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ABSTRACT Preoperative prediction of infection stones from CT images could provide additional informa-
tion for treatment planning. We developed a radiomics algorithm that could apply data from non-contrast-
enhanced CT images to distinguish infection stones from non-infection stones. This retrospective study
included 98 patients with clinically confirmed infection kidney stones and 59 patients with non-infection
kidney stones. Fifty-four radiomics features extracted from CT images were reduced to 27 key features by the
LASSO algorithm, for which a radiomics signature was built with ensemble learning based on bagged trees.
Multivariable logistic regression analysis was then used to develop a radiomics nomogram incorporating the
radiomics signature and independent clinical factors. The radiomics signature, which consisted of morpho-
logical features and textural features, was significantly associated with infection kidney stones. Ensemble
learning based on bagged trees could differentiate infection kidney stones from non-infection kidney stones
with 90.7% accuracy, 85.81% sensitivity, 93.96% specificity, a 91% positive predictive value and a 91%
negative predictive value. Predictors incorporated into the individualized prediction nomogram included the
radiomics signature, white blood cell count and urine culture. Decision curve analysis demonstrated that the

radiomics nomogram had potential clinical application for infection stone prediction.

INDEX TERMS Kidney stones, CT, multivariate analysis, nomograms, radiomics.

I. INTRODUCTION

Urolithiasis is a common, painful urological disease respon-
sible for substantial health problems. In addition to painful
recurrence, urolithiasis is also a risk factor for bone frac-
tures [1], cardiovascular disease [2]—[4], and chronic kidney
disease [5], [6]. Increasing evidence suggests that the inci-
dence and prevalence of kidney stones are steadily increasing
worldwide [7], [8], especially among adolescents [9], [10]
and women [11]-[15].

Stones can be classified into infection, non-infection,
genetic defects and drug stones by aetiology [16]. Infection
stones are complex aggregates of crystals amalgamated in
an organic matrix that are strictly associated with urinary
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tract infections. Therefore, preoperative prediction of infec-
tion stones could provide additional information for clinical
management [17]. In clinical practice, the urine pH, urinary
crystals, prior stone history, the presence of urea-splitting
organisms and plain radiography are factors currently used
to determine stone types. However, thus far, stone composi-
tion has only been accurately determined by in vitro meth-
ods after surgery, such as infrared spectroscopy or chemical
analysis [18].

At present, abdominal computed tomography CT has
become the reference imaging standard for urolithiasis [19].
Many in vivo metrics such as Hounsfield unit HU (Hounsfield
unit) values [20], absolute HU [21], mean HU [22] and
3D HU [23] have been investigated to predict stone com-
position from CT images. Moreover, dual-energy CT also
demonstrated high sensitivity to predict uric acid stones [24].
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FIGURE 1. Flow chart of the experiment.

However, most methods were only based on the cut-off den-
sity of CT images, which are not sufficiently accurate for
specific cases with ambiguous values [25].

As the attenuation value of X-rays is different for differ-
ent substances, a radiomics [26] approach can provide more
detailed features of stones [27]. Recently, Mannil ef al. [28]
demonstrated that three-dimensional texture analysis with
machine learning can provide incremental predictive infor-
mation for successful shock wave lithotripsy in patients with
kidney stones. With this knowledge, we sought to create a
multivariate statistical model based on radiomics features
(morphological features and textural features) to quantita-
tively distinguish between infection stones and non-infection
stones. Furthermore, a radiomics nomogram [29] incorporat-
ing radiomics signatures and clinical factors was developed
to conveniently and non-invasively facilitate individualized
preoperative prediction of infection stones.

