
Received July 31, 2019, accepted August 19, 2019, date of publication August 27, 2019, date of current version September 23, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2937852

Analysis of Smartphone I/O Characteristics
— Toward Efficient Swap in a Smartphone
JISUN KIM AND HYOKYUNG BAHN , (Member, IEEE)
Department of Computer Engineering, Ewha University, Seoul 120-750, South Korea

Corresponding author: Hyokyung Bahn (bahn@ewha.ac.kr)

This work was supported in part by the ICT Research and Development Program of MSIP/IITP under Grant 2018-0-00549 (extremely
scalable order preserving OS for many core and non-volatile memory) and under Grant 2019-0-00074 (developing system software
technologies for emerging new memory that adaptively learn workload characteristics).

ABSTRACT Due to the recent advances in mobile platform technologies, people are increasingly working
with their smartphones. For example, digital healthcare, automotive navigation, and stock trading are
also performed by a smartphone as well as phone calls. However, there are some technical hurdles for
executing reliable software in a smartphone. Specifically, current smartphones kill applications without
using swap when free memory space is exhausted. Although supporting swap in a smartphone is not
impossible, our observation shows that swap in Android increases storage accesses significantly, leading to
thrashing conditions. To resolve this, we further analyze Android swap I/O traces and make two prominent
observations. The first is the existence of hot 15% data, which account for 80% of total swap I/O, and
the second is the existence of cold 50% data that are never used again after entering the swap area. Based on
these observations, we present a new architecture that adopts non-volatile memory at the Android swap layer.
Specifically, as Android swap has bimodal data access characteristics, we identify and manage hot and cold
data efficiently by making use of precise admission control and replacement algorithms. This is possible as
our swap architecture can access the full information of request time and frequency, which is different from
the main memory layer with restricted information. Experimental results show that our architecture supports
Android swap without performance degradations.

INDEX TERMS Android, mobile platform, smartphone, non-volatile memory, swap.

I. INTRODUCTION
Due to the rapid proliferation of smartphone applications
as well as the advances in mobile platform technologies,
smartphone has now become one of the mainstream com-
puting devices [1]. People are increasingly working with
their smartphones or tablets, and a variety of new appli-
cations, including social network services, online multi-
media games, and location-based services, emerge every
day [2]–[4]. Actually, modern smartphone’s hardware spec
has already reached to that of a general purpose comput-
ing device like a desktop or a laptop [5]. For example,
Google Nexus 6P, a reference phone of Android, consists of
Qualcomm R©SnapdragonTM 810, 2.0 GHz quad-core 64bit,
Adreno 430, DDR4 3GB, and eMMC 128GB, which is suf-
ficient to perform multitasking [6].

A smartphone is no longer a personal entertainment
device but official works such as video editing, spreadsheet,

The associate editor coordinating the review of this article and approving
it for publication was Yungang Zhu.

e-banking, and software development are also supported by
smartphones or tablets. Accordingly, desktop applications
are increasingly compatible with smartphones by making
use of external keyboard and/or screen devices. However,
smartphone systems have critical weaknesses to be a general
purpose multitasking computing device. Specifically, cur-
rent smartphone platforms such as Android terminate pro-
cesses without user’s approval when free memory space is
exhausted [7], [8]. This was not a serious issue when a
smartphone was a personal entertainment device, but now it is
critical to perform official works. For example, terminating a
music player does not incur serious results but killing a video
editor while editing a large movie file may cause significant
problems.

To resolve this issue, smartphones should preserve pro-
cesses unless users explicitly terminate applications. This can
be realized by swap, which uses a certain portion of secondary
storage as main memory’s extension for saving application’s
memory data when free memory space is exhausted [9].

129930 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0002-7188-3889


J. Kim, H. Bahn: Analysis of Smartphone I/O Characteristics

FIGURE 1. Comparison of application’s launch time for original Android and swap-supported Android.

Although swap has been widely used in traditional com-
puter systems, our analysis shows that supporting swap in
a smartphone is not an easy matter. In particular, a serious
system-wide thrashing happens in a swap-added Android
device, slowing down the launch time of applications signif-
icantly. Nevertheless, we observe that such storage accesses
are extremely skewed to 10-15% of hot data. Based on these
observations, we present a new architecture utilizing non-
volatile memory in order to eliminate a large portion of
storage accesses in Android swap. In particular, we show
that only a small size of non-volatile memory is sufficient to
absorb hot data accesses by making use of efficient manage-
ment techniques. Experimental results show that our archi-
tecture significantly reduces the number of storage accesses,
thereby supporting swap without performance degradations.

A. MOTIVATIONAL EXPERIMENTS
Our goal is to support swap in a smartphone, thereby making
it a general purpose computing device like a desktop or a
laptop. To do so, we reconfigure an Android smartphone
and measure the performance of swap-supported Android
in comparison with that of the original Android without
swap. Fig. 1 depicts the launch time of various applications
measuredwith original Android and swap-supported Android
after their memory has been warmed up by a sufficient
number of applications. (Details of experimental conditions
will be explained later in Sections II and IV). As shown

in the figure, supporting swap significantly degrades the
smartphone performances. Specifically, application’s launch
time is increased by two to five times when swap is
turned on.

