5.2.
As shown in Table 14, the average processing time per
image was 206 ms. The method proposed in this study was
confirmed to perform processing at a rate of 4.85 frames
per second. In the next experiment, the processing time was
measured in the Jetson TX2 embedded system [61], shown
in Fig. 17, which is a system that is already often used in on-
board deep learning processing in self-driving cars. Jetson
TX2 has a NVIDIA PascalTM-family GPU (256 CUDA
cores), which has 8 GB of memory shared between the

FIGURE 18. Examples of feature maps extracted from the last
convolutional layer for the input images. In (a), the left, middle, and right
FIGs depict the feature maps from the 1st, 2nd, and 3rd CNNs of Fig. 8,
respectively, whereas in (b), the upper, middle, and lower FIGs show the
feature maps from the 1st, 2nd, and 3rd CNNs of Fig. 8, respectively.
Feature maps from (a) 8th convolutional layer. (b) 3-dimensional feature
map image obtained by averaging all feature map values of (a).
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central processing unit (CPU) and GPU, and 59.7 GB/s of
memory bandwidth; it uses less than 7.5 watts of power.
As shown in Table 14, the average processing time per image
was 958 ms. Therefore, it was confirmed that the method
proposed in this study can process at a rate of 1.04 frames
per second. Compared to the desktop computer, the Jetson
TX2 embedded system had a longer processing time due
to its highly limited computing resources. Nevertheless, the
method proposed in this studywas confirmed to function even
in embedded systems with limited computing resources.

I. ANALYSIS OF FEATURE MAP
Generally, the size of the feature map (width and height)
becomes smaller as the depth of the convolutional layer
increases, whereas the number of feature map channels
increases. The closer the layer is to an input with a large image
size, whereas the smaller the number of filters, and the farther
the layer is from the input, the larger the number of filters.
This sub-section analyzes the feature maps obtained from the
three CNN models shown in Fig. 8, which were used in this
study, as shown in Fig. 18.

Fig. 18(a) shows the feature maps of the 8th convolutional
layer. As mentioned above, Fig. 18(b) shows a 3-dimensional
feature map image obtained by finding the average of the
feature map values of all channels in Fig. 18(a). As observed
from the magnitudes of the feature map values in Fig. 18(b),
the regions showing higher magnitudes of the feature map are
different according to the 1st, 2nd, and 3rd CNNs of Fig. 8.
Based on this observation, we can confirm that both iris and
periocular regions provide useful features for recognition.

VI. CONCLUSION
This study has proposed a new iris recognitionmethod, where
CNN networks are trained with training data generated by
the pix2pix GAN model, and recognition is performed. The
iris and pupil coordinates were adjusted to normalize the iris
images, and these images are entered as a training dataset in
the pix2pix GAN, which has a cGAN structure in order to
perform the training. The training dataset was input again as
a testing dataset in the fully trained generator of the pix2pix
GAN, and data augmentation was performed. The augmented
dataset created by the generator and the augmented data
generated by a geometric transform-based method were com-
bined to train the CNN network, which uses the iris region as
input. The two CNN networks that use the periocular region
as input were trained using the augmented data generated
by the existing geometric transform-based method. An SVM
was used to perform score level fusion on the 3 distances,
which are based on the three pairs of features obtained by
each CNN, and authentic and imposter matching were per-
formed. The NICE.II training dataset, MICHE database, and
CASIA-Iris-Distance database were used, and performance
was measured by a two-fold cross validation method. In the
results, the method proposed in this study showed higher per-
formance than the methods of previous studies. In addition,
the processing speed of the proposed algorithmwasmeasured

on a desktop computer and a NVIDIA Jetson TX2 embedded
system, and the results confirmed the ability to process at high
speeds.

In future work, we plan to study methods for reducing
errors related to imposter matching, which occur in environ-
ments where the iris pattern is not clear and dependence on
the periocular region is high. In addition, we plan to study
methods that can reduce various noise in the input images and
improve recognition performance through a wider variety of
GAN-based methods.
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