Il. MATERIALS AND METHODS

A. PATIENTS

This study was approved by the Ethics Committee of the First
Hospital of China Medical University. A total of 157 clinical
patients were included in this retrospective study, includ-
ing 98 patients diagnosed with infection kidney stones and
59 patients diagnosed with non-infection kidney stones.
We retrospectively identified patients in our stone registry
treated for pure infection (including magnesium ammonium
phosphate or carbonate apatite) or non-infection (including
calcium oxalate, calcium phosphate or uric acid) stones from
April 2016 to May 2018 who had at least 1 non-contrast-
enhanced CT image prior to stone analysis. The stone
composition was analysed by Fourier transform infrared
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spectrometry immediately after acquisition, and a stone was
considered pure if it was composed of 70% or more of a
single compound. Stones were retrieved after PNL (percu-
taneous nephrolithotomy), URS (ureteroscopy), extracorpo-
real shockwave lithotripsy SWL (extracorporeal shockwave
lithotripsy) or by the patient after spontaneous passage, and
the composition was determined. If multiple unilateral or
bilateral stones were present, and the retrieved fragment could
not be clearly distinguished by the operative report or preop-
erative imaging, the patient was excluded from analysis.

B. ANALYSIS WORKFLOW

As shown in Figure 1, the prediction workflow includes
data preprocessing, region of interest (ROI) segmentation,
radiomics feature extraction, normalization and feature selec-
tion, prediction model generation, prediction performance
evaluation and establishment of the nomogram.

C. STATISTICAL ANALYSIS

Statistical analysis was performed with R software (version
3.3.4; http://www. Rproject.org). Measurement data (e.g.,
age) are expressed as the mean £ SD and were compared
using two-tailed Student’s t-tests. Count data are expressed as
percentages (%), and differences were evaluated for statistical
significance with the chi-square test (P < 0.05).

D. CT DATA ACQUISITION AND PREPROCESSING

Over the inclusion period, non-contrast-enhanced abdominal
CT images were acquired on three different CT scanners:
a Philips Brilliance CT, a Toshiba Aquillion 64 and a GE
Optima CT680. The preprocessing of CT images including
total number of stones, location of stones and ROI labelling
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was implemented by a senior radiologist (with 10 years
of experience). All imaging tomography including kidney
stones was marked with ROIs, which were slightly larger than
the peripheries of stones, providing a scientific standard for
subsequent image segmentation. To unify the experimental
standards and according to the actual situation of kidney
stones, we used the most central 5 layers for the subsequent
radiomics feature extraction of all images containing stones.

E. RADIOMICS SIGNATURE BUILDING AND PREDICTIVE
MODEL DEVELOPMENT

In this study, all image processing methods were imple-
mented using an in-house MATLAB script (version 2017a;
MathWorks, Natick, MA). Greyscale normalization of the
images was performed using the “1-99%” method to dis-
tribute the greyscale values of pixels between 0 and 255 to
avoid insufficient image contrast (unbalanced image pixel
brightness distribution). Image scaling refers to the process
of adjusting the sizes of images. Due to the inconsistent size
of the CT images used in the study, processing the images
later in the analysis was problematic. Therefore, the image
matrices were adjusted to a size of 512 x 512 pixels. Subse-
quently, a region-based image segmentation technique [30],
the Otsu algorithm, was used to extract the stone ROIs. The
segmentation results were then re-checked by the radiologist.

Morphological and textural features were extracted
from ROIs of stones. Morphological features included 16
descriptors of the tumour region, including area, perimeter,
roundness, centroid, and so on. Textural features are visual
characteristics that reflect the homogeneity phenomenon of
images and the arrangement of properties that change slowly
or periodically on the body surface. These features are repre-
sented by the greyscale distribution of the neighbourhood of
the pixel and its surrounding space. In the paper, textural fea-
tures included mainly six types: the grey-level co-occurrence
matrix (GLCM), the grey-level run-length matrix (GLRLM),
the grey-level-gradient co-occurrence matrix (GLGCM),
the neighbouring grey-level dependence matrix (NGLDM),
greyscale histogram features, and Tamura features. Overall,
16 morphological features and 38 textural features per ROI
were computed.

The least absolute shrinkage and selection operator
(LASSO) [31] method was used to select the most useful
predictive features from the primary dataset. The basic aim
of the LASSO method is to minimize the residual square sum
under the constraint that the sum of the absolute values of the
regression coefficients is smaller than a constant so that some
regression coefficients that are strictly equal to zero can be
generated. The “glmnet” package (MATLAB version) was
used to implement the LASSO logistic regression analysis.