This is not consistent with the results in some previous
studies, in which swap only increases the application’s launch
time by 20-40% [26]. However, experiments in these studies
were performed by executing a simple scenario with two
applications. That is, a synthetic application with the given
file size is executed first and then another application is
performed to exhaust the remaining memory space; then the
first application is executed again to measure the launch time.
In reality, this is difficult to account for full phenomena that
occur in a real Android device as we usually execute a large
number of applications without restarting a phone for a long
time.

Unlike previous studies, we observe the system state after
sufficient time has passed since the smartphone started. That
is, the number of applications executed increases as time pro-
gresses and we point out that a serious system-wide thrashing
problem happens in an Android device with its swap function
turned on.

The main source of this thrashing is the increased I/O time,
which accounts for 80% of the total launch time as shown in
Fig. 1. CPU time is also increased because increases in I/O
time result in some CPU works such as I/O scheduling and
memory reclamation for I/O requests. To support swap in a

VOLUME 7, 2019 129931



J. Kim, H. Bahn: Analysis of Smartphone I/O Characteristics

smartphone, therefore, such negative effects in swap should
be alleviated.

B. CONTRIBUTIONS
The first contribution of this article is to analyze storage
accesses of swap-supported Android generated by a vari-
ety of applications. Our analysis shows that swap-supported
Android incurs 4-15 times more I/Os than original Android.
This is because supporting swap requires additional stor-
age accesses for saving and retrieving application’s memory
address space, whereas killing and restarting an application
without swap perform most of their works in memory.
Another interesting observation is that storage accesses gen-
erated by swap-supported Android are extremely skewed.
In particular, 10-15% of top ranking data account for about
80% of total storage accesses. This is different from original
Android in that 50-60% of top ranking data account for 80%
of total storage accesses.

Our second contribution is the design of a new archi-
tecture to eliminate a bunch of storage accesses generated
by swap-supported Android. In particular, we adopt a small
size of non-volatile memory to absorb hot data accesses that
appear in swap-supported Android. The proposed architec-
ture eliminates most of additional storage accesses bymaking
use of the storage access characteristics observed in Android
applications. Experimental results show that the proposed
architecture reduces the number of storage accesses by 89%
on average and up to 93%.

This article also quantifies the size of non-volatile memory
required to support swap without performance degradations,
and suggests appropriate policies for the non-volatilememory
architecture. By identifying and maintaining top 10-15% data
that account for most of storage accesses in swap-supported
Android, we show that a small size of 256MB non-volatile
memory is sufficient to eliminate additional storage accesses
generated by swap. Specifically, we adopt an admission
control policy that does not allow a large portion of cold
data to be inserted into the non-volatile memory, thereby
protecting expensive memory space from being polluted
by non-profitable data. The saved space is utilized for
maintaining hot data. Experimental results show that the
application launch time of our swap-supported Android is
improved by 82% on average, which is similar to the original
Android.

The remainder of this article is organized as follows.
Section II analyzes storage access characteristics extracted
from smartphone applications. Section III presents the pro-
posed architecture for improving swap performances and
management algorithms used therein. The experiment results
of the proposed architecture are given in Section IV. Finally,
Section V concludes this article.

II. ANALYZING STORAGE ACCESSES IN
SWAP-SUPPORTED ANDROID
This section analyzes storage accesses of smartphone appli-
cations to investigate the overhead of swap in Android.

To do this, we reconfigure the Android kernel to support
virtual memory swap, and then collect storage access logs of
swap-supported Android in comparison with those of original
Android. We warm up memory by executing a variety of
Android applications to make full use of available memory,
and then induce swap situations.

TABLE 1. Application scenarios used in the experiments.

Table 1 shows the scenarios we executed. Note that we run
the applications in each scenario sequentially and then repeat
them to see the effect of swap. As each scenario consists of
a sufficient number of applications, applications are essential
to be terminated and restart upon their next launch in original
Android whereas swap-supported Android saves and restores
application’s memory data by making use of secondary stor-
age. Our experimental setting consists of ODROID-Q with
1GB DDR2-DRAM memory and 2GB swap file on 16GB
eMMC [10].We set the swap file in the /mnt/sdcard/ partition.
Table 2 shows the details of each partition we set.

TABLE 2. Partition information of swap-supported Android.

Fig. 2 shows the distribution of storage accesses when
original Android and swap-supported Android are installed.
In the figure, the x-axis represents the operation sequences
and the y-axis shows the logical block numbers. The blue
and red plots represent the read and write operations,
respectively. As shown in the figures, the number of plots
increases significantly when swap is turned on. This is
because swap-supported Android repeatedly performs stor-
age accesses for swap when free memory space is exhausted.
Unlike swap-supported Android, original Android kills appli-
cations when there is not enough free memory. As it does
not save application’s process contexts or retrieve them from
secondary storage, original Android incurs relatively small
number of storage accesses.