Ensemble learning based on bagged trees and boosted trees
was used to distinguish infection stones from non-infection
stones. The bagging (bootstrap aggregating) algorithm adopts
randomly selected training data to construct a classifier.
By performing random sampling N times, N sample sets are
obtained. N weak learners are learned independently, and
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FIGURE 2. Segmentation results. (a) - (d) original images;

(e) - (h) segmentation results from the threshold segmentation algorithm;
(i) - (I) approximate outlines of the segmentation results (red);

(m) - (p) enlarged views of the segmentation results (red).

then strong learners are obtained by combining strategies.
The boosting algorithm first trains a base learner from the
initial training set, then adjusts the training sample distribu-
tion according to the performance of the base learner (giving
more weight to the wrong samples), and then trains the next
learner based on the adjusted distribution of samples, which
is repeated until the specified value is reached.

To reduce the overfitting, to a certain extent, and to obtain
as much valid information as possible from limited data, a
10-fold cross-validation was used to determine the robust-
ness of the classifiers for variation in the training data. The
accuracy, area under the curve AUC (area under the curve),
sensitivity, specificity, PPV (positive predictive value) and
NPV (negative predictive value) were calculated as metrics
to assess the quantitative discrimination performance of the
model.

F. ESTABLISHMENT OF THE NOMOGRAM
To provide clinicians with a quantitative tool for the pre-
operative prediction of infection stones, multivariable logis-
tic regression analysis was used to develop a radiomics
nomogram [31] incorporating the radiomics signature and
independent clinical factors. The selection criterion of clin-
ical factors was the chi-square test (P < 0.05).

Decision curve analysis was conducted to determine the
clinical usefulness of the nomogram by quantifying the net
benefits at different threshold probabilities.

Ill. RESULTS

A. CLINICAL CHARACTERISTICS

The clinical characteristics of the patients are summa-
rized in Table 1. The results showed that sex, white blood
cell (WBC) count and urine culture (UC) were significantly
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TABLE 1. Clinical characteristics of the patients.

Infection

Non-infect 2

Characteristic (n=98) ion (n=59) X P
Age, mean+SD, years 53.25+1.67  51.20+5.77 1.092 0.277
Sex, No. (%)
Male 44(44.9) 43(72.9) 10.96 <0.001%**
Female 54(55.1) 16(27.1)
WBC count
<20 29(29.6) 33(55.9) 9.620 <0.01**
220 69(70.4) 26(44.1)
ucC
Positive 43(43.9) 12(20.3) 8.364 <0.01**
Negative 55(56.1) 47(79.7)
CRP level
<5 65(66.3) 42(72.4) 0.3760 0.540
=5 33(33.7) 16(27.6)
PH
Positive 16(16.3) 7(11.9) 0.284 0.594
Negative 82(83.7) 52(88.1)

NOTE. P-values are derived from the univariate association analyses between each clinical characteristic of the patients and infection stones.
* P-value < 0.05; ** P-value < 0.01; *** P-value < 0.001.
Abbreviations: WBC: white blood cell; UC: preoperative urine culture; PH: preoperative haemogram; CRP: C-reactive protein.
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FIGURE 3. LASSO logistic regression for feature selection. (a) Selection of the parameter (1) in the
LASSO model by 10-fold cross-validation based on minimum criteria. The y-axis indicates binomial
deviances. The lower x-axis indicates the log(1). Red dots indicate the average deviance values for
each model with a given 1, and vertical bars through the red dots show the upper and lower values
of the deviances. The vertical black lines define the optimal values of A, for which the model
provides the best fit of the data. A A value of 0.00077 was chosen. (b) LASSO coefficient profiles of
the features. The dotted vertical line was plotted at the value selected using 10-fold
cross-validation, where an optimal 1 resulted in 27 non-zero coefficients.

associated with infection kidney stones (P < 0.05). No signif-
icant differences were found in other clinical characteristics.

B. IMAGE SEGMENTATION AND RADIOMICS
SIGNATURE BUILDING
Kidney stones may be present in the left kidney, right kidney,
or both kidneys. Therefore, for each patient, we examined
ROIs in both kidneys. The segmentation results are shown
in Figure 2. All of the segmentation results were reviewed
by the doctor, all met the standard and could be accurately
divided.

A total of 54 candidate radiomics features were extracted
from ROIs of stones. The 54 features were divided into
two types: morphological features and textural features.
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To reduce complexity, 54 features (16 morphological features
and 38 textural features) were reduced to 27 features (16 mor-
phological features and 11 textural features) for potential
predictors from 157 patients, and these features had non-
zero coefficients in the LASSO logistic regression model. The
feature selection process is shown in Figure 3.

C. VALIDATION OF THE PREDICTIVE MODEL

According to the 27 features selected by the LASSO analysis,
the results of ensemble learning based on bagged trees and
boosted trees are shown in Table 2. Considering the results
comprehensively, the accuracy, sensitivity, and specificity of
ensemble learning based on bagged trees for distinguishing
infection stones were significantly better than those based
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FIGURE 5. Confusion matrix for prediction results of infectious calculi based on integrated

learning of bagged tree.

TABLE 2. Predictive value of ensemble learning based on bagged trees
and boosted trees.

27 features extracted by LASSO

Ensemble
Learning Accuracy  Sensitivity  Specificity AUC
Bagged trees 0.907 0.858 0.940 0.97
Boosted 0.751 0.436 0.964 0.83
trees

on bagged trees alone. Ensemble learning based on bagged
trees performed well, with an accuracy of 90.7% and a sen-
sitivity and specificity of 85.8% and 94.0%, respectively.
The receiver operating characteristic (ROC) curve for the
use of the proposed model to distinguish infection stones
from non-infection stones is shown in Figure 4. Overall,
ensemble learning based on bagged trees had a high pre-
dictive value for distinguishing infection stones from other
stones.
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Figure 5 shows the confusion matrix of the model. Green
indicates that kidney stones could be correctly identified,
while light orange indicates incorrect recognition of kidney
stones. In Figure 5 (bagged trees model), the percentage of
correct identification of infection stones was 86%, which
indicates that the missed diagnosis rate was 14%, and the
specificity for identifying other components of kidney stones
was 94%, which indicates that the misdiagnosis rate was
6%. In Figure 5 (boosted trees model), the percentage of
correct identification of infection stones was 44%. The result
of this model was obviously not particularly ideal, not as
good as that of the previous model. However, the specificity
for identifying other components of kidney stones was 96%.
Therefore, on the whole, the model was not perfect.

D. ESTABLISHMENT OF THE NOMOGRAM
A radiomics nomogram (Figure 6) was built using signifi-
cant clinical characteristics (WBC and UC) and radiomics
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FIGURE 6. Nomogram for predicting the presence of infection kidney
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FIGURE 7. Decision curve analysis for the nomogram.

features with non-zero coefficients in the LASSO logistic
regression. The nomogram set the scoring criteria accord-
ing to the size of the regression coefficients of the clinical
characteristics and radiomics features, and each indepen-
dent variable was assigned a score. A total score could be
calculated for each patient, and then the transfer function
between the score and the probability of having infection
kidney stones could be used to calculate the probability of
infection kidney stones in each patient. The length of each
factor was positively correlated with the presence of infection
stones. Therefore, a significant relationship existed between
infection stone components and the radiomics features of
stones.

Figure 7 shows the decision curve analysis for the nomo-
gram. The decision curve shows if the patient’s or physician’s
threshold probability is greater than 18%, using the nomo-
gram to predict the presence of infection and non-infection
stones yields greater benefit than the “all infection” or ““all
non-infection” strategies. The threshold probability is where
the expected benefit of treatment is equal to the expected
benefit of avoiding treatment.
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IV. DISCUSSION

With the advancement of minimally invasive surgical tech-
niques, the performance of traditional open surgical methods
for the treatment of urolithiasis has gradually decreased and
been replaced by various types of minimally invasive sur-
gical methods. SWL, URS and PNL are suitable treatment
modalities for renal and ureteral calculi [25]. Determination
of stone types can guide the clinical selection of appropriate
treatment methods and provide a basis for cause analysis and
the development of a reasonable surgical plan [19].