Another important observation is that the distribution
of swap-supported Android is skewed to a certain hot
data blocks whereas that of the original Android is not
so. Specifically, as available memory becomes insufficient,
swap-supported Android swaps out anonymous pages in data,

129932 VOLUME 7, 2019



J. Kim, H. Bahn: Analysis of Smartphone I/O Characteristics

FIGURE 2. Distribution of storage accesses in original Android and swap-supported Android.

VOLUME 7, 2019 129933



J. Kim, H. Bahn: Analysis of Smartphone I/O Characteristics

FIGURE 3. Cumulative distribution of storage accesses in original Android.

FIGURE 4. Cumulative distribution of storage accesses in swap-supported Android.

heap, and stack regions, and then reloads them into memory
when the process is re-activated; this generates hot I/Os for
the swap area.

Figs. 3 and 4, respectively, show the cumulative num-
ber of storage accesses for original Android and swap-
supported Android. The x-axis represents the percentage of

129934 VOLUME 7, 2019



J. Kim, H. Bahn: Analysis of Smartphone I/O Characteristics

FIGURE 5. Comparison of I/O traffic for original Android and swap-supported Android.

accessed data sorted by their access frequency and the y-axis
represents the ratio of accesses for the given fraction of
data.

For example, 10% in the x-axis implies the top 10% data,
and the corresponding point in the y-axis represents the ratio
of storage accesses they made. As shown in Fig. 3, 50-60%
of top ranking data account for 80% of total storage accesses
in original Android. This implies that skewness of data
accesses in original Android is relatively weak. In contrast,
Fig. 4 shows that 10-15% of top ranking data account for
80% of total storage accesses in swap-supported Android,
implying that storage accesses in swap-supported Android
mostly result from some hot data.

Actually, these hot data should not appear in swap I/O
traces, but be kept in memory, if the system is in its normal
state. As the bottom core part of Android consists of the
Linux kernel, which has a page reclamation module that only
replaces inactive pages, existence of hot data in swap traces
seems to be unnatural. We further analyzed the Android swap
traces and found out that the hot data consist of some kind of
essential Android services and shared libraries. As the num-
ber of concurrent applications increases, they are also evicted
from memory to make free space and then reloaded soon
because they are used again. This is different from the original
Android without swap, in which applications are aggressively

killed, making a certain level of free memory space although
the number of concurrent applications increases.

Fig. 5 compares the total number of storage accesses in
original Android and swap-supported Android. As shown
in the figure, swap-supported Android incurs 9 times more
storage accesses than original Android on average. In case
of swap-supported Android, we separately show the storage
accesses caused by top 15% of data and those by the others.
As we see, top 15% of data account for 84% of total storage
accesses; this implies that if we eliminate storage accesses
caused by top 15% data, the total number of storage accesses
in swap-supported Android will approach that of the original
Android.

Our conclusion is that swap itself is not a problem but a
lot of concurrent applications may cause serious thrashing
if we activate swap in Android. Once thrashing happens,
memory is exhausted and some essential parts of Android
are also evicted from memory and then reloaded repeatedly.
Furthermore, we observed that OOM (out of memory killer)
is also activated when free memory space is almost exhausted
in swap-supported Android. Note that OOM works when the
page reclamation module fails to free page frames, thereby
making the system difficult to normally operate. In that
case, processes are killed based on their memory occupation
and nice values until minimum free memory space is made.

VOLUME 7, 2019 129935



J. Kim, H. Bahn: Analysis of Smartphone I/O Characteristics

By considering this, swap-supported Android needs a mech-
anism that does not incur such phenomena.

So far, we made an important observation that the top
15% of Android swap data account for 80% of total swap
I/O, which is the main reason of thrashing. To resolve this
thrashing problem, we will adopt a small size of non-volatile
memory (NVM) as a fast swap device and aim at placing hot
data on this NVM-swap.

A major role of our NVM-swap is to hold hot data, but it
is also important to exclude cold data from entering NVM-
swap. This is because hot data in NVM-swap may be pushed
out by cold data as the capacity of NVM-swap is limited.

To see the effect of such characteristics, we classify storage
accesses of swap-supported Android into single-access and
multiple-accesses. As shown in Fig. 6, the ratio of single-
access is over 50% for all scenarios we considered. Note that
these large portions of single-access data will not be used
again although we maintain them in fast NVM-swap.

FIGURE 6. Ratio of single-access and multi-accesses in swap-supported
Android.

Thus, identifying cold data and prohibiting them from
entering NVM-swap can maximize the benefit of NVM as it
prevents the pollution of NVM-swap from a large portion of
single-access data that we observed in Android swap traces.
Our observations indicate that detecting cold data that are
unlikely to be re-referenced and preventing them from being
loaded into NVM-swap is necessary. Unlike main memory
systems, we can efficiently manage such cold data at the
NVM-swap layer by injecting the admission control policy,
which we will discuss in the next section.