Infection stones, which are composed of magnesium
ammonium phosphate, carbonate apatite or ammonium urate,
are easily broken by SWL but can also cause systemic bac-
terial infection after lithotripsy. As many infection stones as
possible should be removed during surgery to avoid residual
stones. However, during the process of lithotripsy, various
pathogenic bacteria are released, leading to the occurrence
of infection. Effective antimicrobial therapy is an appropriate
intervention for urinary tract infections and stone recurrence
[32], [33]. This treatment not only prevents postoperative
infections but also promotes the repair of renal tubular epithe-
lial cells and reduces cellular debris and bacteria that form
crystalline cores. Furthermore, the recurrence risk is higher in
patients with residual fragments after treatment of infection
stones than in those with other stones.

Non-infection stones, which are composed of calcium
oxalate, calcium phosphate or uric acid, can be treated by con-
servative observational management if the stones are smaller
than 6 mm and asymptomatic. Oral chemolysis is a treatment
option for uric acid stones [17]. For acute disease, PNL
and URS are more effective surgery options because non-
infection stones are particularly hard.

In the present study, we employed a quantitative radiomics
approach to preoperatively predict infection and non-
infection stones. Our cohort included more infection stone
patients (n = 98, 62.42%) than non-infection stone patients
(n = 59, 37.58%), which supports the significance of this
research. Fifty-four radiomics features (16 morphological
features and 38 textural features) extracted from CT images
were reduced to 27 key features (16 morphological fea-
tures and 11 textural features) by the LASSO algorithm.
Similar to the previous report [28], it was shown that
the textural features were associated with stone composi-
tions. In addition, compared with other methods of feature
dimensionality reduction (such as PCA), LASSO regres-
sion can screen out the original features that have the most
distinguishing value after feature dimensionality reduction
— in other words, the features that still have physical sig-
nificance. We also found that after LASSO regression, all
of the morphological features were reserved, which indi-
cated that the physical appearance of the stones can also be
used to distinguish the infection stones from non-infection
stones. One possible reason was that the lithogenesis of
infection stones was heavily dependent on the interactions
of bacteria with the various urinary components. Thus,
the formation and physical characteristics of infection stones
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differ substantially from those formed in the absence of
bacteria [17].

Moreover, unlike previous studies [27], we used two
ensemble learning methods to distinguish the stone types.
This approach may improve the robustness of classifica-
tion results. Our study showed that ensemble learning based
on bagged trees can differentiate infection stones and non-
infection stones with 90.7% accuracy, 85.81% sensitivity,
93.96% specificity, a 91% PPV and a 91% NPV.

Additionally, in an infected state, some pathogenic
microorganisms can decompose urea in urine to form ammo-
nia, which increases the pH of the urine [5]-[7]. Thus,
the WBC count and UC, which were significantly associated
with infection kidney stones, were used together to develop a
radiomics signature based on a nomogram for individualized
preoperative prediction of infection stones. The radiomics
signature successfully stratified patients according to their
risk of infection stones. Incorporating the radiomics signa-
ture and clinical risk factors into an easy-to-use nomogram
facilitates individualized preoperative prediction of infection
stones [31].

This study has certain limitations. First, only infection and
non-infection stone patients were included in the analysis;
stones due to genetic causes and drug use were excluded from
analysis because of the small number of patients. Second, all
subjects were patients from the First Hospital of China Medi-
cal University. The use of a multicentre dataset with different
parameters may cause the model to behave differently. Large
datasets from multiple centres should be studied to verify the
robustness of our proposed radiomics model. Prediction of
infection stones based on radiomics features requires further
study.

In conclusion, we built a quantitative nomogram for preop-
erative prediction of infection stones. The model was easy to
use for both clinicians and patients and may allow clinicians
to preoperatively predict stone types more precisely, indicat-
ing that analysis of medical data using a radiomics method
could be beneficial for clinicians.
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