III. SUPPORTING SWAP IN SMARTPHONES
This section describes an efficient swap supporting mecha-
nism for Android smartphones. We first present a new archi-
tecture by adopting non-volatile memory and show how such
an architecture can be implemented efficiently.

A. THE NEW SWAP ARCHITECTURE
Based on the observations in Section II, we present a new
architecture to support virtual memory swap in Android
without performance degradations. The proposed architec-
ture exploits a small size of non-volatile memory residing
between DRAM memory and secondary storage as shown

FIGURE 7. The proposed architecture to support swapping in Android.

in Fig. 7. The key idea of the proposed architecture is
to keep hot data evicted from DRAM memory in non-
volatile memory such as PCM (phase-change memory) or
STT-MRAM (spin torque transfer magnetic RAM) [12], [13].
Non-volatile memory technologies provide persistent storage
at low latency; their energy consumption is also very low
compared to DRAM as they do not need refresh operations
in idle states [14]–[16]. Patents published by Intel describe
a detailed micro-architecture to support non-volatile memory
in the storage hierarchy of computer systems, implying that
the era of non-volatile memory is imminent [24], [25]. How-
ever, as non-volatile memory will not replace DRAM due to
cost and/or performance, it is considered only as an add-on
component to enhance performances [17], [18], [27], [28].

In this article, we show that only a small size of non-volatile
memory suffices to eliminate most storage accesses that
additionally occur in swap-supported Android by adopting
efficient management techniques. When there is not enough
free memory in the system, swap-supported Android selects a
certain number of memory data not used recently, and evicts
them from DRAM memory. If the evicted data was modified
while resident in DRAM memory, the data is first written
to secondary storage before its eviction. In our architecture,
instead of secondary storage, non-volatile memory temporar-
ily holds data discarded from DRAM memory. Thus, when-
ever storage accesses are requested, non-volatile memory is
checked before finding the data in secondary storage. If the
requested data is found in non-volatile memory, it is loaded
into DRAM memory without storage accesses.

B. OPTIMIZED ADOPTION OF NON-VOLATILE MEMORY
For now, as the capacity of non-volatile memory is limited,
an efficient management technique is needed. When free
space is necessary in non-volatile memory, a replacement
policy should select data to be evicted and flush it to sec-
ondary storage. Unlike DRAM memory cases, we can adopt
more complicated algorithms in non-volatile memory. That
is, main memory systems cannot be aware of the exact time

129936 VOLUME 7, 2019



J. Kim, H. Bahn: Analysis of Smartphone I/O Characteristics

of each memory access but knows only limited information
(e.g., binary information of recently accessed or not), and
thus replacement policies used in DRAMmemory are usually
simple. For example, the popular CLOCK algorithm uses one
bit for each data to identify whether it is recently accessed
or not, and evicts data with its access-bit 0 [19]. In contrast,
as our non-volatile memory handles requests only when the
data in DRAM memory is evicted, it knows full information
of the requests such as requested time and frequency. Thus,
we can adopt more complicated algorithms such as evicting
the least recently used or the least frequently used data.

The primary issue of non-volatile memory management is
to identify hot data that account for a majority of storage
accesses and absorb them via non-volatile memory. During
this process, identifying and discriminating cold data is also
important as cold datamay push out hot data under the limited
non-volatile memory capacity. Specifically, 10-15% of hot
data account for 80% of total storage accesses as shown
in Fig. 4, which implies that 85-90% of cold data account
for only 20% of total accesses. In addition, we showed that
more than 50% of single-access data exist in Android swap
I/Os as shown in Fig. 6. This large portion of cold data is
not helpful for the performance improvement as they will
not be re-used at all before evicted from the non-volatile
memory. This happens as non-volatile memory is a second
level memory, which receives requests only when DRAM
memory evicts some data. In particular, when the working-set
of a system is beyond the capacity of non-volatile mem-
ory, thrashing happens, which incurs excessively frequent
replacement in non-volatile memory. Usually, we can expect
the performance gain by maintaining all requested data in
memory although we do not know whether the data will be
subsequently requested or not. However, as mentioned in
Section II, this is not the case for our non-volatile memory,
which receives a large portion of cold data but the size of the
non-volatile memory is limited.

Based on these observations, we propose an admission
control (AC) policy that estimates data unlikely to be re-used
and prohibits them from entering non-volatile memory.
In particular, we do not insert data into non-volatile memory
when it is firstly evicted from DRAM memory, but insert
it into the non-volatile memory only after its second evic-
tion from DRAM occurs within a certain time window. This
allows the filtering of data disruptive to non-volatile memory,
thereby eliminating pollution and improving performances.

Tomaintain the time window, we use a small size of history
buffer that does not store the contents of actual data, but
maintains the information that the data has been evicted from
DRAM recently. The optimal size of the history buffer varies
depending not only on the workload characteristics but also
on the actual non-volatile memory size, and thus it can be
a control parameter to be tuned. As a basic configuration,
we set the number of history buffer entries to the number
of actual data in non-volatile memory. This is reasonable
because a bypassed data itself is not stored but its history
is maintained to see whether it will be used again within a

certain time window determined by the actual non-volatile
memory size. Note that maintaining this size of history buffer
has very low overhead because it only contains a small size of
metadata (less than 20 bytes for each data) whereas an actual
data consists of 4KB [20]–[23].

Now, let us return to the explanation of the admission
control policy. The motivation of this policy is the existence
of cold data that account for less than 20% of total storage
accesses but their volume approaches 85-90%. Thus, the sec-
ond eviction within a short time duration is a good indicator
of whether the data will be effective or not in the near future.
Therefore, bypassing non-volatile memory on the first evic-
tion is effective in discriminating non-profitable data. The
benefit of our admission control policy is that it can protect
expensive non-volatile memory space from being polluted by
non-profitable data when the non-volatile memory capacity is
relatively smaller than the current working set size. The saved
space can be utilized for maintaining hot data longer, thereby
preventing from frequent replacement.

IV. PERFORMANCE EVAUATIONS
In this section, we present the performance evaluation results
to assess the effectiveness of the proposed swap-supported
Android architecture by making use of non-volatile memory.

We perform our experiments with an Android reference
device, ODROID-Q, which consists of 1GB DDR2-DRAM
memory and 2GB swap file on 16GB eMMC. We install
Google Android 6.0.1 and Linux 3.4.0, and reconfigure the
Android kernel to support virtual memory swap. In our exper-
iments, measurements were performed to see the launch time
of applications, but simulations were also performed to inves-
tigate the effectiveness of algorithms such as replacement and
admission control. The reason we use simulations is that sim-
ulation with actual traces can repeat the real workloads with
identical conditions for each application run, providing more
fair comparison than the direct execution of real workloads
each time. This is because workloads cannot be executed
with the same user interaction and/or system status for each
workload run, making fair comparison difficult, but simu-
lations can repeat identical conditions. In the measurement
study, we repeat the executions of each scenario 10 times, and
report the average launch time of each run. In the simulation
study, I/O traces were extracted during the execution of each
scenario, and then trace-driven simulations were performed
by replaying them.

A. SENSITIVITY ANALYSIS ON THE NON-VOLATILE
MEMORY SIZE
We collect storage I/O traces of swap-supported Android
and then perform trace-driven simulations. Storage I/O traces
used in our simulations were extracted by the ftrace utility in
Android kernel [11]. In our experiments, the size of a block is
set to 4KB, which is common to most operating systems [9].
The traces used in our experiments were collected while
executing 20 Android applications. There are 4 scenarios and
each scenario consists of 5 applications as shown in Table 1.

VOLUME 7, 2019 129937



J. Kim, H. Bahn: Analysis of Smartphone I/O Characteristics

FIGURE 8. Number of storage accesses for the proposed swap-supported Android in comparison with original Android.

We execute the applications in each scenario sequentially and
then repeat them to see the effect of swap.

Fig. 8 shows the simulation results for the proposed archi-
tecture as the size of the non-volatile memory is varied
from 2MB to 2048MB. When we need to insert data into
non-volatile memory but there is no available space, we evict
the least recently used (LRU) data from non-volatile mem-
ory, which is the most commonly used policy in cache
systems [9]. For comparison purpose, we simulate another
policy that evicts the least frequently used (LFU) data
when there is no non-volatile memory space. The result
of original Android is also evaluated and compared with
these two policies. As shown in the figure, the number of
storage accesses in swap-supported Android is excessively
large when the size of non-volatile memory is less than
32MB regardless of eviction policies for all scenarios. How-
ever, as the non-volatile memory size becomes larger than
32MB, the performance gap between the two policies clearly
appears. Specifically, LRU outperforms LFU when the non-
volatile memory size is in the range of 32MB to 256MB
irrespective of the scenarios. Finally, when the non-volatile
memory size becomes 1024MB, the two policies merge
and perform even better than the original Android. This is
because the capacity of non-volatile memory is large enough
to maintain all requested data simultaneously. Since our
goal is to use the size of non-volatile memory as small
as possible, we can use 128-256MB non-volatile memory
by adopting the LRU policy. Then, the expected number
of storage accesses will be similar to that of the original
Android.

B. EFFECTIVENESS OF ADMISSION CONTROL
Now, let us examine the effectiveness of our admission con-
trol policy described in Section III. Fig. 9 shows the num-
ber of storage accesses for the admission control policy in
comparison with the conventional policy that does not use it.
In this experiment, we commonly adopt the LRU eviction pol-
icy as it performs better than LFU. The size of the non-volatile
memory is varied from 16MB to 2048MB. As shown in the
figure, the number of storage accesses is reduced significantly
as our admission control policy is adopted. Specifically, when
the size of non-volatile memory is in the range of 128MB
to 256MB, the effectiveness of the admission control policy
clearly appears.

When the size of non-volatile memory is large enough,
the effectiveness of the admission control policy reduces
significantly. This is because the size of non-volatile memory
is large enough to accommodate cold data as well as hot data
in such cases. Performance gaps are also narrowwhen the size
of non-volatile memory becomes extremely small because we
can make data in non-volatile memory useful only for small
inter-access time in this case. That is, as the time duration of
residing in non-volatile memory is short, data are more likely
to be evicted from the non-volatile memory before re-used.

Except for these two extreme cases, our admission con-
trol policy performs well by filtering the large portion of
cold data. In addition, the admission control policy has an
effect of increasing the effective non-volatile memory space
to consistently keep hot data. As the proposed admission
control policy does not insert data upon the first eviction from
DRAM, it incurs an additional storage access when the data is

129938 VOLUME 7, 2019



J. Kim, H. Bahn: Analysis of Smartphone I/O Characteristics

FIGURE 9. Number of storage accesses for the proposed swap-supported Android with/without admission control.

accessed again. However, our results showed that admission
control performs well when the size of non-volatile memory
is not large enough, which implies that filtering out cold data
is effective in non-volatile memory management.

C. COMPARISON OF THE LAUNCH TIME
In order to validate the proposed architecture further, we run a
series of applications introduced in Section I, i.e., Angrybird,
BBC, Chrome, Instagram, Farmstory, and Cut the Rope, and
compare the launch time of original Android, swap-supported
Android, and our architecture. Note that our architecture
adopts the non-volatile memory size of 256MB with admis-
sion control. For each experiment, the application is first
launched, and then a sufficient number of other applications
are executed to fully fill DRAM memory; then, the target
application is executed again.

Fig. 10 shows the application launch time of the pro-
posed architecture in comparison with the original Android
and the swap-supported Android without our architecture.
As shown in the figure, swap-supportedAndroid significantly
degrades the application’s launch time, but our architecture
exhibits similar results with the original Android although
it supports swap. In some cases, our architecture even per-
forms better than original Android. Specifically, the perfor-
mance improvement against original Android is in the range
of 17-40% in case of Chrome, Instagram, Farmstory, and Cut
the Rope. In comparison with the swap-supported Android,

our architecture reduces the application launch time by 77%
on average.

D. DISCUSSIONS
In this section, we summarize our observations and briefly
discuss the evaluation results. We observed a serious thrash-
ing phenomenon (i.e., performance degradation of 2x to 5x)
in swap-supported Android as the number of applications in
execution increases. To quantify this, we analyzed Android
swap I/O traces and made two prominent observations that
can be exploited in supporting Android swap efficiently. The
first is the existence of hot 15% data, which account for 80%
of total swap I/O, and the second is the existence of cold
50% data that are never used again after entering the swap
area. Based on these two observations, we analyzed how to
efficiently manage NVM-swap.

As Android swap has bimodal reference characteristics,
we need to identify and manage hot and cold data efficiently.
Instead ofmanaging them at themainmemory layer, we adopt
NVM at the swap I/O layer and use more precise algo-
rithms consisting of admission and replacement. By so doing,
we showed that Android swap can be efficiently supported
without performance degradations.

Note that the overhead of fully associative data placement
in NVM is not heavy in our case as replacement policies in
the swap I/O layer can be implemented by software, which is
different from the hardware implementation of replacement
policies in on-chip caches.

VOLUME 7, 2019 129939



J. Kim, H. Bahn: Analysis of Smartphone I/O Characteristics

FIGURE 10. Application’s launch time for original Android, swap-supported Android, and the proposed architecture.

This article did not consider the endurance problem of
NVM as swap accesses are not so frequent compared to main
memory or on-chip cache accesses. Note that the endurance
cycles of PCM and STT-MRAM, respectively, are about 3-4
and 7-8 orders of magnitude more than that of flash memory.
Endurance problems of NVM can be further referenced in
other studies [27], [29], [30].

V. CONCLUSION
In this article, we discussed issues for smartphone to be
a general purpose computing device like desktop PCs.
We argued that one of the significant problems in cur-
rent smartphone systems is the termination of applications
without user’s approval, thereby losing the context of the
processes. To resolve this issue, we presented a virtual mem-
ory swap architecture that can be adopted efficiently in cur-
rent smartphone systems. We analyzed the characteristics
of storage accesses in original Android and swap-supported
Android, and found out two important phenomena. First,
swap-supported Android incurs 4-15 times more storage
accesses than original Android. Second, storage accesses in
swap-supported Android are extremely skewed to 10-15% of
hot data.

Based on these observations, we presented a new
architecture to eliminate a bunch of storage accesses in
swap-supported Android. In particular, we adopt a small size
of non-volatile memory to absorb hot data that appear in
swap-supported Android by making use of efficient man-
agement policies. We showed that the required non-volatile
memory size is only 256MB but it reduces the number of
storage accesses and the application launch time by up to 93%
and 82%, respectively.

REFERENCES
[1] S. Bae, H. Song, C. Min, J. Kim, and Y. I. Eom, ‘‘EIMOS: Enhanc-

ing interactivity in mobile operating systems,’’ in Computational Science
and Its Applications—ICCSA 2012 (Lecture Notes in Computer Science),
vol. 7335. Cham, Switzerland: Springer, 2012, pp. 238–247.

[2] I. Bisio, F. Lavagetto, M. Marchese, and A. Sciarrone, ‘‘GPS/HPS-and
Wi-Fi fingerprint-based location recognition for check-in applications over
smartphones in cloud-based LBSs,’’ IEEE Trans. Multimedia, vol. 15,
no. 4, pp. 858–869, Jun. 2013.

[3] F. Huang, X. Li, S. Zhang, J. Zhang, J. Chen, and Z. Zhai, ‘‘Overlapping
community detection for multimedia social networks,’’ IEEE Trans. Mul-
timedia, vol. 19, no. 8, pp. 1881–1893, Aug. 2017.

[4] K.-T. Chen, Y.-C. Chang, H.-J. Hsu, D.-Y. Chen, C.-Y. Huang, and
C.-H. Hsu, ‘‘On the quality of service of cloud gaming systems,’’ IEEE
Trans. Multimedia, vol. 16, no. 2, pp. 480–495, Feb. 2014.

[5] N. Islam and R. Want, ‘‘Smartphones: Past, present, and future,’’ IEEE
Pervas. Comput., vol. 13, no. 4, pp. 89–92, Oct. 2014.

129940 VOLUME 7, 2019



J. Kim, H. Bahn: Analysis of Smartphone I/O Characteristics

[6] Google Nexus 6P Product. Accessed: Apr. 1, 2019. [Online]. Available:
https://www.google.com/intl/en_us/nexus/6p/

[7] S. Kim, J. Jeong, J. S. Kim, and S. Maeng, ‘‘SmartLMK: A memory
reclamation scheme for improving user-perceived app launch time,’’ ACM
Trans. Embedded Comput. Syst., vol. 15, no. 3, p. 47, 2016, Art. no. 25.

[8] R. Prodduturi, ‘‘Effective handling of low memory scenarios in Android
using logs,’’ Ph.D. dissertation, Dept. Comput. Sci. Eng., Indian Inst.
Technol., Mumbai, India, 2013.

[9] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating System Concepts,
9th ed. New York, NY, USA: Wiley, 2013.

[10] Odroid-Q. Accessed: Apr. 1, 2019. [Online]. Available: http://www.
hardkernel.com/

[11] S. Rostedt, ‘‘Ftrace Linux kernel tracing,’’ in Proc. Linux Conf. Jpn., 2010,
pp. 1–50.

[12] H.-S. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran,
M. Asheghi, and K. E. Goodson, ‘‘Phase change memory,’’ Proc. IEEE,
vol. 98, no. 12, pp. 2201–2227, Dec. 2010.

[13] A. V. Khvalkovskiy, D. Apalkov, S. Watts, R. Chepulskii, R. S. Beach,
A. Ong, X. Tang, A. Driskill-Smith, W. H. Butler, P. B. Visscher, D. Lottis,
E. Chen, V. Nikitin, and M. Krounbi, ‘‘Basic principles of STT-MRAM
cell operation in memory arrays,’’ J. Phys. D, Appl. Phys., vol. 46, no. 7,
2013, Art. no. 074001.

[14] A. Akel, A. M. Caulfield, T. I. Mollov, R. K. Gupta, and S. Swanson,
‘‘Onyx: A prototype phase change memory storage array,’’ in Proc.
USENIX Conf. Hot Topics Storage File Syst., 2011, pp. 1–5.

[15] C. D. Wright, M. M. Aziz, M. Armand, S. Senkader, and W. Yu, ‘‘Can
we reach Tbit/sq.in. storage densities with phase-change media?’’ in Proc.
Eur. Phase Change Ovonics Symp., 2004, pp. 1–8.

[16] E. Lee and H. Bahn, ‘‘Caching strategies for high-performance storage
media,’’ ACM Trans. Storage, vol. 10, no. 3, p. 11, 2014.

[17] E. Lee, H. Kang, H. Bahn, and K. G. Shin, ‘‘Eliminating periodic flush
overhead of file I/O with non-volatile buffer cache,’’ IEEE Trans. Comput.,
vol. 65, no. 4, pp. 1145–1157, Apr. 2016.

[18] E. Lee, H. Bahn, and S. H. Noh, ‘‘Unioning of the buffer cache and
journaling layers with non-volatile memory,’’ in Proc. 11th USENIX Conf.
File Storage Technol., 2013, pp. 73–80.

[19] S. Lee, H. Bahn, and S. H. Noh, ‘‘CLOCK-DWF: A write-history-aware
page replacement algorithm for hybrid PCM and DRAM memory archi-
tectures,’’ IEEE Trans. Comput., vol. 63, no. 9, pp. 2187–2200, Sep. 2014.

[20] T. Johnson and D. Shasha, ‘‘2Q: A low overhead high performance buffer
management replacement algorithm,’’ in Proc. 20th Int. Conf. Very Large
Data Bases, 1994, pp. 439–450.

[21] S. Bansal and D. S. Modha, ‘‘CAR: Clock with adaptive replacement,’’ in
Proc. 3rd USENIX Conf. File Storage Technol., 2004, pp. 187–200.

[22] Y. Zhou, J. F. Philbin, and K. Li, ‘‘The multi-queue replacement algorithm
for second level buffer caches,’’ in Proc. USENIX Annu. Tech. Conf., 2001,
pp. 91–104.

[23] N.Megiddo and D. S. Modha, ‘‘ARC: A self-tuning, low overhead replace-
ment cache,’’ in Proc. 2nd USENIX Conf. File Storage Technol., 2003,
pp. 1–17.

[24] B. Nale, R. K. Ramanujan, M. P. Swaminathan, and T. Thomas,
‘‘Memory channel that supports near memory and far memory access,’’
U.S. Patent 2011 054 421, Sep. 30, 2013.

[25] R. K. Ramanujan, R. Agarwal, and G. J. Hinton, ‘‘Apparatus and method
for implementing a multi-level memory hierarchy having different operat-
ing modes,’’ U.S. Patent 20 130 268 728 A1, Oct. 10, 2013.

[26] K. Zhong, T. Wang, X. Zhu, L. Long, D. Liu, W. Liu, Z. Shao, and
E. H.-M. Sha, ‘‘Building high-performance smartphones via non-volatile
memory: The swap approach,’’ in Proc. ACM EMSOFT, 2014, p. 30.

[27] D. Liu, K. Zhong, X. Zhu, Y. Li, L. Long, and Z. Shao, ‘‘Non-volatile mem-
ory based page swapping for building high-performance mobile devices,’’
IEEE Trans. Comput., vol. 66, no. 11, pp. 1918–1931, Nov. 2017.

[28] E. Cheshmikhani, H. Farbeh, S. Miremadi, and H. Asadi, ‘‘TA-LRW:
A replacement policy for error rate reduction in STT-MRAM caches,’’
IEEE Trans. Comput., vol. 68, no. 3, pp. 455–470, Mar. 2019.

[29] H. Farbeh, A. M. H. Monazzah, E. Aliagha, and E. Cheshmikhani,
‘‘A-CACHE: Alternating cache allocation to conduct higher endurance in
NVM-based caches,’’ IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 66,
no. 7, pp. 1237–1241, Jul. 2019.

[30] E. Lee, S. H. Yoo, and H. Bahn, ‘‘Design and implementation of a journal-
ing file system for phase-change memory,’’ IEEE Trans. Comput., vol. 64,
no. 5, pp. 1349–1360, May 2015.

JISUN KIM received the B.S. degree in computer
science and engineering from Hanshin University,
in 2011. She is currently pursuing the Ph.D. degree
in computer science and engineering with Ewha
University, Seoul, South Korea.

Her research interests include operating
systems, storage systems, caching algorithms,
system optimizations, mobile systems, software
platform technologies, block chain technologies,
and embedded systems.

HYOKYUNG BAHN (M’02) received the B.S.,
M.S., and Ph.D. degrees in computer science
and engineering from Seoul National University,
in 1997, 1999, and 2002, respectively.

He is currently a Full Professor of computer
science and engineering with Ewha University,
Seoul, South Korea. He has published over 70
papers in leading conferences and journals in
his research fields, including USENIX FAST,
the IEEE TRANSACTIONS ON COMPUTERS, the IEEE

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, and ACM Transac-
tions on Storage. His research interests include operating systems, caching
algorithms, storage systems, embedded systems, system optimizations, and
real-time systems.

Prof. Bahn received the Best Paper Award from the USENIX Conference
on file and storage technologies, in 2013.

VOLUME 7, 2019 129941


	INTRODUCTION
	MOTIVATIONAL EXPERIMENTS
	CONTRIBUTIONS

	ANALYZING STORAGE ACCESSES IN SWAP-SUPPORTED ANDROID
	SUPPORTING SWAP IN SMARTPHONES
	THE NEW SWAP ARCHITECTURE
	OPTIMIZED ADOPTION OF NON-VOLATILE MEMORY

	PERFORMANCE EVAUATIONS
	SENSITIVITY ANALYSIS ON THE NON-VOLATILE MEMORY SIZE
	EFFECTIVENESS OF ADMISSION CONTROL
	COMPARISON OF THE LAUNCH TIME
	DISCUSSIONS

	CONCLUSION
	REFERENCES
	Biographies
	JISUN KIM
	HYOKYUNG BAHN


